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Multi-agent system finite-time consensus control
in the presence of disturbance and input
saturation by using of adaptive terminal sliding
mode method
S. E. Mirabdollahi1 and M. Haeri2*

Abstract: The paper develops finite-time consensus control for multi-agent
systems by considering disturbances and input saturation. A new adaptive-
terminal sliding mode control is suggested to solve consensus control within
a finite time. Two cases are solved in the paper. In the first case, it is assumed
that disturbances are with known upper. To achieve the consensus purpose
within the finite time, in this case, the control inputs are designed based on
terminal sliding mode technique by considering the input signal saturation. Also,
the control inputs are modified to reduce the high dependency of reaching times
to initial speeds. In the second case, the agents are subjected to disturbances
with unknown upper bounds. To handle the problem, the control signals are
acquired by combining the adaptive and terminal sliding mode methods. By
considering saturation boundary and disturbances with unknown upper band,
a new adaptive-terminal sliding mode method is designed to control the multi-
agent system in reduced settling and reaching times. The proposed techniques
efficiency is confirmed by numerical simulations.
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1. Introduction
In the past three decades,multi-agent systems control has received plenty attention from researchers
due to their vast system applicability, e.g. multi-UAVs path following (Zhang, Liu, Mao, Liu, & Shen,
2014), traffic control (Zhu, Aziz, Qian, & Ukkusuri, 2015), multi-oscillator synchronizations (Zhang,
Yang, & Zhao, 2013), network sensor communications (Yu, Chen, Wang, & Yang, 2009), and ship
formations (Chen & Tian, 2015). In different researches, several main control objectives are defined
and studied for multi-agent systems comprising flocking (Zhang, Hao, Yang, & Chen, 2016), formation
(Ge, Guan, Yang, Li, & Wang, 2016; Liu & Geng, 2015), rendezvous (Dong, 2016), containment control
(Fu &Wang, 2015; Wang, Wang, & Xie, 2017), tracking (Mondal & Su, 2016), and consensus (Ma, Liu, &
Chen, 2016; Yang, Zhang, & Yu, 2017). Among these, the consensus has proven to be more applicable
and has thus been studied extensively in recent decades (Zhang, Hua, & Guan, 2016; Zhu, Meng, & Hu,
2016). Consensusmeans that a group of agents achieve a state agreement based on local information
exchange. Fulfilling the consensus aim requires each agent to generate its control protocol (control
input) by only employing its neighbors' local information. Based on the required time to achieve the
above-mentioned agreement, consensus control objectives can be divided into asymptotic and finite
time (fixed time) consensuses. For asymptotic consensuses (Cui, Ma, Lewis, Zhang, & Ma, 2016; Wang,
Wang, & Ji, 2016) the agreement between agents is fulfilled within the infinite time, whilst for finite-
time consensus (Du, Cheng, He, & Jia, 2016; Sun, Hu, & Xie, 2016) the aforementioned agreement is
achieved in the specified adjustable finite time. The finite-time consensus possess some remarkable
advantages such as faster transient response, high-precision tracking performance and faster con-
vergence rate as compared to the asymptotic consensus (Fu & Wang, 2016; Li, Chen, & Su, 2016).

Three finite-time stabilization methods suitable for reaching nonlinear system finite-time con-
sensus are Lyapunov-like approach (Huang, Wen, Wang, & Song, 2016), geometric homogeneity-
based strategy (Lyu, Qin, Gao, & Liu, 2016), and terminal sliding mode control (TSMC) technique
(Bayat, Mobayen, & Javadi, 2016; Rahmani, 2018; Rahmani, Ghanbari, & Ettefag, 2016; Rahmani &
Rahman, 2019). The Lyapunov-like approach is applied to guarantee the fixed-time consensus aim
for multi-agent systems in (Zhang & Jia, 2015; Zuo & Tie, 2013), while the geometric homogeneity-
based method is used to provide the mentioned aim (Guan, Sun, Wang, & Li, 2012; Zhao, Duan, &
Wen, 2015). The finite-time consensus can be satisfied by employing the TSMC technique (Li, Liao,
& Chen, 2013; Zhao & Hua, 2014; Zhou, Xia, Wang, & Fu, 2015), which is based on the conventional
SMC method (Chang, 2012; Fu & Wang, 2015) and is robust against disturbances and uncertainties
(Pai, 2011; Phan, Van Huynh, & Tsai, 2015).

On the other hand, in the consensus problem, two important practical issues including agent
disturbances (and uncertainties) and each agent actuator saturation should be considered. If
these two issues are not considered in multi-agent system consensus problems, some serious-
undesired problems, e.g. convergence rate and tracking precision decrease and even divergence or
instability, will appear. In Hu, Yu, Chen, & Xie (2013) and Zhu et al. (2016), the asymptotic
consensus for multi-agent systems in the presence of agents’ disturbance and saturation is
guaranteed. The finite-time consensus for a typical multi-agent system with disturbance free
and actuator saturation agents is investigated in (Lyu et al., 2016; Zhang & Yang, 2013). The finite-
time consensus problem of disturbed multi-agent systems with agents without saturation actua-
tors is considered (Li et al., 2013; Zhao & Hua, 2014; Zhou et al., 2015).

Due to the importance of the three reviewed problems, including finite-time consensus, agent
disturbances and actuator saturation of each agent, a novel robust approach is proposed and
generalized in this paper to guarantee the consensus control goal by.
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Here, the finite-time consensus control problem is discussed and studied for a typical multi-
agent system possessing double-integrator agents and a fixed speed leader. Each system agent is
subjected to control input disturbances (or uncertainty) and saturation. It is assumed that para-
meters related to agents' control inputs saturations are known. Agent disturbance is assumed to
be bounded, while their upper bounds can be known (Case 1) or unknown (Case 2). As Case 1 is
considered a developed TSMC method (or a generalized Fast TSMC method) is used to fulfill the
finite-time consensus for the described multi-agent system. For Case 2, a novel adaptive TSMC
(ATSMC) method is suggested to both estimate these upper bounds in finite time and also to solve
the multi-agent system finite time consensus problem. It is worth noting that for the two afore-
mentioned cases two inequalities are solved to determine the two finite times for achieving the
finite-time consensus objective. In addition, the global dynamic finite-time stability of tracking
errors (between agents and leader dynamics) is proven in several theorems in this paper.

Further, basic definitions and mathematical preliminaries are presented in Section 2. Section 3 is
devoted to finite-time consensus tracking for Case 1. Section 4 investigates on the fast finite-time
consensus tracking problem. In Section 5 adaptive terminal sliding mode is generalized to solve
the Case 2. Finally, numerical examples and conclusions are presented in Sections 6 and 7,
respectively.

2. Mathematical preliminaries

2.1. Graph theory
A graph defined by G ¼ V ; E;Að Þ consists of a vertex set V ¼ v1; v2; . . . ; vNf g, an edge set

E � V � V , and an adjacency matrix A. Each edge ek is defined by a pair of vertices vi; vj
� �

.

Matrix A ¼ aij
� � 2 R

N�N shows the connections between vertices, so that aij ¼ 1 if vj; vi
� � 2 E and

aij ¼ 0. Else, if matrix A is symmetric, the graph G is known as undirected. A path is a sequence of

edges from vertex i to vertex j. G is called connected if there exist at least one path between any
two arbitrary separate vertices.

2.2. Finite-time stability
In this section, the main finite-time stability definition and two useful lemmas are presented.
These are later used throughout the paper.

Definition 1 (Bhat & Bernstein, 1998). Assume a nonlinear time-invariant system as:

_x ¼ f xð Þ; f 0ð Þ ¼ 0; x 2 U0 � R
n (1)

where f : U0 ! R
n is a continuous vector function on an open neighborhood U0 of the origin

x ¼ 0. The equilibrium point x ¼ 0 of system (1) is called locally finite-time stable if the following
conditions hold.

(i) It should be finite-time convergent in Û0, namely, there is a convergence time T x0ð Þ :
Û0n 0f g ! 0;1Þ½ that satisfies lim

t!T x0ð Þ
xðt; x0Þ ¼ 0 and x t; x0ð Þ ¼ 0 for "t � T x0ð Þ.

(ii) It should be Lyapunov stable in an open neighborhood Û0 such that Û0 � U0.

Lemma 1 (Bhat & Bernstein, 1998). Consider the nonlinear system (1). Assume that there exist a C1

positive function V xð Þ : U0 ! R , real constants c > 0, and 0< α <1 such that _V xð Þ þ cVα xð Þ �
0; "x 2 U0n 0f g is satisfied. Then, the equilibrium point x ¼ 0 of system (1) is locally finite-time
stable. Furthermore, the convergence time T x0ð Þ satisfies the following inequality.

T x0ð Þ � c 1� αð Þð Þ�1V x0ð Þ1�α (2)

Moreover, if U0 ¼ R
n, then x ¼ 0 is globally finite-time stable.
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Lemma 2 (Hong, Huang, & Xu, 2001). Consider the nonlinear system (1). Suppose there exist a C1

positive function V xð Þ : U0 ! R and real numbers c1; c2 > 0 and 0 < α <1 such that _V xð Þ þ c2V xð Þ þ
c1Vα xð Þ � 0;"x0 2 U0n 0f g is satisfied. Then, the convergence time T x0ð Þ is given by the following
inequality.

T � c2 1� αð Þð Þ�1 ln c2V1�α x 0ð Þ þ c1ð Þ� �� ln c1
� �

(3)

2.3. Finite-time consensus tracking
The dynamic models of N agents are assumed to be:

_xi ¼ vi
_vi ¼ ui þ di

; i ¼ 1; � � � ;N (4)

where xi and vi are the ithagent position and velocity, respectively. ui and di denote the control
input and bounded disturbance satisfying the inequality dij j < li, i ¼ 1; � � � ;N. It is assumed that li is
a known constant and the control input of each agent is subjected to saturation such that
uij j < Υs. It is worth noting that the saturation bound Υs is known.

The leader dynamic is defined as:

_x0 ¼ v0;
_v0 ¼ 0:

(5)

Based on finite-time consensus tracking, positions and velocities of all agents should converge to
the position and velocity of the leader in a specific adjustable finite time. This goal can be defined
mathematically as:

lim
t!T

~xij j ! 0; ~xi ¼ 0; "t > T

lim
t!T

~vij j ! 0; ~vi ¼ 0;"t > T

(
; i ¼ 1; � � � ;N (6)

where T is the required finite time for achieving the defined goal. Tracking errors ~xi and ~vi are
defined as,

Assumption 1. In the multi-agent system of (4), it is assumed that each agent is connected to the
leader independently or through other agents. To clarify this assumption mathematically, matrix B

has defined. bi is the ith element of the matrix B ¼ b1; b2; � � � ; bn½ 	. bi ¼ 1 if the ith agent have access
to the leader independently, otherwise bi ¼ 0.

Remark 1. As the upper disturbance bound is known in sections 3 and 4, the powerful robust finite-
time stabilization method TSMC control will be adopted for Case 1. But in section 5, for Case 2
ATSMC will be used where several finite-time adaptation laws are proposed for the unknown upper
bound estimation.

~xi ¼ xi � x0
~vi ¼ vi � v0

�
; i ¼ 1; � � � ;N (7)

3. Finite-time consensus with known bounded disturbance and saturation
To satisfy the described consensus problem, a TSMC is designed. The terminal sliding surfaces si,
i ¼ 1; � � � ;N are proposed as:

si ¼ ~vi � �
t

0
ϕidτ; i ¼ 1; � � � ;N (8)

in which ϕi is defined as:
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ϕi ¼ ∑N
j¼1 aij tanh sigα1 xj � xi

� �� �þ tanh sigα2 vj � vi
� �� �� �

� bi tanh sigα1 xi � x0ð Þð Þ þ tanh sigα2 vi � v0ð Þð Þ½ 	 (9)

sigα xð Þ is defined as sigα xð Þ ¼ xj jαsgn xð Þ. The optional parameter α1 is chosen as α1 2 0;1ð Þ and
the parameter α2 is determined as α2 ¼ 2α1

1þα1
.

Theorem 1. Considering the agents, leader, tracking errors, and sliding surfaces described by (4),
(5), (6), and (8), respectively, the sliding mode dynamics (sliding motions) si ¼ _si ¼ 0, i ¼ 1; � � � ;N
are globally finite-time stable. This means that tracking errors ~xi and ~vi on sliding motion si ¼ _si ¼ 0
will exactly converge to zero in the finite settling time, Ts.

Proof. Assume that the sliding mode dynamic si ¼ _si ¼ 0 has been achieved for the ith agent (input

control for the ith agent will be designed later to guarantee sliding motion existence si ¼ _si ¼ 0).
Based on (7) and (8), sliding mode dynamic si ¼ _si ¼ 0, i ¼ 1; � � � ;N can be expressed as

ex ¼ ~v
:

ev ¼ ϕi:
:

(
; (10)

According to the definition of ϕi and by referring to Theorem 1 (Guan et al., 2012), it can be
demonstrated that there exist a Ts such that ~xi and ~vi in (10) become zero for times larger than Ts.
Consequently, sliding motions si ¼ _si ¼ 0, i ¼ 1; � � � ;N are globally finite-time stable. This completes
the proof. □

The control inputs are designed to assure the existence of si ¼ _si ¼ 0, i ¼ 1; � � � ;N in the finite-
reaching time, Tr, for all agents.

The control law for the ith agent is proposed as:

ui ¼ ϕi � kisgn sið Þ � lisgn sið Þ; i ¼ 1; � � � ;N; (11)

where ki, i ¼ 1; � � � ;N are optional constants satisfying inequalities ∑N
j¼1 2 aij

�� ��þ 2bi þ ki þ li � Υs. It

is worth noting that Tr is dependent on these optional constants (demonstrated later). In Theorem 2, it

will be shown that (11) can ensure the existence of sliding motions in finite time.

Theorem 2. Relation (11) ensure the existence of si ¼ _si ¼ 0, i ¼ 1; � � � ;N for all agents at times
larger than Tr described by

Tr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 s
2
i 0ð Þ

q
km

; (12)

where km is defined as km ¼ min
i

kið Þ.

Proof. Consider the Lyapunov function to be V ¼ 0:5∑N
i¼1 s

2
i with time derivative _V ¼ ∑N

i¼1 si _si. Each

sliding surface time derivative si is determined as _si ¼ ev:
i
� ϕi. By replacing ev:

i
from (7) and ui from

(11), _si becomes

_si ¼ �kisgn sið Þ � lisgn sið Þ þ di; i ¼ 1; � � � ;N: (13)

Replacing (13) in _V ¼ ∑N
i¼1 si _si and by considering the definition km ¼ min

i
kið Þ, the following inequal-

ity is obtained.

_V � �km ∑N
i¼1 sij j �∑N

i¼1 li sij j þ∑N
i¼1 sij j dij j (14)
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Since dij j � li, ∑N
i¼1 sij j dij j � lið Þ is always less or equal to zero. Thus, (14) could be simplified as

_V � �km ∑N
i¼1 sij j. Based on the inequality ∑N

i¼1 sij j
	 
2

>∑N
i¼1 sij j2, _V � �km ∑N

i¼1 sij j can be

expressed as

_V � �km
ffiffiffi
2

p
V

1
2 (15)

Finally, by setting c ¼
ffiffiffi
2

p
km and α ¼ 0:5, and applying Lemma 1, it is seen that the sliding mode

dynamics si ¼ _si ¼ 0, i ¼ 1; � � � ;N are always fulfilled for t � Tr, where Tr can be estimated by (12).
This ends the proof. □

Remark 1. The defined consensus tracking object will be fulfilled for t � Tt, where Tt ¼ Ts þ Tr.

Remark 2. Since the ki parameters, i ¼ 1; � � � ;N are selected to satisfy the inequalities

∑N
j¼1 2 aij

�� ��þ 2bi þ ki þ li � Υs, it can be concluded that (11) never reaches the saturation bounds

and, consequently, actuator saturation does not occure.

Remark 3. Small parameter values ki should be chosen, i ¼ 1; � � � ;N to satisfy the mentioned
inequalities in Remark 2. On the other hand, based on (12), large ki, i ¼ 1; � � � ;N should be set to
reduce Tr. Thus, ki, i ¼ 1; � � � ;N can be defined as a cost function comprising of two weighted terms
related to the control effort energy and Tr, by which proper parameter values can be determined to
minimize the cost function.

4. Fast finite-time consensus with known bounded disturbance

The inequality Tr � kmð Þ�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 s
2
i 0ð Þ

q
is strongly dependent on initial conditions. To reduce this

high dependency, (16) is defined by modifying (11) by fast terminal sliding mode control method.

ui ¼ ϕi � kisig
γ sið Þ � lisgn sið Þ � ωisi; i ¼ 1; � � � ;N; (16)

where ki; ωi, i ¼ 1; � � � ;N and 0<γ<1 are positive arbitrary constants and are tuned to

satisfy ∑N
j¼1 2 aij

�� ��þ 2bi þ ki si 0ð Þj jγ þ li þ ωi si 0ð Þj j � Υs.

The sliding surfaces si, i ¼ 1; � � � ;N are identical to (8). The finite-time stability proof for
si ¼ _si ¼ 0, i ¼ 1; � � � ;N is similar to Theorem 1. Therefore, it can be claimed that there exists a Ts
such that all ~xi and ~vi, described by (10), will converge to zero for t � Ts. In Theorem 3, it is
demonstrated that (16) is able to fulfill si ¼ _si ¼ 0, i ¼ 1; � � � ;N within a finite time.

Theorem 3. Consider the multi-agent system (4) with bounded disturbances. By applying (16),
si ¼ _si ¼ 0, i ¼ 1; � � � ;N are achieved for t � Tr where Tr can be estimated by:

Tr � ωm 1� γð Þð Þ�1 ln
ωm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 s
2
i 0ð Þ

q� �1�γ

þ km

km
(17)

where ωm and km are defined as ωm ¼ min
i

ωið Þ and km ¼ min
i

kið Þ, respectivley.

Proof. Consider the Lyapunov function to be V ¼ 0:5∑N
i¼1 s

2
i with time derivative _V ¼ ∑N

i¼1 si _si. The

sliding surface time derivative si is determined as _si ¼ ev:
i
� ϕi. By replacing ev:

i
from (7) and ui from

(16), _si is expressed as

_si ¼ �kisigγ sið Þ � lisgn sið Þ � ωisi þ di; i ¼ 1; � � � ;N (18)
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By substituting (18) into _V ¼ ∑N
i¼1 si _si and considering the definitions km ¼ min

i
kið Þ and

ωm ¼ min
i

ωið Þ, the following inequality is obtained.

_V � �km ∑N
i¼1 sij jγþ1 �∑N

i¼1 li sij j � ωm ∑N
i¼1 s

2
i þ∑N

i¼1 sij j dij j (19)

Since di, bounded as dij j � li, ∑N
i¼1 sij j dij j � lið Þ, always is none positive, and the inequality

∑i yij jγþ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i yij j2

	 
γþ1
r

is correct for all real values yi and 0<γ<1, (19) is simplified to:

_V � �km

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 sij j2
	 
γþ1

r
� ωm ∑N

i¼1 s
2
i (20)

By considering the definition of V, (20) can be written as:

_V � �km
ffiffiffiffiffiffiffiffiffi
2γþ1

p
V

γþ1
2 � 2ωmV (21)

By setting c1 ¼ km
ffiffiffiffiffiffiffiffiffi
2γþ1

p
, c2 ¼ 2ωm, α ¼ 0:5 γ þ 1ð Þ, and applying Lemma 2, it can be proven that

si ¼ _si ¼ 0, i ¼ 1; � � � ;N are always fulfilled for t � Tr where Tr is calculated by (17). This ends the
proof. □

Remark 4. Since ki; ωi, i ¼ 1; � � � ;N and 0<γ<1 are chosen to satisfy inequalities

2∑N
j¼1 aij

�� ��þ 2bi þ ki si 0ð Þj jγ þ li þ ωi si 0ð Þj j � Υs, it could be proven that the maximum values of (16)

are always less than the saturation bounds and, consequently, actuator saturation does not occur.

5. Finite-time consensus with unknown-bounded disturbance
Here, it is assumed that the upper disturbance bounds li, i ¼ 1; � � � ;N are constant but unknown. By
this assumption, (11) and (16) can be expressed as:

ui ¼ ϕi � kisgn sið Þ � l̂isgn sið Þ; i ¼ 1; � � � ;N; (22)

where ki, i ¼ 1; � � � ;N are optional positive constants (introduced later). l̂i is the unknown upper
bound estimations li.

l̂i ¼ λi sij j; l̂i 0ð Þ>;0; i ¼ 1; � � � ;N (23)

λi, i ¼ 1; � � � ;N are arbitrary parameters that satisfy λi>1. By considering Lemma 1 in (Plestan,

Shtessel, Brégeault, & Poznyak, 2010), it can be shown that 0 � l̂i � l
i , in which the constant l
i is
not necessarily equal to the nominal value of li. Therefore, l
i can be assumed to be l
i ¼ li þ ηi in
which ηi>0 is an arbitrary number. Notice that optional positive constants ki, i ¼ 1; � � � ;N should be

selected such that 2 ∑
N

j¼1
aij
�� ��þ 2bi þ ki þ l
i � Υs is satisfied.

The finite-time stability proof of si ¼ _si ¼ 0, i ¼ 1; � � � ;Nis similar to that in Theorem 1. In
Theorem 4, the existence of si ¼ _si ¼ 0, i ¼ 1; � � � ;N for t � Tr will be shown by applying (22)
and (23).

Theorem 4. Consider (4) with unknown bounded disturbances. By employing (22) and (23),
si ¼ _si ¼ 0, i ¼ 1; � � � ;N are achieved for t � Tr where Tr is determined by

Tr �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 s
2
i 0ð Þ þ∑N

i¼1 l̂i 0ð Þ � l
i 0ð Þ
	 
2

r
min mini 1� λið Þ sij jð ÞÞ; min

i
kið Þ

� � (24)
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Proof. By considering the candidate Lyapunov function V ¼ 0:5∑N
i¼1 s

2
i þ 0:5∑N

i¼1
~l2i where

~li ¼ l̂i � l
i < 0. The sliding surface time derivative is _si ¼ ~vi � ϕi. Now, by replacing ~vi from (7) and

ui from (22), _si is obtained as

_si ¼ �kisgn sið Þ � l̂isgn sið Þ þ di; i ¼ 1; � � � ;N: (26)
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Figure 1. Agent position by
applying (11).
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by adopting (11).
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By substituting (23) and (25) in _V ¼ ∑N
i¼1 si _si þ∑N

i¼1 li li , the following relation is obtained.

_V ¼ �∑N
i¼1 ki sij j �∑N

i¼1 l̂i sij j þ∑N
i¼1 disi þ∑N

i¼1
~liλi sij j (26)

By considering km ¼ min
i

kið Þ and ∑N
i¼1 disi � ∑N

i¼1 l


i sij j, _V becomes:

_V � �km ∑N
i¼1 sij j �∑N

i¼1 λi � 1ð Þ ~li
��� ��� sij j (27)

By defining Ω ¼ mini λi � 1ð Þ sij jð ÞÞ and θ ¼ min Ω; kmð Þ, (27) is simplified as:
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Figure 3. Agent velocity by
adopting (11).
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_V � �θ ∑N
i¼1 sij j þ∑N

i¼1
~li
��� ���	 


(28)

By adopting the well-known inequality
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i yij j� �q

<∑i

ffiffiffiffiffiffiffi
yij jp
, (28) is converted to _V � �

ffiffiffi
2

p
θV

1
2.

Finally, by setting c ¼
ffiffiffi
2

p
θ, a ¼ 0:5, and applying Lemma 1, it is proven that si ¼ _si ¼ 0, i ¼ 1; � � � ;N

are always fulfilled for t � Tr where Tr is estimated by (24). This ends the proof. □

Remark 5. As arbitrary constants ki, i ¼ 1; � � � ;N are selected such that 2∑N
j¼1 aij

�� ��þ 2bi þ ki þ l
i �
Υs is satisfied, it is concluded that the maximum values of the proposed control inputs (22) are
always less than the saturation bounds.
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6. Numerical simulations
In this section, a multi-agent system consisting of five agents and one leader is simulated and the
results are discussed. In all simulations, matrices A and B are considered to be as presented in (29).

A ¼

0 1 0
1 0 0
0 0 0

0 0
0 0
1 0

0 0 1
0 0 0

0 1
1 0

26664
37775; B ¼ 1 0 0 0 1½ 	 (29)

Figure 7. Agent velocity by adopting(16).
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Figure 7. Agent velocity by
adopting (16).
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The initial agent positions and velocities are randomly chosen as x 0ð Þ ¼ �200� 50 50 150 200½ 	T
and v 0ð Þ ¼ �200 120 180 � 160 200½ 	T, respectively. The initial leader position and velocity are
assumed to be x0 0ð Þ ¼ 150 and v0 0ð Þ ¼ 5, respectively. Disturbances are selected as
d1 ¼ cos 0:1tð Þ, d2 ¼ 0:5 sin 0:5tþ π=4ð Þ, d3 ¼ 0:6 cos 3tð Þ, d4 ¼ 0:8 sin 2tþ π=3ð Þ. The fifth distur-
bance d5, (30), is assumed to be time variant (Yu & Long, 2015).

d5 ¼ 0:2 sin 2π 5:9
60 tþ 0:1

� �
t

� �� 0:2 t<30
0:2 sin 2π � 5:9

60 tþ 6
� �

t
� �þ 0:2Þ t � 30

�
(30)
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Figure 9. Agent position by
applying (22).
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Based on the selected disturbances, the upper bound disturbance vectors are obtained as

l ¼ 1 0:5 0:6 0:8 0:2½ 	T. In all calculations, the optional fractional power α1, applied in ϕi

(9), is chosen as α1 ¼ 0:5. Further, the control inputs are assumed � 27. Therefore, Υs is deter-
mined as Υs ¼ 27.

Here three scenarios are defined using (11), (16), and (22), respectively. In Scenario 2 ωi ¼ 1, i ¼
1; � � � ;N and γ ¼ 0:1, and in Scenario 3 λi ¼ 1:1 and l̂i 0ð Þ ¼ 0:2, i ¼ 1; � � � ;N are assumed, respectively.
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Figure 11. Agent velocity by
adopting (22).
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Scenario 1. The control inputs are determined based on (11). The tuning parameters ki are selected

as 20 to satisfy ∑N
j¼1 2 aij

�� ��þ 2bi þ ki þ li � Υs, i ¼ 1; � � � ;5. Figure 1–4 show agent positions, position

error, velocities and velocities error along the leader, respectively. It can be seen that the agent
positions and velocities converge to the leader position and velocity in the presence of known
bounded disturbances. The numerical results indicate that the control inputs are confined to
�25;þ25½ 	. The maximum control inputs values are adjustable by choosing appropriate ki.

Scenario 2. Similar to scenario 1, the upper disturbance bounds are assumed to be known, but,
(16) are applied to the agents. Here, γ ¼ 0:1, ωi ¼ 1, and ki ¼ 20 are selected for i ¼ 1; � � � ;5.
Figures 5–8 depict agent positions, velocities and errors for this scenario. These figures show
how all agent positions and velocities reach the leader position and velocity. By comparing
Figures 1 and 5 it is noted that the agent convergence rate in Scenario 2 is higher than the
same in Scenario 1.

Scenario 3. Unlike the two previous scenarios, the considered disturbance upper bounds are
assumed to be unknown and should be estimated. In this scenario, the control inputs are based on
(22). The tuning parameters are selected as ki ¼ 20 and λi= 1.01 for i ¼ 1; � � � ;5.

The upper bound estimation initial values are chosen as l̂i 0ð Þ ¼ 0:2 for i ¼ 1; � � � ;5. Agent,
positions, velocities and errors in the presence of unknown- bounded disturbances by applying
(22) are shown in Figure 9–12.

7. Conclusion
In this work, finite-time consensus problem for multi-agent systems with leader in the presence of
bounded disturbances and saturation constraints on control inputs have been discussed. To solve the
problem, control inputs were designed by considering different assumptions on the upper disturbance
bounds. First control laws were proposed, based on a new TSMC method, to tackle the finite-time
consensus for disturbed multi-agent systems while the upper disturbance bounds were known.

It has been demonstrated that the proposed control inputs were bounded while their maximum
amplitudes could be adjustable by proper tuning parameters selection. Then, by applying a new
fast TSMC approach, the control inputs were modified to reduce the high dependency of the finite-
reaching time on agent initial conditions. In the second scenario, the same problem was solved for
the case where the disturbance upper bounds were unknown. In this case, for fulfilling the finite-
time consensus goal, the control inputs and the finite-time estimation laws were designed by
applying the adaptive TSMC method. Mathematical analysis of the paper was demonstrated that
all suggested control inputs are able to satisfy the finite-time consensus aim within the total
adjustable finite-time. Finally, three computer based numerical simulations were illustrated to
validate the theoretical results presented in the paper.
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