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ABSTRACT

This study describes an efficient and reusable process for ethanol production from medium
containing whey powder, using alginate immobilized ethanologenic E. coli strains either expressing
(TS3) or not expressing (FBR5) Vitreoscilla hemoglobin. Reuseabilities of the FBR5 and TS3 strains
were investigated regarding their ethanol production capacities over the course of 15 successive
96-h batch fermentations. The ethanol production was fairly stable over the entire duration of the
experiment, with strain TS3 maintaining a substantial advantage over strain FBR5. Storage of both
strains in 2 different solutions for up to 60 d resulted in only a modest loss of ethanol production,
with strain TS3 consistently outperforming strain FBR5 by a substantial amount. Strains stored for 15
or 30 d maintained their abilities to produce ethanol without dimunition over the course of 8
successive batch fermentations; again strain TS3 maintained a substantial advantage over strain
FBR5 throughout the entire experiment. Thus, immobilization is a useful strategy to maintain the
advantage in ethanol productivity afforded by expression of Vitreoscilla hemoglobin over long
periods of time and large numbers of repeated batch fermentations, including, as in this case, using
media with food processing wastes as the carbon source.
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Introduction )
from whey cannot, however, be an economical process

due to the low lactose content of whey, which results
in low levels of ethanol production.® High concentra-

In recent years, there has been great concern regarding
environmental pollution due to the use of fossil fuels.

The increase of world population and high oil prices
have also increased efforts to efficiently develop produc-
tion of renewable energy sources; " these include bio-
fuels. Among the biofuels, bioethanol is most commonly
used. Most bioethanol is produced from fermentation of
sugar from maize starch or sugarcane, but it can also be
produced from non-food sources such as lignocellulose
or different wastes.” There is an increasing interest in
using food processing wastes in this role.

Cheese whey is a dairy industry waste produced in
high amounts, the disposal of which results in envi-
ronmental pollution due to its high organic content.
Whey production is about 180 to 190 x 10° tons per
year world wide,* whereas only about half of this is
reused in the food industry.>® Ethanol is produced
from whey in countries such as New Zealand, the
United States, and Denmark.> Ethanol production

tions of lactose, however, can be provided by using
whey powder to achieve high concentrations of etha-
nol. Previous studies have shown that whey and whey
powder can be used for ethanol production by lactose
fermenting microorganisms such as Kluyveromyces
lactis, Kluyveromyces marxianus and Candida pseudo-
tropicalis.”* ">

There is a great need for effective, low cost, and
reusable methodologies for bioethanol production
that can be applied at an industrial scale.'*'> One
such methodology, immobilization of microorganims,
has been studied extensively in recent years.'®'® It has
been shown that the immobilization of ethanologenic
microorganisms offers many advantages over plank-
tonic cell cultures. These include easy separation of
product from the growth medium, elimination of the
need for a fresh inoculum for each batch, reuse of
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microorganisms for several cycles, enhanced produc-
tivity, lowered contamination risks, and enhanced sta-
bility of the ethanologenic strains.'”*° Immobilized
yeast cells have been used in continuous fermentation
systems,' and carriers such as alginate, chitosan or cel-
lulose have been extensively investigated.'”

Immobilization of microorganisms presents chal-
lenges, including carrier gel degradation, limited mass
transfer and difussion of nutrients, diffuculties in esti-
mating the effects of immobilization on the metabo-
lism or physiology of the microorganisms, and cell
leakage.”! To overcome these diffuculties, parameters
such as cell concentration or carrier type have been
extensively investigated.

Although, as mentioned above, ethanol produc-
tion using immobilized cells has been investigated
in recent years,"** there are few studies of ethanol
production by immobilized microorganisms using
whey as the main substrate.”*'® Efficient ethanol
production is important from an economic view-
point. For example, ethanologenic Escherichia coli
strain FBR5 has advantages over yeast as a fer-
menting organism, since it is able to use various
sugars to produce ethanol as the only end product
from fermentation.”> >’

Bacterial hemoglobin (Vitreoscilla hemoglobin,
VHb) is an effective tool for engineering of micro-
organisms for enhancement of growth and produc-
tivity.”>*® Enhancement of ethanol production was
achieved by expressing VHb in strain FBR5 (pro-
ducing strain TS3).>>** Strains FBR5 and TS3 have
been compared for their ethanol production effi-
ciencies using different carbon sources including
%30 potato processing
sugar beet molasses, whey and whey
powder,”” and maize and potato processing waste.>
Recently immobilization of strain TS3 was found to
add an additional advantage to that afforded by
VHbD expression.'®

The purpose of the work reported here was to
expand upon our previous work'® and develop an effi-
cient, reusable process for producing ethanol from
whey powder containing medium using alginate
immobilized strain TS3. It was found that the immo-
bilized cells could be reused or stored for fairly

pure sugars and maize stover,

waste water,>!

extended times and retain both their ethanol produc-
ing ability and the increase in ethanol production
coincident with VHDb expression. The details of this
work are described below.

Materials and methods
Strains

Ethanologenic VHb expressing E. coli strain TS3> had
been generated from pLOI297-bearing strain FBR5.%’
LB plates supplemented with 8 % xylose were used for
maintanance of these strains. Antibiotics (100 png/mL
ampicillin for strain FBR5, and 100 pug/mL ampicillin
and 50 pug/mL streptomycin for TS3) were added to
the growth media.”

Growth medium

Cheese whey powder (CWP, containing 75 % total
sugar/dry basis) was obtained from Bahcivan Gida
(Kirklareli, Turkey). Whey powder solution (128 g of
whey powder suspended in 400 mL of distilled water)
was autoclaved at 121°C for 15 min. The solution was
cooled to room temperature and centrifuged at 15,000
xg for 10 min. The supernatant is “whey powder solu-
tion” (adapted from Ozmihci and Kargi).”'?

Whey powder medium (WPM, pH 7.0) was pre-
pared by combining 400 ml of whey powder solution,
100 mL of sterile yeast extract solution (5 g/L),
100 mL of CaCl, (50 g/L),34 and sterile distilled water
to give 1 L final volume.

Immobilization method

The immobilization procedure was performed as
described previously.'® Briefly 6 % (w/v) alginate solu-
tion was prepared using sodium alginate powder
(Sigma Aldrich, United Kingdom), sterilized by expo-
sure to UV light for 30 min and diluted with sterilized
distilled water.

One or 2 colonies of each strain were inoculated
into growth medium and incubated at 37 °C at
180 rpm overnight. The bacterial cell suspension was
prepared by centrifugation of each bacterial culture at
4000 xg for 15 min at 4 °C followed by resuspension
of each pellet with 0.9 % NaCl (to give 10" cfu/mL).
Following this 6 % (w/v) sodium alginate solution was
mixed with each cell suspension in a 1:1 volume ratio.
This mixture was dripped into 250 mL of sterile 0.1 M
CaCl, using a syringe (3P 21G 0.80x38 mm) and
stirred continously at room temperature for 30 min.

To stabilize the texture of the beads, the beads were
treated with 0.05 M sterile CaCl, solution to harden
for 1 h.*> The mean diameter of the resulting Ca-algi-
nate gel beads was approximately 3.0 mm. After



washing the beads with sterile NaCl (0.9 %) they were
stored in 2 different solutions as described below. The
beads were rinsed with sterile distilled water before
being used in fermentation experiments.

The numbers of viable cells in beads were deter-
mined by immersing the beads in 1 mL of phosphate
buffer (1 M, pH 7.0) followed by disruption by vigor-
ous mixing on a shaker for 1 min. Viable cell numbers
were determined by plating serial dilutions on nutrient
agar plates incubated at 37 °C for 24 h.*® Cell leakage
from the alginate beads was measured by making
serial dilutions from the bead formation solution after
30 min (0.05 M CaCl,) and from both storage solu-
tions after 12 h or at 15 d intervals during the 60 d
storage at 4 °C, followed by plating on nutrient agar
and incubation at 37 °C for 24 h.

Batch and repeated batch fermentations

Precultures and shake flask cultures for free and
immobilized cells were performed as described previ-
ously.'® Briefly, overnight cultures were prepared by
inoculating one colony from the nutrient agar plates
into 5 mL of WPM containing appropriate antibiotics
followed by incubation at 37 °C at 180 rpm.

Immobilized cell batch cultures

Immobilized cell batch cultures were prepared by add-
ing 40 beads containing immobilized cells (containing
a total of 1 mL of bacterial preculture of ODgyonm =
0.8) into 400 mL of medium in 500 mL flasks.'® Each
culture was capped with a rubber stopper pierced with
a 22 gauge needle for CO, exhaustion and incubated
at 37°C and 180 rpm for 96 h. The ethanol, residual
sugar and VHb levels were determined after 96 h of
incubation. For VHb measurements, approximately
50 ml culture samples were centrifuged at 4000 xg for
10 min at 4 °C; the supernatants were used for ethanol
and residual sugar measurements, while the pellets
were used for VHb determinations.

Repeated batch cultures with non-stored immobilized
cells

Repeated batch cultures were conducted smilarly to
batch cultures. After each batch lasting 96 h, the beads
were withdrawn, washed twice with sterile distilled
water and resuspended in fresh medium to start a new
batch fermentation. Including the initial batch run'® a
total of 15 repeated batch fermentations (over a 60 d
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period) were performed. Ethanol measurements were
determined at the end of each 96 h incubation.

Repeated batch cultures with stored immobilized cells
Beads were stored at 4 °C for 60 d in 2 different solu-
tions. Storage solution SS1 contained glucose (0.2 %)
and yeast extract (0.2 %) (as described by Ghorbani
et al’’). Storage solution SS2 contained only CaCl,
(2 %).” Beads stored in either storage solution were
transferred to fresh medium for culturing at 15 d inter-
vals after washing twice with sterile distilled water.

Analytical measurements

Initial and residual lactose contents and ethanol levels
in fermentation medium were determined using an
HPLC (Shimadzu 10A, Shimadzu, Colombia, MD)
equipped with an autosampler (SIL-20AC), an
exchange column and a refractive index detector
(RID-10A). The samples were filtered through a
22 pm filter before injection. Sample volumes were
adjusted to 20 ul and injected into a NH, column
(Interstil NH, column, 5 pum, 4.6 x250 mm, GL Scien-
ces Inc., Shinjuku, Tokyo, Japan) operated at 25 °C
and 0.5 mL/min with a mobile phase including aceto-
nitrile (60 %) and ultra distilled water (40 %). The eth-
anol and sugar levels were determined by using
standard curves correlating peak areas with concentra-
tions of standard solutions. VHb expression levels
were determined as described previously by dithionite
treated-minus untreated difference spectra (A&y3s5_405
=34 M~ cm™") of cell lysates®® and normalized to g
wet weight of cells. Cell mass was also measured as
OD at 600 nm of cell cultures using WPM as a blank
and diluting cultures with WPM as necessary to keep
measured ODs below 0.6; these measurements were
used in the calculations of EtOH production per cell
mass.

The fermentation efficiency (%) was determined
according to Fernandes et al.*® by dividing ethanol
produced (g/L) by the theoretical maximum yield
and multiplying by 100 (53.83 g of ethanol is the
maximum theoretical yield that can be achieved
from 100 g of lactose). The sugar conversion effi-
ciency (%) was obtained by dividing ethanol pro-
duction (g/L) by the initial total biomass (whey
powder) concentration in the starting medium
(102.56 g/L) and multipling by 100.*°
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Statistical analysis

Student’s t tests were performed using Excel 2016. The
P values were calculated with one-tailed t tests, corre-
sponding to the hypothesis that VHb would enhance
ethanol production for TS3 compared with strain
FBRS5, which lacks VHb. Results were considered sig-
nificant for P values less than or equal to 0.05.

Results

In previous work, we immobilized ethanologenic E.
coli FBR5 and its VHD expressing derivative, TS3, and
investigated the potential advantages of combining
immobilized systems and VHb technology for ethanol
production from cheese whey powder.'® Using whey
powder containing fermentation medium containing
8 % lactose and 0.5 % yeast extract in shake flask cul-
tures, ethanol production by free cells was 2.6 % and
3.1 % for FBR5 and TS3, respectively, and by immobi-
lized cells was 3.0 % and 3.5 % for FBR5 and TS3,
respectively. Ethanol production reached 3.9 % for
immobilized strain TS3 grown in a fermenter. From
an industial point of view, then, an extension of this
approach using immobilized VHb expressing strains
in repeated batch fermentations could be a useful
approach for efficient ethanol production. This meth-
odology might also be useful with any food waste as
an inexpensive carbon source in batch and continuous
fermentations. In the work reported here, we have
investigated that possibility.

Performance of repeated batch cultures over a
period of 14 successive transfers

Immobilized FBR5 and TS3 strains that had been
grown through one fermentation cycle'® were trans-
ferred and reused for 14 successive additional 96 h
batch fermentation runs. For all 14 runs strain TS3
had a substantial advantage in ethanol production
over strain FBR5 (17 % to 119 % depending on the
cycle number; Fig. 1; Table S1). This was most pro-
nounced in the final 3 runs, in which the ethanol pro-
duction by strain FBR5 steadily decreased, while that
of strain TS3 reamained fairly constant over the entire
14 cycles. The highest ethanol production (4.4 %, v/v)
was achieved by strain TS3 in run 8. In these experi-
ments both the ethanol fermentation and conversion
efficiencies were also found to be higher with strain
TS3 than strain FBR5 (ranging from 7 to 95 % greater

()

;\; é.---'—— L]

E Twl g

Z . “m---® --u

O e I Sy

g7 sk Tk

3 p— A Ry

< [

22 r >

& *e i

E

s1 r

k=

5] -~--o--FBRS - -®-TS3

0 T T T T T T T T T T T T T )

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Batch number

Figure 1. Ethanol production (v/v, %) by immobilized E. coli
strains FBR5 and TS3 in WPM reused for 14 successive fermenta-
tion cycles following an initial (single) fermentation culture. Val-
ues are averages of 2 individual experiments; error bars indicate
standard deviations (n-1). T-tests showed that the FBR5 and TS3
values were different, with P values between 0.002 and 0.05, for
all batches except number 3 (P value of 0.07).

for the fermentation efficiency and 17 to 115 % greater
for the conversion efficiency over the course of the 14
cycles) (Tables 1 and S1). Both of these paramenters
were fairly constant for both strains throughout the
course of the 14 cycles, except for a dropoff for strain
FBRS5 in the last 3 cycles (coincident with its decrease
in ethanol production). Ethanol production per unit
of biomass was also greater for immobilized TS3 than
for immobilized FBR5 for all 14 cycles, the advantage
ranging from 5 % to 93 % (Tables 1 and S1). The VHb
expression levels, which ranged from 7 to 16 nmol/g,
were fairly consistent across all cycles, but quite low
compared with those measured in previous studies
with free TS3 cells,”" > and fairly comparable to those
seen with immobilized TS3 cells used for only one
cycle of growth.'® (Table 1) It is possible that immobi-
lization may lower VHDb expression or inhibit its
extraction from cells in some as yet unknown way.

Performance of immobilized cells stored for up to
60d

Immobilized strain TS3 cells maintained their advan-
tage at a nearly constant level over immobilized strain
FBR5 after storage for 15, 30, 45 or 60 d (Fig. 2); the
magnitude of the advantage was similar to that of
unstored cells (Fig. 1). Ethanol production was nearly
constant for both strains when stored in SS1 for up to
60 d, but storage in SS2 led to a modest lowering of
ethanol levels for both strains that continued from day
15 through day 60. The data on sugar conversion effi-
ciencies and ethanol fermentation efficiencies closely
paralleled those of ethanol production (Tables 2 and
S2). This was true also of ethanol production per unit
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Table 1. Conversion efficiencies (%), fermentation efficiencies (%), ethanol production per unit of biomass (EtOH/OD), and VHb (nmol/g)
expression (strain TS3 only) of immobilized E. coli strains FBR5 and TS3 grown in WPM for 14 successive fermentation cycles following an
initial (single) fermentation culture. Values are averages of 2 individual experiments (standard deviations (n-1) are in parentheses). T-
tests showed that the FBR5 and TS3 values were different, with P values between 0.001 and 0.05, for all comparisons except Fermenta-
tion Efficiency for batches number 5 and 10, and EtOH/OD for batches 5, 7, 8, and 11 (P values between 0.06 and 0.19).

Conversion Efficiency (%)

Fermentation Efficiency (%)

EtOH (w/v, %) / OD

VHb (nmol/g)
Batch Number FBR5 TS3 FBR5 TS3 FBR5 TS3 TS3
1 19 (0.11) 26 (0.22) 50 (0.10) 71 (0.05) 0.29 (0.01) 0.56 (0.06) 16 (2.44)
2 19 (0.22) 27 (0.27) 50 (0.24) 71 (1.69) 0.29 (0.01) 0.44 (0.01) 11 (4.31)
3 20 (0.05) 27 (0.11) 53(0.32) 72(0.27) 0.29 (0.01) 0.44 (0.01) 8(1.95)
4 22(0.22) 26 (0.22) 59(0.12) 69 (1.93) 0.36 (0.02) 0.52 (0.03) 14 (1.89)
5 22 (0.93) 27 (1.96) 58 (1.21) 71 (5.75) 0.39 (0.03) 0.67 (0.12) 13 (0.16)
6 22 (0.44) 33 (1.58) 56 (0.06) 88 (5.61) 0.37 (0.01) 0.67 (0.08) 8(2.44)
7 25 (1.47) 33(0.16) 67 (5.94) 90 (0.82) 0.43 (0.03) 0.63 (0.09) 9(0.22)
8 26 (0.27) 34 (0.44) 68 (0.14) 89 (0.25) 0.58 (0.03) 0.61 (0.04) 7(1.61)
9 25 (0.38) 30(0.22) 65 (0.13) 75 (0.44) 0.32 (0.05) 0.45 (0.04) 10 (4.54)
10 24 (0.76) 28 (0.27) 67 (4.96) 72 (0.12) 0.38 (0.00) 0.53 (0.04) 13 (3.51)
1 21 (0.98) 28 (0.27) 65 (0.79) 71 (1.50) 0.54 (0.05) 0.59 (0.04) 16 (4.24)
12 17 (1.03) 30(0.16) 66 (2.44) 75 (1.26) 0.28 (0.02) 0.53 (0.05) 8(0.43)
13 14 (0.87) 29 (3.97) 39 (3.34) 76 (9.46) 0.29 (0.03) 0.43 (0.08) 8(1.92)
14 13 (1.20) 28 (0.60) 39 (4.36) 76 (2.96) 0.25 (0.09) 0.43 (0.00) 7 (0.66)

of biomass (Tables 2 and S2). In any case, the immobi-
lized cells and the advantage coincident with VHb
expression were both very stable with regard to ethanol
production. The VHb levels for strain TS3 (Table 2)
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Figure 2. Ethanol production (v/v, %) by immobilized E. coli
strains FBR5 and TS3 grown in a single fermentation in WPM fol-
lowing storage in either SS1 (a) or SS2 (b) solutions for either 15,
30, 45, or 60 d. Values are averages of 2 individual experiments;
error bars indicate standard deviations (n-1). T-tests showed that
the FBR5 and TS3 values were different, with P values between
0.01 and 0.05, for all storage conditions except 45 d in SS1 (P
value of 0.06).

were very similar to those for unstored cells (Table 1)
and fairly constant throughout the full 60 d of storage,
the one possible exception being a lower level at day
60, especially for storage solution SS1 (Table 2).

Performance of stored immobilized cells used in
repeated batch cultures over a period of 8 successive
transfers

When the strains were stored in SS1 or SS2 solutions
for 15 and 30 d and then used for 8 successive repeated
batch fermentations, results similar to those seen above
were obtained. In all cases strain TS3 outperformed
strain FBR5 in ethanol production, conversion effi-
ciency, fermentation efficiency, and ethanol produced
per cell mass (Fig. 3; Tables 3 and S3). In all cases with
both strains the levels of all 4 parameters were generally
very stable through all 8 transfers. There was little dif-
ference in the performance of either strain stored in SS1
for either 15 or 30 d, but there was a decrease in ethanol
production from 15 to 30 d of storage in SS2 for both
strains. Although there was some variability in VHb
levels in strain TS3, these did not show a discenible pat-
tern, and the VHb levels were generally in line with
those in the experments described above (Table 3).

Discussion

Robustness of enhancement of ethanol production
by VHb-expression combined with immobilization

It is of interest that regardless of the number of succes-
sive transfers or the length of storage, all 4 of the
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Table 2. Conversion efficiencies (%), fermentation efficiencies (%), ethanol production per unit of biomass (EtOH/OD), and VHb (nmol/g)
expression (strain TS3 only) of immobilized E. coli strains FBR5 and TS3 reused once (growth in WPM) after storage in SS1 or SS2 solu-
tions for either 15, 30, 45, or 60 d. Values are averages of 2 individual experiments (standard deviations (n-1) are in parentheses). T-tests
showed that the FBR5 and TS3 values were different, with P values between 0.01 and 0.05, for all comparisons except Conversion Effi-
ciency for SS1 storage for 45 d, Fermentation Efficiency for SS1 storage for 60 d, and, EtOH/OD for SS1 storage for 30 and 45 d and SS2

storage for 45 d (P values between 0.06 and 0.10).

Conversion Efficiency (%)

Fermentation Efficiency (%)

EtOH (w/v, %) / OD

VHb (nmol/q)

Storage Solution Storage Day FBR5 TS3 FBR5 TS3 FBR5 TS3 TS3

SS1 15 22(0.98) 28 (2.56) 55 (3.38) 75 (6.02) 0.36 (0.04) 0.55 (0.09) 15(1.12)
30 22 (1.77) 29 (3.60) 57 (2.02) 77 (1.28) 0.36 (0.04) 0.53 (0.08) 17 (1.87)
45 21(0.87) 25(0.11) 56 (2.02) 68 (0.83) 0.35 (0.08) 0.57 (0.09) 20 (0.60)
60 20 (0.54) 25 (0.76) 52(0.57) 69 (5.80) 0.34 (0.04) 0.53 (0.09) 6 (2.09)

SS2 15 22 (0.44) 27 (3.75) 57 (6.51) 72 (1.67) 0.31(0.01) 0.50 (0.04) 16 (1.85)
30 20 (3.09) 25(2.93) 52 (2.69) 63 (1.65) 0.37 (0.03) 0.52 (0.07) 8(1.44)
45 19 (0.71) 24 (2.93) 49 (8.21) 64 (0.89) 0.34 (0.09) 0.56 (0.03) 15 (1.66)
60 17 (0.33) 22 (1.56) 45 (0.84) 61(3.82) 0.29 (0.00) 0.51(0.04) 8(2.81)

parameters of ethanol production (ethanol produc-
tion, ethanol conversion efficiency, fermentation effi-
ciency, and ethanol production per unit of biomass)
remained generally very constant for both strains. In
addition, the absolute levels of ethanol in the fermen-
tation broth achieved with the immobilized, VHb-
expressing strain (about 4 %) exceeds the level needed
for cost-effective recovery.™ Also of note are our
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was substantial and very
stable. Thus, as dicussed in more detail below, the
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Figure 3. Ethanol production (v/v, %) of immobilized E. coli strains FBR5 and TS3 for 8 successive fermentation cycles following storage
in either SS1 (3, 15 d; ¢, 30 d) or SS2 (b, 15 d; d, 30 d) solutions; growth was in WPM. Values are averages of 2 individual experiments;
error bars indicate standard deviations (n-1). T-tests showed that the FBR5 and TS3 values were different for all batches, with P values
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Table 3. Conversion efficiencies (%), fermentation efficiencies (%), ethanol production per unit of biomass (EtOH/OD), and VHb (nmol/g)
expression (strain TS3 only) of immobilized E. coli strains FBR5 and TS3. Growth was in WPM for 8 successive transfers following storage
in SS1 or SS2 solutions for either 15 or 30 d. Values are averages of 2 individual experiments (standard deviations (n-1) are in parenthe-
ses). T-tests showed that the FBR5 and TS3 values were different, with P values between 0.001 and 0.05, for all comparisons except Fer-
mentation Efficiency for 30 d storage, batch number 4, and EtOH/OD for 30 d storage, batch number 4 (P values between 0.06 and 0.07).

Conversion Efficiency (%)

Fermentation Efficiency (%) EtOH (w/v, %) / OD

VHb (nmol/g)
Storage Solution ~ Storage Day  Batch Number FBR5 1S3 FBR5 1S3 FBR5 1S3 1S3
SS1 15 1 22 (0.98) 28 (2.56) 55 (3.38) 75 (6.02) 0.36 (0.04) 0.55(0.09) 15(1.12)
4 21(1.27) 28 (1.65) 57 (6.36) 75 (6.68) 0.37 (0.06) 0.54 (0.11) 25 (1.82)
7 22 (3.33) 32 (4.54) 61(3.81) 85(5.23) 0.38(0.02) 0.56 (0.07) 10 (1.62)
8 22 (1.71) 31 (4.85) 61 (3.88) 85 (4.25) 0.38 (0.03) 0.58 (0.08) 6(1.72)
30 1 22 (1.71) 29 (3.60) 57 (2.02) 77 (1.28) 0.36 (0.04)  0.53 (0.08) 17 (1.87)
4 20 (0.87) 28 (3.94) 55 (4.24) 76 (4.23) 0.36 (0.09) 0.52 (0.06) 4(0.70)
7 21 (4.14) 31 (5.76) 57 (4.24) 83 (6.28) 0.37 (0.08) 0.58 (0.06) 11 (1.41)
8 21(1.84) 30 (3.03) 57 (3.13) 78 (1.94) 0.38 (0.05)  0.56 (0.10) 14 (2.82)
SS2 15 1 22 (0.44) 27 (3.75) 57 (6.51) 72 (1.67) 0.31 (0.01)  0.50 (0.04) 16 (1.85)
4 21(1.27) 28 (4.75) 57 (4.30) 75 (7.07) 0.35(0.06) 0.50 (0.07) 17 (2.82)
7 22 (2.65) 31(2.93) 60 (6.56) 83 (4.94) 0.34(0.03) 0.53(0.04) 9(1.51)
8 22 (1.60) 30 (4.65) 61 (4.94) 81 (9.19) 0.34(0.04) 0.54(0.12) 4(0.70)
30 1 20 (3.09) 25 (2.93) 52 (2.69) 63 (1.65) 0.37 (0.03)  0.52(0.07) 8(1.44)
4 20 (2.22) 27 (4.24) 55(2) 69 (7.07) 0.30 (0.07) 0.55(0.13) 4(0.35)
7 20 (3.64) 29 (7.21) 63 (8) 76 (5.65) 0.34(0.09) 0.47 (0.09) 11 (1.71)
8 20 (2.02) 29 (3.89) 57 (4) 76 (3.13) 0.28 (0.06)  0.47 (0.06) 15 (3.70)

large-scale, practical applications using various low
cost carbon sources derived from waste materials.

Medium composition

Here efficient ethanol production was achieved using
medium containing only whey powder and yeast
extract (as compared with an even richer medium). It
has been reported that nitrogen sources such as yeast
extract or peptone enhance ethanol production in
yeast.*""*? These nitrogen sources also enhance sugar
utilization for increased ethanol yield.*** Yeast
extract also supplies cofactors such as biotin and ribo-
flavin for enhancement of ethanol yield.*> Neverthe-
less, the use of yeast extract adds significant expense
to the medium used in our study, and further work
might focus on finding lower cost substitutes that still
provide the same benefits.

Immobilization of cells

Immobilization of organisms such as the yeast S. cere-
visiae**™* or bacteria like Zymomonas mobilis*® and E.
coli on different support materials for ethanol produc-
tion from molasses’” or whey powder'® have been
reported. The main advantages of immobilized cells
compared with free cells for ethanol fermentation are
in providing increased yield and viability for succes-
sive, repeated fermentations without the need to

prepare fresh inocula each time reviewed by Kourkou-
tas et al.'® Higher ethanol yields of immobilized versus
free cells have been 1reported44’46 for yeast, and for
ethanologenic E. coli.'® Sar et al."® also demonstrated
that the increase in ethanol production coincident
with expression of VHb that occurs in media made
with a wide variety of waste materials is maintained in
immobilized cells, a result which was repeated in the
work reported here.

Repeated batch fermentations and immobilized cell
storage

The positive results we have seen in our system are
similar to those seen by others using immobilized
cells. Using S. cerevisiae immobilized on sweet sorgum
stalks and using sweet sorgum juice as a carbon
source, it was shown that immobilized yeast could be
used for at least 8 successive batches with no reduction
in ethanol production efficiencies.”® Rattanapan
1.* immobilized S. cerevisiae on a thin-shell
cocoon, and performed a 5 cycle repeated batch fer-
mentation with enhanced stability and ethanol pro-
ductivity. Santos and Cruz® reported that ethanol
production by Zymomonas mobilis immobilized on
alginate for 12 24-h fermentation cycles increased
between the fourth and the eighth cycles, while Ercan
et al.”" showed that for alginate immobilized S. cerevi-
siae the fermentation time was decreased and the

et a
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immobilized cells were found to be reusable for 5
cycles in carob pod extract containing fermentation
medium.

Regarding long-term storage, a previous study
adapted S. cerevisiae SL 100 cells to a high (60 %)
sucrose concentration during storage which resulted
in higher ethanol levels compared with cells stored in
water. The cells retained their metabolic activities and
viabilities for more than a year when they were stored
in water at 4 °C.>* In the work reported here, neither
long-term storage nor repeated batch fermentations
appeared to greatly change VHb levels in strain TS3.
As mentioned above, these levels are much lower than
those reported for planktonic TS3 cells grown under
similar conditions (90-323 nmol/ g),31'3 ® but similar to
those previously reported for immobilized TS3 (6-
63 nmol/g).'® As mentioned above, the reasons for the
low VHD levels in immobilized cells are not known,
but even those low levels are not too different from
the induced levels in native Vitreoscilla,” and so it is
not surprising that they have a sizeable effect.

In our experiments, during the repetitious batch
fermentations, no visible distruption of the alginate
beads containing the cells was observed. It is possible
that the inclusion of CaCl, in our medium protected
the beads from swelling.>* The immobilization carriers
are thought to protect the cells by providing stabiliza-
tion of cell membranes and increased cell permeability

Beg et al.””

preventing the cells from entering the lig-
uid medium while still allowing penetration of sub-
strates. It is also possible that immobilized cells may
not grow or grow slowly and become stable having
minimized cellular activities,”® and then regenerate
with more vigorous growth at the beginning of each

cycle upon exposure to fresh medium.

Conclusions

The work reported here extends out findings indicat-
ing that the combination of alginate immobilization
and VHD expression for ethanologenic E. coli can be a
useful strategy for bioethanol production using food
processing wastes as a carbon source. Specifically, eth-
anol production levels and efficiencies as well as the
advantage afforded by VHb expression could be main-
tained over extended periods of reuse of immobilized
cells, storage of cells, or a combination of storage and
reuse. These findings may be of use in large scale bioe-
thanol production, particularly using food processing

wastes, lignocellulosic wastes, or other inexpensive
carbon sources.
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