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Abstract

Promoters are genomic regions where the transcription machinery binds to initiate the
transcription of specific genes. Computational tools for identifying bacterial promoters
have been around for decades. However, most of these tools were designed to
recognize promoters in one or few bacterial species. Here, we present Promotech, a
machine-learning-based method for promoter recognition in a wide range of bacterial
species. We compare Promotech’s performance with the performance of five other
promoter prediction methods. Promotech outperforms these other programs in terms
of area under the precision-recall curve (AUPRC) or precision at the same level of recall.
Promotech is available at https://github.com/BioinformaticsLabAtMUN/PromoTech.
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Background
Promoters are DNA segments essential for the initiation of transcription at a defined
location in the genome, which are recognized by a specific RNA polymerase (RNAP)
holoenzyme (Eσ ) [1]. Eσ is formed by RNAP and a σ factor. σ factors are bacterial
DNA-binding regulatory proteins of transcription initiation that enable specific binding
of RNAP to promoters [1]. Recognizing promoters is critical for understanding bacterial
gene expression regulation. There have been numerous bioinformatics tools developed to
recognize bacterial promoter sequences [2–17] (summarized in Supplementary Table S1).
However, most of these tools were designed to recognize promoters in Escherichia coli
or in few (2 or 3) bacterial species, and their applicability to a wider range of bacte-
rial species is unproven. Additionally, the performance of current tools rapidly decreases
when applied to whole genomes, and thus, it is common practice to restrict the size of the
input sequence to a few hundred nucleotides.
Shahmuradov et al. [11] evaluated the performance of their method (bTSSfinder) and

other three methods on ten bacterial species belonging to five different phyla. The
best average sensitivity (recall) values obtained were 59% and 49% by bTSSfinder and
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BPROM [17], respectively, while bTSSfinder achieved higher accuracy than the other
three assessed tools. These results are promising as they showed that it is possible to rec-
ognize promoters of several bacterial species even when the methods were designed for
specific bacterial species. BPROM uses five relatively conserved motifs from E. coli to
identify promoters, and bTSSfinder focuses on E. coli and three species of Cyanobacteria.
Based on this, we hypothesized that predictive performance can be improved if a method
is trained on data from a diverse group of bacterial species.
Another bacterial promoter detection method evaluated on a multi-species data set

is G4PromFinder[10]. G4PromFinder utilizes conserved motifs and focuses on Strepto-
myces coelicolor A3(2) and Pseudomonas aeruginosa PA14. Di Salvo et al. comparatively
assessed G4PromFinder’s performance in terms of F1-score with that of bTSSfinder, PeP-
PER [14], and PromPredict [16, 18] and found that G4PromFinder outperformed the
other three tools in GC-rich bacterial genomes. There are several recently published E.
coli promoter prediction methods such as MULTiPly [4], SELECTOR [2], iPromoter-
BnCNN [3], IBPP [7], and iPromoter-2L [19], among others (Supplementary Table S1).
Cassiano and Silva-Rocha [20] carried out a comparative assessment of bacterial pro-
moter prediction tools for identifying E. coli σ 70 promoters. In their benchmark, they
found that iPro70-FMWin [6] achieved the best results in terms of accuracy and MCC.
Here, we developed a general (species independent) bacterial promoter recognition

method, Promotech, trained on a large data set of promoter sequences of nine distinct
bacterial species belonging to five different phyla (namely, Actinobacteria, Chlamydiae,
Firmicutes, Proteobacteria, and Spirochaetes). As promoters are typically located directly
upstream of the transcription start site (TSS), we used published TSS global maps
obtained using sequencing technology such as dRNA-seq[21] and Cappable-seq[22] to
define promoter sequences. We trained and evaluated twelve random forests and recurn-
rent neural network models using these data to select Promotech’s classification model
(Fig. 1). Finally, we compared the performance of Promotech with that of five other bac-
terial promoter prediction methods on independent data from four bacterial species.
Promotech outperformed all these five methods in terms of the area under the ROC curve
(AUROC), the area under the precision-recall curve (AUPRC), and precision at a specific
recall level.

Results and discussion
Variety of training and validation data

We obtained a large amount of promoter sequences from published global TSS maps
(listed in Table 10). On both the training and the validation data, we had bacterial species
belonging to distinct phyla and having a wide range (from 30 to 72%) of GC content
(Tables 1 and 2). In total, our training data contained 27,766 promoter sequences, and our
validation data contained 11,615 promoter sequences (Supplementary Tables S2 and S3).

Model selection

To select Promotech’s classification model, we built two and ten models using random
forest (RF) [23, 24] and recurrent neural networks (RNN) [25] (Fig. 1), respectively. The
RF models consisted of one trained with hot-encoded features (RF-HOT) and another
trained with tetra-nucleotide frequencies (RF-TETRA). To calculate the tetra-nucleotide
frequency vector of a given sequence, the number of occurrences of each possible



Chevez-Guardado and Peña-Castillo Genome Biology          (2021) 22:318 Page 3 of 16

Fig. 1 Flowchart illustrating our methodology

4-nucleotide DNA sequence (4-mer) in that sequence is divided by the total number of
4-mers in it. The optimal parameters of the RF models were selected using 10-fold grid
search cross-validation on 75% of the training data. The RNN models consisted of five
long short-term memory (LSTM) [26] and five Gated recurrent unit (GRU) [27] models
having zero to four hidden layers and a word embedding [28] layer to obtain a numeri-
cal representation of the promoter sequences (Table S4 in Additional file 1). From now
on, these RNN models are denoted as GRU-X or LSTM-X, where X indicates the num-
ber of hidden layers. All the models were trained using an unbalanced dataset with a 1:10
ratio of positive to negative instances to simulate the small number of promoters in a
whole bacterial genome. Due to time constraints, we were unable to run grid search cross-
validation for the RNNs and assessed these models by randomly splitting the training
data into 75% for training and 25% for testing. The best performing models per machine
learning method in terms of AUPRC and AUROC were RF-HOT, GRU-1, and LSTM-4,
as shown in Table 3. RF-HOT was the model with the highest AUPRC overall.

Model interpretation

To interpret the models created, we performed feature importance analysis to find out
motifs recognized by the models. To do this, we obtained the feature importance ranking

Table 1 Training data set’s characteristics

Bacterial species Phylum GC content (%)

Streptomyces coelicolor Actinobacteria 71.98

Chlamydia pneumoniae Chlamydiae 40.6

Streptococcus pyogenes Firmicutes 38.4

Salmonella enterica Proteobacteria 52.1

serovar Typhimurium

Escherichia coli Proteobacteria 50.6

Shewanella oneidensis Proteobacteria 46

Helicobacter pylori Proteobacteria 38.9

Campylobacter jejuni Proteobacteria 30.4

Leptospira interrogans Spirochaetes 35
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Table 2 Validation data set’s characteristics

Bacterial species Phylum GC content (%)

Mycolicibacterium smegmatis Actinobacteria 67.4

Bacillus amyloliquefaciens Firmicutes 46.4

Lachnoclostridium phytofermentans Firmicutes 35.6

Rhodobacter capsulatus Proteobacteria 66.5

from the RF models. First, the importance scores were calculated using permutation-
based importance (also called mean decrease in accuracy) [29] and impurity-based
importance [24] on RF-TETRA. The most important tetra-mers based on the impurity-
based importance score from RF-TETRA were TATA, ATAA, TAAT, TTAT, AAAA,
and TTTT. The test was repeated using the permutation-based importance score and
permuting each feature five times. Both tests produced similar results having the same
tetra-nucleotide sequences appearing at the top of the ranking, only varying their relative
ranking position and score (Tables 4 and 5).
The feature importance analysis was repeated on the RF-HOT model. In RF-HOT,

each feature represents the presence of one of the four possible nucleotides: adenine (A),
thymine (T), guanine (G), and cytosine (C) for the current position in the range of − 39
to 0 relative to the TSS. Each nucleotide was represented as a 4-digit binary number, i.e.,
A (1000), G (0100), C (0010), and T (0001). The permutation and impurity-based feature
importance ranking generated by RF-HOT provided the most important positions in the
range of − 39 to 0 relative to the TSS and the nucleotide with the most relevance for each
position. To have visual representations of these results, each nucleotide’s importance
score was plotted on a bar graph (Figs. 2 and 3). These results suggest that having adenine
(A) and thymine (T) in the range of − 8 to − 12 relative to the TSS is highly important
for promoter recognition. Additionally, these results suggest that the RF models learn to
identify the Pribnow-Schaller box [30, 31], which is a six-nucleotide consensus sequence
(TATAAT), commonly located around 10 bp upstream from the TSS.

Table 3 The AUPRC and AUROC obtained in 25% of the training data set left out for testing

Models AUPRC AUROC

RF-HOT 0.802 0.938

RF-TETRA 0.593 0.844

GRU-0 0.752 0.929

GRU-1 0.778 0.934

GRU-2 0.753 0.929

GRU-3 0.728 0.922

GRU-4 0.728 0.923

LSTM-0 0.734 0.923

LSTM-1 0.744 0.927

LSTM-2 0.739 0.923

LSTM-3 0.748 0.924

LSTM-4 0.748 0.928

The data set used has a 1:10 ratio of positive to negative instances. The numbers in bold indicate the models with the highest
AUPRC/AUROC per machine learning method
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Table 4 Impurity-based feature importance ranking generated by the RF-TETRA model

Ranking Tetra-nucleotide Score

1 TATA 0.023 ± 0.015

2 ATAA 0.014 ± 0.009

3 TAAT 0.014 ± 0.008

4 TTAT 0.011 ± 0.007

5 AAAA 0.010 ± 0.001

6 TTTT 0.010 ± 0.001

7 GTTA 0.009 ± 0.004

8 TATT 0.009 ± 0.004

9 TAAA 0.009 ± 0.002

10 AATA 0.008 ± 0.004

Genome-wide promoter prediction assessment

We designed our first two assessments to demonstrate that Promotech was able to make
predictions for a whole bacterial genome. Five models were selected for this assessment:
the best models per machine learning method (RF-HOT, GRU-1, and LSTM-4), GRU-0,
and LSTM-3. GRU-0 and LSTM-3 were selected to evaluate the effect in performance if
the model had one less hidden layer. As the models were trained on 40-nt-long sequences,
to do whole-genome predictions, we needed to cut the genome in 40-nt-long sequences.
Thus, we traversed each genome with a sliding window with a one nt step and a 40-nt
window size. The sliced sequences were then pre-processed and fed to the model twice,
first, using a forward strand configuration and then using a backwards strand configu-
ration. These steps were repeated for each bacterium on the validation set, namely, M.
smegmatis, L. phytofermentans, B. amyloliquefaciens, and R. capsulatus. This was a com-
putationally demanding assessment, as, for example, the sliding window created 6,988,167
sequences of 40 nt when used on the M. smegmatis genome. Each sequence was given a
second time with a backward strand configuration ending up with 13,976,336 sequences.
Thus, each of the four selected models was executed roughly 14 million times for the M.
smegmatis genome. The process took around 4 h to run per bacterium per model, includ-
ing the sliding window, data pre-processing, and model’s execution. Increasing the step
size decreased the execution time but also decreased the model performance.
In the first assessment, predicted promoters were considered true positives if they have

at least 10% sequence overlap with an actual promoter. Table 6 shows the average AUPRC

Table 5 Permutation-based feature importance ranking generated by the RF-TETRA model

Ranking Tetra-nucleotide Score

1 ATAA 0.052 ± 0.001

2 TATA 0.048 ± 0.001

3 TAAT 0.046 ± 0.002

4 TTAT 0.039 ± 0.001

5 GTTA 0.036 ± 0.001

6 TAAA 0.035 ± 0.001

7 AATA 0.035 ± 0.001

8 ATTA 0.033 ± 0.001

9 TATT 0.031 ± 0.001

10 AATT 0.031 ± 0.000
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Fig. 2 Impurity-based feature importance scores per nucleotide per position relative to the TSS as calculated
from the RF-HOT model

and AUROC obtained by each model. The PRC and ROC obtained per bacterium are
shown in Supplementary Figs. 1-4 in Additional file 1.
RF-HOT achieved the best overall AUPRC (0.14) and AUROC (0.82) (Table 6). An

AUPRC of 0.14 might seem low, but if one considers that there are millions of 40-nt-long
sequences in a bacterial genome and only a few thousand of these sequences are actual
promoters, then this performance is much better than random guessing. For example,
M. smegmatis has four thousand actual promoters (Table 10) and 14 million 40-nt-long
genomic sequences; thus, a random classifier has an average AUPRC of 0.0003. RF-HOT
achieved an AUPRC of 0.27 in M. smegmatis genome which is roughly a thousand-fold
improvement over random performance.
To gain insight into the behavior of the models, we visually inspected the location of the

predicted promoters and observed that many predicted promoters were located nearby
the actual promoters (Fig. 4). To account for this, we re-evaluated the models’ perfor-
mance to count as correct predictions those within 100 nt of an actual promoter. We
called this task “the cluster promoter prediction.” Assessing the performance of the mod-
els using the cluster promoter prediction method increased AUPRC 2 to 6 times and
AUROC by 1.5 times the values obtained in the first assessment (Figs. 5, 6, 7, and 8

Fig. 3 Permutation-based feature importance scores per nucleotide per position relative to the TSS as
calculated from the RF-HOT model
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Table 6 Average AUPRC and AUROC ± standard deviation obtained per model across the validation
set when requiring that predicted promoters have at least 10% sequence overlap with the actual
promoters to be considered true positives

Model Mean AUPRC Mean AUROC

RF-HOT 0.143± 0.104 0.823± 0.160

GRU-0 0.026 ± 0.016 0.687 ± 0.063

GRU-1 0.025 ± 0.017 0.675 ± 0.048

LSTM-3 0.034 ± 0.017 0.677 ± 0.019

LSTM-4 0.033 ± 0.023 0.631 ± 0.040

The numbers in bold indicate the model with the highest performance

and Table 7). This suggests that our models predict promoters in the proximity of actual
promoters but are unable to recognize the exact genomic location of the actual promoters.

Performance comparison with existing methods

To compare Promotech’s performance with that of other existing methods, we used
four independent test datasets containing promoters found by global TSS mapping
using sequencing technologies. As in the previous assessments, the independent datasets
included B. amyloliquefaciens, L. phytofermentans, M. smegmatis, and R. capsulatus. On
this assessment, the datasets have a 1:1 ratio of positive to negative instances (Supplemen-
tary Table S3). As these datasets contained thousands instead of millions of sequences,
we were able to include the RF-TETRA model that failed to run on a whole genome (due
to memory issues).
As Promotech’s goal is to be applicable to a wide range of bacterial species, we com-

pared Promotech models with other multi-species methods such as bTSSFinder [11] and
G4PromFinder [10]. Additionally, we included BPROM [17] in the comparative assess-
ment, as it is the most commonly used promoter prediction program (as per Google
Scholar, BPROM’s manuscript has been cited 547 times). Finally, we also compared Pro-
motech’s performance with two recent E. coli-specific methods: MULTiPly [4], designed
for various sigma factors, and iPro70-FMWin [6], designed for sigma 70. In total, this
benchmark included Promotech’s six models and five other bacterial promoter prediction
tools.
Promotech’s random forests models (RF-TETRA and RF-HOT) consistently achieved

the highest AUPRC and AUROC across the four bacterial species (Tables 8 and 9).
RF-TETRA achieved the highest average AUPRC and AUROC among all the methods.

Fig. 4 Predicted promoters observed in actual promoters’ proximity but not overlapping. Blue squares on
the first row indicate the location of actual promoters while blue squares on the second and third rows
indicate the location of predicted promoters with a predicted probability of 0.6 and 0.5, respectively. Within
each circle a predicted promoter cluster is shown
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Fig. 5 PR curves (a) and ROC curves (b) per model obtained when counting predicted promoters nearby
actual promoters as true positives onM. smegmatis str. MC2 155 bacterium. The numbers between brackets
beside the model ID indicate AUPRC (a) and AUROC (b) of that model

Among the five other bacterial promoter prediction tools, iPro70-FMWin showed the
best predictive performance but still substantially lower than Promotech’s. Based on these
results, we selected RF-HOT as Promotech’s predictive model for genome-wide promoter
prediction. For recognizing promoters on 40-nt-long genomic sequences in data sets con-
taining up to thousands of sequences, we recommend both RF-HOT and RF-TETRA
models.
Additionally, we compared the performance of RF-TETRA and RF-HOT for identifying

E. coli promoters against that of E. coli-specific tools. To do this, we obtained Promotech’s
predictions on a balanced data set with 2860 experimentally validated E. coli promoters
collected from RegulonDB [32]. This data set has been used to evaluate the performance
of several E. coli promoter prediction tools [3, 19, 33]. The average 5-fold cross-validation
MCC and accuracy reported on this data set [3, 19, 33] are in the range of [ 0.498, 0.763]
and [ 0.748, 0.882], respectively. RF-HOT achieved on this data set a MCC of 0.54, accu-
racy of 0.77, AUPRC of 0.845, and AUROC of 0.84, while RF-TETRA achieved a MCC of
0.47, accuracy of 0.734, AUPRC of 0.830, and AUROC of 0.808. Thus, RF-HOT is in the
range of performance-level observed in programs specifically developed to identify E. coli
promoters. These results demonstrate that Promotech is indeed suitable for predicting
promoters on various bacterial species.

Conclusions
Based on our results, we recommend (1) to use E. coli-specific tools to predict E. coli
promoters as they can identify E. coli promoters more accurately than a general bac-
terial promoter identification method such as Promotech and (2) to use Promotech to
identify promoters in bacterial species other than E. coli, as we have shown Promotech

Fig. 6 PR curves (a) and ROC curves (b) per model obtained when counting predicted promoters nearby
actual promoters as true positives on L. phytofermentans ISDg bacterium. Numbers between brackets beside
the model ID indicate AUPRC (a) and AUROC (b) of that model
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Fig. 7 PR curves (a) and ROC curves (b) per model obtained when counting predicted promoters nearby
actual promoters as true positives on R. capsulatus SB 1003 bacterium. The numbers between brackets beside
the model ID indicate AUPRC (a) and AUROC (b) of that model

outperforms other promoter prediction tools including iPro70-FMWin, one of the most
accurate E. coli-specific tools [20], for identifying promoters on a variety of bacterial
species (Tables 8 and 9).
In sum, Promotech is a promoter recognition tool suited for general (species indepen-

dent) bacterial promoter detection that is able to perform promoter recognition on a
whole bacterial genome. Promotech is available under the GNU General Public License
v3.0 at [34, 35].

Methods
The goal of this study was to develop a general tool to recognize bacterial promoters.
To do this, we assembled a large data set of promoter sequences from various bacte-
rial species, generated twelve machine learning models, and selected the best models
based on AUROC and AUPRC. Our best models were compared with five existing tools
(BPROM [17], bTSSFinder [11], MULTIPly [4], iPro70-FMWin [6], and G4PromFinder
[10]) using a validation data set, not used for training, of four bacterial species.

Materials

Collecting data

Bacterial TSS detected by next-generation sequencing (NGS) approaches, namely, dRNA-
seq[21] and Cappable-seq[22], were collected from the literature (Table 10). We obtained
promoter genomic coordinates and the corresponding sequences using BEDTools [36].
Eσ covers DNA from roughly 55 bp upstream to 15 bp downstream of the TSS [1]. As the
promoter region is not located downstream of the TSS and Eσ covers 15 bp downstream

Fig. 8 PR curves (a) and ROC curves (b) per model obtained when counting predicted promoters nearby
actual promoters as true positives on B. amyloliquefaciens XH7 bacterium. The numbers between brackets
beside the model ID indicate AUPRC (a) and AUROC (b) of that model
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Table 7 Average AUPRC and AUROC ± standard deviation obtained per model across the validation
set on the cluster promoter prediction task

Model Mean AUPRC Mean AUROC

RF-HOT 0.708± 0.182 0.939± 0.050

GRU-0 0.384 ± 0.218 0.898 ± 0.030

GRU-1 0.365 ± 0.219 0.894 ± 0.027

LSTM-3 0.404 ± 0.199 0.900 ± 0.011

LSTM-4 0.379 ± 0.200 0.867 ± 0.033

The numbers in bold indicate the highest AUPRC and AUROC

of the TSS, we excluded 15 bp from both sides of the region covered by Eσ and took as
the promoter sequence the 40 bp upstream of the TSS. The bacterial species included in
this study are listed in Table 10.

Generating positive and negative instance sets

A Nextflow [37] pipeline was designed to obtain the promoter (positive) sequences from
the TSS coordinates by taking the genome FASTA file and the TSS coordinates as input
and obtaining the promoter coordinates as 40 bp upstream from the TSS to the TSS
using BEDTools’ slop command. The BEDTools’ subtract command was used to delete
duplicates, and the getfasta command was used to obtain the FASTA sequences from the
promoter coordinates.
To obtain non-promoter (negative) sequences, we used BEDTools’ random command

to obtain random genomic coordinates and the getfasta command to obtain the corre-
sponding genomic sequences. Negative sequences overlapping positive sequences were
excluded from the training data. Note that some of these negative instances might in fact
be actual promoters, and thus, predictive performance is conservatively assessed.
The training data sets created have a 1:10 ratio of positive to negative instances (unbal-

anced). For the validation data set, we created a data set with a 1:1 ratio of positive to
negative instances (balanced). The total number of positive and negative instances per
bacterium is shown in Supplementary Tables S2 and S3 in Additional file 1.

Table 8 AUPRC per bacterial species and mean AUPRC ± standard deviation for each model

Model M. smegmatis L. phytofermentans B. amyloliquefaciens R. capsulatus Mean AUPRC

RF-HOT 0.955 0.626 0.608 0.691 0.720 ± 0.161

RF-TETRA 0.800 0.608 0.843 0.678 0.732± 0.108

GRU-0 0.646 0.486 0.486 0.588 0.552 ± 0.079

GRU-1 0.622 0.490 0.500 0.576 0.547 ± 0.063

LSTM-3 0.625 0.499 0.494 0.559 0.544 ± 0.061

LSTM-4 0.623 0.501 0.505 0.573 0.550 ± 0.059

MULTiPly 0.649 0.474 0.653 0.591 0.592 ± 0.083

iPro70-FMWin 0.652 0.582 0.774 0.594 0.65 ± 0.088

bTSSFinder (0.512, 0.272) (0.507, 0.944) (0, 0) (0.513, 0.250) NA

G4PromFinder (0.506, 0.938) (0.448, 0.216) (0.382, 0.339) (0.510, 0.960) NA

BProm (0.781, 0.006) (0.501, 0.560) (0.701, 0.421) (0.615, 0.011) NA

AUPRC is roughly the weighted average precision across all recall levels. A perfect classifier has an AUPRC of 1, while a random
classifier has an AUPRC of 0.5 in a balanced data set. These results were obtained in balanced data sets (i.e., with a 1:1 ratio of
positive to negative instances). The numbers in bold indicate the model with the highest AUPRC. For BPROM, bTSSFinder, and
G4PromFinder, the numbers between brackets indicate precision and recall achieved as these tools did not provide a probability
associated to each instance in the data set
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Table 9 AUROC per bacterial species in the validation data set and mean AUROC ± standard
deviation for each model

Model M. smegmatis L. phytofermentans B. amyloliquefaciens R. capsulatus Mean AUROC

RF-HOT 0.939 0.591 0.640 0.660 0.708 ± 0.157

RF-TETRA 0.814 0.608 0.837 0.674 0.733± 0.110

GRU-0 0.630 0.488 0.496 0.577 0.548 ± 0.068

GRU-1 0.601 0.487 0.502 0.566 0.539 ± 0.054

LSTM-3 0.622 0.489 0.481 0.553 0.536 ± 0.066

LSTM-4 0.592 0.498 0.506 0.546 0.536 ± 0.043

MULTiPly 0.684 0.470 0.700 0.593 0.612 ± 0.106

iPro70-FMWin 0.642 0.587 0.779 0.575 0.646 ± 0.093

bTSSFinder (0.272, 0.265) (0.944, 0.924) (0, 0) (0.250, 0.245) NA

G4PromFinder (0.938, 0.932) (0.216, 0.269) (0.339, 0.554) (0.960, 0.953) NA

BProm (0.006, 0.002) (0.560, 0.398) (0.421, 0.181) (0.011, 0.007) NA

AUROC is roughly the likelihood that a positive instance will get a higher probability of being a promoter sequence than a
negative instance. These results were obtained in data sets (not seen during training) with a 1:1 ratio of positive to negative
instances. The numbers in bold indicate the model with the highest AUROC. For BPROM, bTSSFinder, and G4PromFinder, the
numbers between brackets indicate true-positive rate and false-positive rate obtained as these tools did not provide a probability
associated to each instance in the data set

Machine learning models

We used twomachine learning methods: recurrent neural networks (RNNs) [25] and ran-
dom forest (RF) [23, 24]. Both methods have been successfully used before to classify
genomic sequences. Random forest is a popular machine learning method for its abil-
ity to identify feature importance and handles many data types (continuous, categorical,
and binary). It is well-suited for high-dimensional data and avoids over-fitting by its vot-
ing scheme among the ensemble of trees within it [38]. RNNs are also well-suited for
genomic sequence analysis due to their ability to handle variable-length inputs, detecting
sequential patterns and retaining information through time.

Model selection

Due to the lengthy training time of the RNNs, we were unable to run CV for the RNN
models. Thus, to select the best model, we split our training data in 75% for training and
25% for testing. Models were trained with 75% of the data and then compared to each
other on their performance in the 25% left-out data. After selecting the best models, these
models were retrained using all of the training data and the resulting models used for
whole-genome promoter prediction and comparative assessment with the other tools.

Random forest

Two RF models were generated; the first was trained using hot-encoded features; this
meant that the nucleotides (A, G, C, T) were transformed into binary vector representa-
tions [1000], [0100], [0010], and [0001], respectively. This model is henceforth referred to
as RF-HOT. The second model was trained using tetra-nucleotide frequencies calculated
using the scikit-bio library [39] and denoted as RF-TETRA. The models were created
using the Sklearn’s RandomForestClassifier [40] combined with a 10-fold grid search
CV to handle the hyper-parameter optimization. The hyper-parameter search space was
max_features (m): [None, “sqrt”, “log2”] and n_estimators (n): [1000, 2000, 3000]; both
models were trained using an unbalanced data set with a 1:10 ratio of positive to negative
instances. The best hyper-parameters found by grid search CV for both RF models were
m = “log2” and n = 2000 with class weights values of {0 : 0.53, 1 : 10.28}.
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Recurrent neural networks

Two types of RNNs were trained, long short-term memory unit (LSTM) [26] and gated
recurrent unit (GRU) [27], using word embeddings representation of the tetra-nucleotide
sequences calculated using the Keras’ Tokenizer class [41]. Themodels were designated as
GRU-X or LSTM-Xwhere X indicates the number of hidden layers. All models were man-
ually tuned with an architecture consisting of one embedding layer, one GRU or LSTM
layer, zero to four dense layers with dropout to reduce overfitting, one binary output,
Adam optimizer function, and binary cross-entropy loss function (Table S4 in Additional
file 1).

Computer infrastructure

All RF and RNN models were trained on the Compute Canada’s Beluga Cluster [42] con-
figured with four NVidia V100SXM2 16GB GPUs, eight Intel Gold 6148 Skylake @ 2.4
GHz CPUs, and managed using SLURM commands.

Model assessment

Three assessments were performed to evaluate the models’ performance. The first con-
sisted in scanning each bacterial genome using a 40-nt sliding window. In total, the
number of generated sequences ranged from 4 to 7 million depending on the genome
size. Models were given as input each of the sliding window sequences. Models then out-
putted per 40-nt sequence the probability of having a promoter within that sequence. To
be counted as a true positive, the predicted promoter sequence had to have at least 10%
sequence overlap with an actual promoter sequence. All other predicted promoters were
considered false positives. To determine whether a predicted promoter overlapped with
an actual promoter, we used the BEDTools intersect command with the parameters -s and
-f 0.1.
In the second assessment, we also scanned each bacterial genome using a 40-nt sliding

window. However, in this assessment, we considered a predicted promoter a true positive
if it was within 100 nt of an actual promoter. In this setting, we use BEDtools’ clos-
est command to find the five predicted promoters closest to an actual promoter. Then,
those closest predicted promoters less than 100 nt away, upstream or downstream, from
an actual promoter were counted as true positives. All other predicted promoters were
considered false positives.
In the third assessment, we used the validation balanced data set obtained as described

above. In this assessment, we included BPROM, bTSSfinder, G4Promfinder, iPro70-
FMWin, andMULTiPLy.MULTiPLy and G4PromFinder accept 40-nt-long sequences, but
BPROM and bTSSFinder require sequences 250-nt-long and iPro70-FMWin requires 81-
nt-long sequences. We used BEDTools’ slopBed [38] command to extend the sequences
in the data set from 40 to the required length. As G4Promfinder is written in Python,
we integrated into our own pipeline and fed the sequences directly to G4Promfinder. To
run, BPROM and bTSSfinder, we wrote each sequence to a file and then ran the programs
through a shell script called from our own pipeline. MULTiPLy was tested separately, as
it was developed in Matlab, so a short script was written to feed it each bacterium’s data
set. We ran BPROM and MULTiPLy with their default values. bTSSFinder was run with
the parameters -c 1 -t e and -h 2 indicating to search for the highest ranking promoter
regardless of promoter class, use E. coli mode, and search on both strands. All other
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bTSSFinder parameters were left at their default values. G4Promfinder only requires as
input sequences in FASTA format. iPro70-FMWin’s results were obtained from its website
inputting the sequences in FASTA format.
Performance metrics used were (1) the area under the precision-recall curve (AUPRC),

where precision is the number of true positives divided by the total number of predicted
positives and recall (also called sensitivity or true-positive rate) is the number of true
positives divided by the total number of actual positives and (2) the area under the ROC
curve (AUROC), where true-positive rate is the same as recall and false-positive rate is
the number of false positives divided by the total number of predicted positives.
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