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Abstract: Finding out root patterns of quantum integrable models is an important step to
study their physical properties in the thermodynamic limit. Especially for models without
U(1) symmetry, their spectra are usually given by inhomogeneous T − Q relations and
the Bethe root patterns are still unclear. In this paper with the antiperiodic XXZ spin
chain as an example, an analytic method to derive both the Bethe root patterns and the
transfer-matrix root patterns in the thermodynamic limit is proposed. Based on them
the ground state energy and elementary excitations in the gapped regime are derived. The
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present method provides an universal procedure to compute physical properties of quantum
integrable models in the thermodynamic limit.

Keywords: Bethe Ansatz, Lattice Integrable Models

ArXiv ePrint: 2108.08060

https://arxiv.org/abs/2108.08060


J
H
E
P
1
1
(
2
0
2
1
)
0
4
4

Contents

1 Introduction 1

2 Antiperiodic XXZ spin chain 2

3 Patterns of zero roots 4

4 Exact solution for η ∈ R 5
4.1 Ground state 6
4.2 Elementary excitations 8

5 Exact solution for η ∈ R + iπ 10
5.1 Even N case 10
5.2 Odd N case 11

6 Conclusion 15

1 Introduction

The exactly solvable models play important roles in modern physics and mathematics.
These models can provide crucial benchmarks for important physical concepts and phe-
nomena such as thermodynamic phase transitions from the two-dimensional Ising model [1],
the Mott insulator from the one-dimensional Hubbard model [2], fractional charges from
the Heisenberg spin chain [3] and etc. In the past decades, several methods including the
coordinate Bethe Ansatz [4], the T−Q relation [5, 6] and the algebraic Bethe Ansatz [7–13]
were developed. These methods work quite well for models with obvious reference states
because the root patterns are clear [14]. For the quantum integrable systems without U(1)
symmetry, which have important applications in non-equilibrium statistical physics [15, 16],
condensed matter physics [17] and high energy physics [18], their spectra are usually de-
scribed by an inhomogeneous T−Q relation [19, 20]. The inhomogeneous term in the Bethe
ansatz equations (BAEs) makes the problem complicated since the Bethe root patterns are
not clear. Therefore, finding out root patterns is an important step to compute physical
properties of corresponding systems. Several authors had made important conjectures for
the Bethe root patterns of some models [21–25] based on numerical simulations for finite
size systems.

In this paper, with the antiperiodic XXZ spin chain as a concrete example, we propose
an analytic method to derive both Bethe root patterns and transfer-matrix root patterns
of quantum integrable models without U(1) symmetry. The paper is organized as follows.
Section 2 serves as an introduction to the antiperiodic XXZ spin chain, a typical quantum
integrable model without U(1) symmetry. In section 3, we show the root patterns of the
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eigenvalue of the transfer matrix. In section 4, we compute the ground state energy and
the elementary excitations based on the root patterns for η ∈ R (ferromagnetic regime).
Section 5 is attributed to the case of η ∈ R + iπ (anti-ferromagnetic regime). Concluding
remarks are given in section 6.

2 Antiperiodic XXZ spin chain

The Hamiltonian of the antiperiodic XXZ spin chain [26] reads

H = −
N∑
j=1

[
σxj σ

x
j+1 + σyj σ

y
j+1 + cosh ησzjσzj+1

]
, (2.1)

where N is the number of sites, σαj (α = x, y, z) are the Pauli matrices on jth site and η is
the anisotropic or crossing parameter. We consider η ∈ R and η ∈ R + iπ, corresponding to
the ferromagnetic regime and the anti-ferromagnetic regime, respectively. The antiperiodic
boundary condition is achieved by

σαN+1 = σx1σ
α
1 σ

x
1 , for α = x, y, z, (2.2)

which breaks the U(1)-symmetry of the system.
The integrability of the model (2.1) is associated with the six-vertex R-matrix

R0,j(u) = 1
2

[sinh(u+ η)
sinh η (1 + σzjσ

z
0) + sinh u

sinh η (1− σzjσz0)
]

+ 1
2(σxj σx0 + σyj σ

y
0), (2.3)

where u is the spectral parameter. The R-matrix is defined in the auxiliary space V0 and
the quantum space Vj and satisfies

Initial condition : R0,j(0) = P0,j ,

Unitary relation : R0,j(u)Rj,0(−u) = φ(u)× id,
Crossing relation : R0,j(u) = −σy0R

t0
0,j(−u− η)σy0 ,

PT-symmetry : R0,j(u) = Rj,0(u) = R
t0 tj
0,j (u), (2.4)

where P0,j is the permutation operator, φ(u) = − sinh(u+η) sinh(u−η)/ sinh2 η, t0 means
the transposition in the auxiliary space and tj means the transposition in the jth space.
Besides, the R-matrix (2.3) also satisfies the Yang-Baxter equation

R1,2(u1−u2)R1,3(u1−u3)R2,3(u2−u3) =R2,3(u2−u3)R1,3(u1−u3)R1,2(u1−u2). (2.5)

The transfer matrix t(u) of the system is constructed by the R-matrix (2.3) as

t(u) = tr0{σx0R0,N (u− θN ) · · ·R0,1(u− θ1)}, (2.6)

where {θj |j = 1, · · · , N} are the site-dependent inhomogeneity parameters and tr0 means
the partial trace over the auxiliary space. From the Yang-Baxter equation (2.5), one can
prove that the transfer matrices with different spectral parameters commutate with each

– 2 –



J
H
E
P
1
1
(
2
0
2
1
)
0
4
4

other, i.e., [t(u), t(v)] = 0. Therefore, the transfer matrix t(u) is the generating function of
all the conserved quantities of the system. The model Hamiltonian (2.1) is related to the
transfer matrix as

H = −2 sinh η∂ ln t(u)
∂u

∣∣
u=0,{θj=0} +N cosh η. (2.7)

Using the properties of the R-matrix (2.4), we obtain the following operator identi-
ties [20]

t(θj)t(θj − η) = −a(θj)d(θj − η)× id, j = 1, · · ·N, (2.8)

where

d(u) = a(u− η) =
N∏
j=1

sinh(u− θj)
sinh η . (2.9)

From the definition (2.6), we know that the transfer matrix t(u) is a trigonometrical
polynomial operator of u with the degree N − 1. Besides, it satisfies the periodicity
t(u+ iπ) = (−1)N−1t(u). The transfer matrix t(u) can be rewritten as

t(u) = (−1)N−1tr0{σx0R
t0
0,N (−u− η)Rt00,N−1(−u− η) · · ·Rt00,1(−u− η)}. (2.10)

If η ∈ R or η ∈ R + iπ, the R-matrix satisfies the relation

R
∗tj
0,j (−u− η) = Rt00,j(−u

∗ − η). (2.11)

Substituting eq. (2.11) into eq. (2.10) and taking the Hermitian conjugate, we obtain

t†(u) = (−1)N−1t(−u∗ − η). (2.12)

Denote the eigenvalue of the transfer matrix t(u) as Λ(u). From above analysis, we
know that the eigenvalue Λ(u) satisfies

Λ(θj)Λ(θj − η) = −a(θj)d(θj − η), j = 1, · · ·N, (2.13)
Λ(u+ iπ) = (−1)N−1Λ(u), (2.14)

Λ(u) = (−1)N−1Λ∗(−u∗ − η). (2.15)

Obviously, Λ(u) is a degreeN−1 trigonometric polynomial of u and can be parameterized as

Λ(u) = Λ0

N−1∏
j=1

sinh
(
u− zj + η

2

)
, (2.16)

where Λ0 is a coefficient and {zj |j = 1, · · · , N − 1} are the zero roots of the polynomial.
The constraints (2.13) determine the N unknowns Λ0 and {zj |j = 1, · · · , N−1} completely.
The energy spectrum of the Hamiltonian (2.1) is determined by the zero roots {zj} as

E = 2 sinh η
N−1∑
j=1

coth
(
zj −

η

2

)
+N cosh η. (2.17)
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3 Patterns of zero roots

From (2.15) we deduce that for any given root zj , there must be another root zl satisfy

zj + z∗l = kiπ, k ∈ Z. (3.1)

Therefore, with the periodicity eq. (2.14) and eq. (3.1), we find that the zero roots {zj}
can be classified into two types

(i) Re(zj) = 0, Im(zj) ∈
[
−π2 ,

π

2

)
, (3.2)

(ii) Re(zj) + Re(zl) = 0, Im(zj) = Im(zl) ∈
[
−π2 ,

π

2

)
. (3.3)

In case (i), all the zero roots are on the imaginary axis. Then we should analyze the
patterns of zero roots in case (ii).

Let us consider first the positive η case. According to the functional relations (2.13),
the eigenvalue Λ(u) can also be expressed as the inhomogeneous T −Q relation [20]

Λ(u) = eua(u)Q(u− η)
Q(u) − e−u−ηd(u)Q(u+ η)

Q(u) − c(u)a(u)d(u)
Q(u) , (3.4)

where the functions Q(u) and c(u) are given by

Q(u) =
N∏
j=1

sinh(u− λj)
sinh η ,

c(u) = eu−Nη+
∑N

l=1(θl−λl) − e−u−η−
∑N

l=1(θl−λl), (3.5)

and {λj} are the Bethe roots. Putting λj ≡ iuj− η
2 and considering the homogeneous limit

{θj → 0}, the Bethe roots {uj} should satisfy the BAEs

eiuj

sin
(
uj− 1

2 iη
)

sin
(
uj+ 1

2 iη
)
N = e−iuj

N∏
l=1

sin(uj−ul−iη)
sin(uj−ul+iη) (3.6)

+2ie−
1
2Nη sin

(
uj−

N∑
l=1

ul

)
N∏
l=1

sin
(
uj− 1

2 iη
)

sin(uj−ul+iη) , j= 1, · · · ,N.

For a complex Bethe root uj with a negative imaginary part, we readily have∣∣∣∣sin(uj − 1
2 iη

)∣∣∣∣ > ∣∣∣∣sin(uj + 1
2 iη

)∣∣∣∣ . (3.7)

This indicates that the module of the left hand side of eq. (3.6) is larger than 1. Thus
in the thermodynamic limit N → ∞, the left hand side tends to infinity exponentially.
To keep eq. (3.6) holding, the right hand side of eq. (3.6) must also tends to infinity in
the same order. We note that the last term in the inhomogeneous BAEs (3.6) tends to
zero due to the existence of factor e−

1
2Nη with N → ∞, which can be neglected in the

– 4 –



J
H
E
P
1
1
(
2
0
2
1
)
0
4
4

thermodynamic limit. Thus the denominator of the first term in the right hand side must
tend to zero exponentially, which leads to uj − ul + iη → 0. From eq. (3.4), we learn that
the zero roots of Λ(u)Q(u) are zj − η

2 and iuj − η
2 , which are undistinguishable, so uj are

symmetric about the real axis from the fact that zj are symmetric about the imaginary
axis. Then the Bethe roots form strings

uj = uj0 + iη

(
n+ 1

2 − j
)

+ o(e−δN ), j = 1, · · · , n, n = 1, 2, · · · , (3.8)

where uj0 is the position of the string in the real axis, n is the length of string and o(e−δN )
denotes the infinitesimal correction. If n = 1, the Bethe root is real.

The structure of zero roots of eigenvalue Λ(u) can be obtained by eq. (3.4). Substituting
the zero roots {zj} into eq. (3.4), we obtain the relation between uj and zj .

eiz
′
j−

η
2

sin
(
z′j−

iη
2

)
sin
(
z′j+

iη
2

)
N = e−iz

′
j−

η
2

N∏
l=1

sin(z′j−ul−iη)
sin(z′j−ul+iη)

+c
(
iz′j−

η

2

) sinN
(
z′j−

iη
2

)
∏N
l=1 sin(z′j−ul+iη)

, j= 1, · · · ,N, (3.9)

where zj ≡ iz′j . The rest analysis is similar with before. If z′j has a negative imaginary
part, the left hand side of eq. (3.9) will tend to infinity with N tends to infinity. Because
the function c(iz′j −

η
2 ) in eq. (3.9) also tends to 0 if N → ∞, we neglect the third term

in eq. (3.9). The validity of eq. (3.9) requires that the denominator of the first term in
the right hand side should tend to zero, which leads to one zero root and one Bethe root
satisfying z′j − ul + iη → 0. We should note the roots of functions Λ(u) and Q(u) could
not be equal, i.e., z′j 6= ui. Thus from the structure of Bethe roots {ul}, we obtain the
structure of {z′j} as

Im(z′j) = −ηn+ 1
2 + o(e−δN ), n = 1, 2, 3, · · · , (3.10)

which are in the lower complex plane. Because the zero roots {z′j} are symmetric about
the real axis, we arrive at

Re(zj) = ±(n+ 1)η
2 + o(e−δN ), n = 1, 2, 3, · · · . (3.11)

Therefore, we conclude that the zero roots zj are either imaginary or anti-conjugate pairs
given by (3.11). This conclusion is also hold for η ∈ R + iπ by changing η to Re(η).

4 Exact solution for η ∈ R

Without losing generality, we put η > 0. Based on the root patterns derived in the previous
section, the physical properties such as the ground state energy and the elementary exci-
tations can be computed by adopting the method proposed in [25] in the thermodynamic
limit N →∞. The key point of this method is to introduce a proper set of inhomogeneity
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Figure 1. The distribution of zero roots {zj} of Λ(u) at the ground state for N = 9 via ex-
act diagonalization. (a) η = 0.75 and (b) η = 0.75 + iπ. The blue stars are the results for
{θj = 0}, and the red circles are the results for arbitrarily chosen inhomogeneity parameters as
0.14i, 0.32i,−0.43i, 0.54i,−0.25i, 0.63i, 0.47i,−0.78i, 0.19i.

parameters. These parameters serve as an auxiliary tool for analysis and finally will be
taken to zero by analytic continuation. For the present case, we choose all the inhomo-
geneity parameters {θj} to be imaginary. Such a choice does not change the patterns of
the roots but the root density. Similar analysis for the root patterns with non-zero in-
homogeneity parameters can be done by following the same procedure introduced in the
previous section. A numerical proof is shown in figure 1.

Substituting the ansatz (2.16) into the functional relations (2.13), we obtain

Λ2
0

N−1∏
l=1

sinh
(
θj − zl + η

2

)
sinh

(
θj − zl −

η

2

)

= − sinh−2N η
N∏
l=1

sinh(θj − θl + η) sinh(θj − θl − η). (4.1)

Taking the logarithm of the absolute value of eq. (4.1), we have

ln
∣∣∣Λ2

0

∣∣∣+ N−1∑
l=1

[
ln
∣∣∣∣sinh

(
θj − zl + η

2

)∣∣∣∣+ ln
∣∣∣∣sinh

(
θj − zl −

η

2

)∣∣∣∣]

= ln
∣∣∣sinh−2N η

∣∣∣+ N∑
l=1

[ln |sinh(θj − θl + η)|+ ln |sinh(θj − θl − η)|] . (4.2)

4.1 Ground state

At the ground state, all the {θj} and {zl} distribute along the imaginary axis. For conve-
nience, let us put θj = iθ′j , zl = iz′l and η = iγ, where θ′j and z′l are real and γ is imaginary.
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In the thermodynamic limit N →∞, eq. (4.2) becomes

ln
∣∣∣Λ2

0

∣∣∣+N

∫ π
2

−π2
ln
∣∣∣∣sin(θ − z + γ

2

)
sin
(
θ − z − γ

2

)∣∣∣∣ ρ1g(z)dz

= ln
∣∣∣sinh−2N η

∣∣∣+N

∫ π
2

−π2
ln |sin(θ − z + γ) sin(θ − z − γ)|σ(z)dz, (4.3)

where ρ1g(z) is the density distribution of {z′l}, σ(z) is the density distribution of {θ′j}, re-
placing θ′j with θ. We note that the homogeneous limit {θj = 0} corresponds to σ(z) = δ(z).
Taking the derivative of eq. (4.3), we have∫ π

2

−π2
b1(θ − z)ρ1g(z)dz =

∫ π
2

−π2
b2(θ − z)σ(z)dz, (4.4)

where we define some functions as

an(x) = cot
(
x− nηi

2

)
− cot

(
x+ nηi

2

)
, (4.5)

bn (x) = cot
(
x+ nηi

2

)
+ cot

(
x− nηi

2

)
, (4.6)

cn (x) = tan
(
x+ nηi

2

)
+ tan

(
x− nηi

2

)
. (4.7)

In order to solve the integrable equation (4.4), we introduce the Fourier transform

f̃(k) =
∫ π

2

−π2
f(x)e−i2kxdx, k = −∞, · · · ,+∞,

f(x) = 1
π

+∞∑
k=−∞

f̃(k)ei2kx, x ∈
[
−π2 ,

π

2

)
. (4.8)

With the help of the Fourier transform, the integrable equation (4.4) becomes

b̃1(k)ρ̃1g(k) = b̃2(k)σ̃(k), (4.9)

where

ãn(k) = −sign(k) 2πie−η|nk|, (4.10)

b̃n(k) = 2πie−η|nk|, (4.11)

c̃n(k) = (−1)ksign(k) 2πie−η|nk|. (4.12)

The eigenvalue Λ(u) has N−1 zero roots, thus the density ρ1g(z) satisfies the normalization∫ π
2
−π2

ρ1g(z)dz = N−1
N . By taking the homogeneous limit σ(z) = δ(z), we have

ρ̃1g(k) =

 e−η|k|, k = ±1,±2, · · · ,±∞,

1− 1
N , k = 0,

(4.13)
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Figure 2. (a) The distribution of zero roots {zj} of Λ(u) at the ground state for N = 10 and
η = 0.75 via exact diagonalization. (b) The difference δE1g between the ground state energy calcu-
lated from eq. (4.15) and that obtained via numerical exact diagonalization of the Hamiltonian (2.1).
The data can be fitted as δE1g = 19.52e−0.7738N .

and

ρ1g(x) = 1
π

∞∑
k=1

2 cos(2kx)e−kη + 1
π

(
1− 1

N

)
. (4.14)

Thus the ground state energy reads

E1g = 2N sinh η
∫ π

2

−π2
coth

(
ix− η

2

)
ρ1g(x)dx+N cosh η

= −N cosh η + 2 sinh η. (4.15)

This result coincides with the numerical one perfectly as shown in figure 2(b).

4.2 Elementary excitations

Now let us turn to consider the elementary excitations of the system. Due to the root
patterns constraints, the excitations can be described by moving several real roots to the
complex plane in form of conjugate pairs. The simplest elementary excitation is that two
zero roots z′N−2 and z′N−1 form a conjugate pair and all the other roots remain real as
shown in figure 3(a). In this case, the distribution of roots reads

zl = iz′l, (l = 1, · · · , N − 3),

zN−2 = iz′N−2 = nη

2 + iα+ o(e−δN ),

zN−1 = iz′N−1 = −nη2 + iα+ o(e−δN ), (4.16)

where z′l and α are real and n ≥ 2.
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Figure 3. (a) The distribution of zero roots {zj} of Λ(u) at the excited state for N = 10 and
η = 0.75. (b) The difference δE1e between the excited state energy calculated from eq. (4.21) and
that obtained by numerical exact diagonalization of the Hamiltonian (2.1) with the system-size N .
The data can be fitted as δE1e = 130.4e−0.826N .

Substituting eq. (4.16) into (4.2), we have

ln
∣∣∣Λ2

0

∣∣∣+ N−3∑
l=1

[
ln
∣∣∣∣sinh

(
iθ′j − iz′l + iγ

2

)∣∣∣∣+ ln
∣∣∣∣sinh

(
iθ′j − iz′l −

iγ

2

)∣∣∣∣]

+
[
ln
∣∣∣∣sinh

(
iθ′j −

(
nη

2 + iα

)
+ iγ

2

)∣∣∣∣+ ln
∣∣∣∣sinh

(
iθ′j −

(
nη

2 + iα

)
− iγ

2

)∣∣∣∣]
+
[
ln
∣∣∣∣sinh

(
iθ′j −

(
−nη2 + iα

)
+ iγ

2

)∣∣∣∣+ ln
∣∣∣∣sinh

(
iθ′j −

(
−nη2 + iα

)
− iγ

2

)∣∣∣∣]

= ln
∣∣∣sinh−2N η

∣∣∣+ N∑
l=1

[
ln
∣∣∣sinh

(
iθ′j − iθ′l + iγ

)∣∣∣+ ln
∣∣∣sinh

(
iθ′j − iθ′l − iγ

)∣∣∣] . (4.17)

In the thermodynamic limit N →∞, the Fourier transformation of eq. (4.17) gives

Nb̃1(k)ρ̃1e(k) + e−i2kαb̃n−1(k) + e−i2kαb̃n+1(k) = Nb̃2(k)σ̃(k). (4.18)

The solution of eq. (4.18) reads

ρ̃1e(k) =

 e−η|k| − e−i2kα

N (e−nη|k| + e−(n−2)η|k|), k = ±1,±2, · · · ,±∞,

1− 3
N , k = 0,

(4.19)

and

ρ1e(x) = 1
π

∞∑
k=1

[
2cos(2kx)e−kη−2cos[2k(x−α)]e

−nηk+e−(n−2)ηk

N

]
+ 1
π

(
1− 3

N

)
. (4.20)

The energy at this excited state is characterized by the density of roots ρ1e(x) as

E1e = 2N sinh η
∫ π

2

−π2
coth

(
ix− η

2

)
ρ1e(x)dx+N cosh η

+ 2 sinh η
[
coth

(
nη

2 + iα− η

2

)
+ coth

(
−nη2 + iα− η

2

)]
. (4.21)
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The energy carried by this elementary excitation is

∆E1 = 4 sinh η sinh [(n− 1)η]
cosh [(n− 1)η]− 2 cos(2α) . (4.22)

If n = 2 and α = ±π
2 , the energy arrives at its minimum value,

∆E1min = 4 sinh η tanh η2 . (4.23)

Comparison of our analytic results and numerical results is shown in figure 3(b). This
result eq. (4.23) also coincides with that given in [23].

5 Exact solution for η ∈ R + iπ

For convenience, we put η = η+ + iπ with η+ a real number.

5.1 Even N case

We first consider the case of even N . In this case, the number of roots N − 1 is an odd
number. At the ground state, due to the root patterns constraints, the root patterns read

zl = η+ + iz′l, zl+N
2 −1 = −η+ + iz′l, l = 1, · · · , N2 − 1, zN−1 = iβ, (5.1)

where η = η+ + iπ, η+, z′l and β are real. The variation of the real root β gives the gapless
excitation. At the ground state β = 0, while at the excited state β 6= 0. A numerical result
for N = 10 is shown in figure 4(a).

With the same procedure as before, substituting the patterns of zero roots into eq. (4.2)
and considering the thermodynamic limit, we obtain that the densities of z′l satisfy

−N [c̃1(k) + c̃3(k)] ρ̃2e(k)− e−i2kβ c̃1(k) = Nb̃2(k)σ̃(k), (5.2)

where ρ̃2e(k) and σ̃(k) are the Fourier transformations of the density of zero roots z′l and
that of the inhomogeneity parameters, respectively. We note that the ρ2e(z) is the density
of z′l and satisfies the normalization

∫ π
2
−π2

ρ2e(z)dz = 1
2 −

1
N . The solution of eq. (5.2) is

ρ̃2e(k) =


−

1
N
e−i2kβ−(−1)ke−η+k

1+e−2η+k , k = 1, 2, · · · ,∞,
1
2 −

1
N , k = 0,

−
1
N
e−i2kβ+(−1)k+1eη+k

1+e2η+k , k = −1,−2, · · · ,−∞,

(5.3)

and

ρ2ge(x) = 1
π

∞∑
k=1

[
2cos(2kx)(−1)ke−η+k

1+e−2η+k
−2cos[2k(x−β)]

1
N

1+e−2η+k

]
+ 1
π

(
N−2
2N

)
. (5.4)
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Figure 4. (a) The distribution of z zero roots at the ground state for N = 10 and η = 0.75+iπ. (b)
The difference δE2g between the ground state energy calculated from eq. (5.6) and that obtained
via numerical exact diagonalization. The data can be fitted as δE2g = 3.429N−1.073.

The eigenenergy can be calculated as

E2e = 2N sinh η
∫ π

2

−π2

[
coth

(
η+ + ix− η

2

)
+ coth

(
−η+ + ix− η

2

)]
ρ2e (x) dx

+ 2 sinh η coth
(
iβ − η

2

)
+N cosh η. (5.5)

For the ground state, β = 0 and corresponding energy is

E2g = −4N sinh η+

∞∑
k=1

e−2η+k tanh(η+k)− 4 sinh η+

∞∑
k=1

(−1)k+1e−η+k tanh(η+k)

+ 2 sinh η+ tanh
(η+

2
)
−N cosh η+. (5.6)

For the simplest excited state, β 6= 0 as shown in figure 5 for finite N . After tedious
calculation, we find the energy difference ∆E2 = E2e − E2g as

∆E2 = −4 sinh η+

∞∑
k=1

(−1)k+1e−η+k tanh(η+k)[cos(2kβ)− 1]

− 2 sinh η+

(
tanh η+

2 −
sinh η+

cosh η+ + cos 2β

)
. (5.7)

Detailed analysis of eq. (5.7) shows that ∆E → 0 when β → 0, which means that the
elementary excitation is gapless for an even N .

5.2 Odd N case

For an odd N , the number of roots is even and all the {z′j} roots form conjugate pairs in
the ground state as shown in figure 6(a). The distribution of zero roots for the ground
state is

zl = η+ + iz′l, zl+N−1
2

= −η+ + iz′l, l = 1, · · · , N − 1
2 . (5.8)
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Figure 5. A distribution of zero roots {zl} for the ground state and the low-lying excited state
for N = 10 and η = 0.75 + iπ.

Repeating the previous procedure we obtain the density of roots in the momentum space as

ρ̃3g(k) =



(−1)ke−η+k

1+e−2η+k , k = 1, 2, · · · ,∞,
N−1
2N , k = 0,

(−1)keη+k

1+e2η+k , k = −1,−2, · · · ,−∞.

(5.9)

With the help of Fourier transformation, the density of z′l can be obtained as

ρ3g(x) = 1
π

∞∑
k=1

[
2 cos 2kx(−1)ke−η+k

1 + e−2η+k

]
+ 1
π

(
N − 1

2N

)
. (5.10)

The ground state energy is

E3g = −4N sinh η+

∞∑
k=1

e−2η+k tanh(η+k)−N cosh η+. (5.11)

A low-lying excited state can be describe by root patterns

zl = η+ + iz′l, zl+N−3
2

= −η+ + iz′l, l = 1, · · · , N − 3
2 ,

zN−2 = ip, zN−1 = iq, (5.12)
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Figure 6. (a) The distribution of z roots at the ground state for N = 9 and η = 0.75 + iπ. (b)
The difference δE3g between the ground state energy calculated from eq. (5.11) and that obtained
via numerical exact diagonalization. The data can be fitted as δE3g = 1.016N−1.161.

as shown in figure 7 for N = 9, where p and q are real. In the thermodynamic limit, the
density of zero roots reads

ρ3e(x) = 1
π

∞∑
k=1

{
−2 {cos[2k(x− p)] + cos[2k(x− q)]} 1

N(1 + e−2η+k)

+2 cos(2kx)(−1)ke−η+k

1 + e−2η+k

}
+ 1
π

(
N − 3

2N

)
. (5.13)

The excitation energy is given by

∆E3 = ε(p) + ε(q), (5.14)

with

ε(t) =−4sinhη+

∞∑
k=1

(−1)k+1e−η+k tanh(η+k)cos(2kt)+2sinhη+
sinhη+

coshη++cos2t . (5.15)

The excitation energy reaches its minimum at the point of p = q = 0 and the value is

∆E3min = −8 sinh η+

∞∑
k=1

(−1)k+1e−η+k tanh(η+k) + 4 sinh η+ tanh η+
2 . (5.16)

Interestingly, our result for odd N coincides perfectly with those calculated via density
matrix renormalization group method [27, 28] for even N periodic chain.

Despite the absence of translational invariance in the present model, a topological
momentum operator can be defined [24]. We note that the t(0) is a conserved quantity and
t2N (0) = 1 [20]. Therefore, t(0) can be treated as a shift operator in the Z2 topological
manifold, which allow us to define the topological momentum operator as k̂ = −i ln t(0)
with the eigenvalue

k = −i ln Λ(0). (5.17)
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Figure 7. The distribution of roots {zl} at a low-lying excited state for N = 9 and η = 0.75 + iπ.

Substituting the value of Λ(0) into eq. (5.17), we obtain the momentum

k = − i2 ln
N−1∏
l=1

sinh(zl + η
2 )

sinh(zl − η
2 ) + π

4 (1− (−1)N−1), (5.18)

which is also determined by the zero roots {zl}. In the thermodynamic limit, the momen-
tum reads

k = − i2N
∫ π

2

−π2
ln

sinh
(
η+ + ix+ η++iπ

2

)
sinh

(
η+ + ix− η++iπ

2

) sinh
(
−η+ + ix+ η++iπ

2

)
sinh

(
−η+ + ix− η++iπ

2

)
 ρ (x) dx

− i

2

ln
sinh

(
ip+ η++iπ

2

)
sinh

(
ip− η++iπ

2

) + ln
sinh

(
iq + η++iπ

2

)
sinh

(
iq − η++iπ

2

)
 . (5.19)

The momentum carried by the elementary excitation is

K = ζ(p) + ζ(q), (5.20)

with

ζ(t) =
∞∑
k=1

(−1)k sin(2kt)
k

e−η+k tanh(η+k)− i

2 ln
[
−

cosh
(
it+ η+

2
)

cosh
(
it− η+

2
)] . (5.21)

Comparing eqs. (5.14) and (5.21), we obtain the dispersion relation as shown in figure 8.
It seems that the dispersion relation takes the same form as that in the periodic boundary
condition [14].
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6 Conclusion

In conclusion, an analytic method to derive the root patterns of transfer matrix of quantum
integrable models without U(1) symmetry is proposed. It is found that by choosing a
proper set of inhomogeneity parameters, the root patterns do not change but only alter
the density of distributions. This allows us to derive the density of roots and to compute
the eigenenergy in the thermodynamic limit. This method can be naturally applied to
other quantum integrable models.
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