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ABSTRACT

Bayes Crt methodology due to the simultaneous use of all SNPs in a random regression model
is an alternative to overcome the overestimation of SNPs effects and excess of false positives.
Hence, the present study was performed to identify causal single nucleotide polymorphisms
(SNPs) associated with body weight (BW) and their pattern of significance over time from 2 to
8weeks of age, in an F2 crossbred chicken population using Bayes Ct methodology. lllumina
60K SNP bead chip was used to genotype 312 F2 chicks. Sixteen SNPs distributed over 8 chro-
mosomes had a Bayes Factor (BF) greater than 150 for BW in different ages. 14 different genes
harbouring these SNPs (+250kb), of which 12 were protein-encoding (DKK2, LEF1, RASGEF1C,
FOXP1, LPCAT1, AKR1D1, GPR137C, EIF2AK3, ROR1, AKR1D1, LRFN5 and XPO7) and two were
noncoding RNAs (LOC101751953 and LOC101751953). According to the obtained results, GGA1
and GGA4 were the most important chromosomes containing QTLs associated with observed
traits. Different genetic regions were responsible for body weight in early and late ages. The
various number of significant Bayes factors across different weeks of ages may indicate the artifi-
cial selection for market weight in a given age which has driven larger SNPs effects in intended
weeks for desired market weight for the two groups.

HIGHLIGHTS

My research outputs resulted in discovering associated genes and pathways related to gain
growth and body weight in chicken. The identified genes in this study can be used in poultry
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breeding programs. Therefore, this leads to reduced feed costs and increase revenue.

Introduction

Body weight is a complex quantitative trait that is
influenced by a large number of genes, each with dif-
ferent sizes and types (Goddard and Hayes 2009). As
body weight is the most important trait in broilers
especially for a specific stage of life, therefore identifi-
cation of causative genetic loci for this trait can be
essential to enhance genetic improvement by marker-
assisted selection (Goddard and Hayes 2009).

The combination of natural and artificial selection
for production traits over time in chicken can leave
selection signatures in the genome (Walugembe et al.
2018; Weng et al. 2020). Artificial selection has been
proved to influence significantly on the genomic loci
associated with specific traits of an organism. Also, the
relationship among the artificial selection, genomic
regions, and interesting traits represented that recent

artificial selection can increase runs of homozygosity
at certain genetic markers and provide insight into the
process of artificial selection (Kim et al. 2018)

The availability of dense marker genotypes for farm
animals in recent years has made it possible to associ-
ate genetic markers such as single nucleotide poly-
morphisms (SNPs) with phenotypes of quantitative
traits using genome-wide association study (GWAS).
Generally, GWAS intends to detect significant SNPs to
identify QTLs or causal genes for an interesting trait
and alternatively enables to estimate the SNP-based
heritability of the trait (Maher 2008). GWASs have
firstly conducted based on the least-squares method-
ology (Costa et al. 2015), which has several drawbacks.
Currently, GWA studies sufficiently improved by using
variance component model (Kang et al. 2010) and
mixed linear models controlling simultaneously the
population structure and identical by descent issues
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between genotyped individuals for achievement of
more accurate signals (Zhang et al. 2010 ).

First of all, SNPs enter the analysis individually so
that it may exceed the false positive and overesti-
mation of SNPs effects due to multiple testing (Peters
et al. 2012). Choosing the right correction to avoid
problems due to multiple testing is still a challenge
(Wakefield 2009). An alternative to overcome these
problems is to apply all SNPs simultaneously in a ran-
dom regression model (Costa et al. 2015). Since the
guantitative traits are influencing by a large number
of SNPs, the model that analysis all markers simultan-
eously might be more accurate in comparison with
models that analyzes markers individually (van den
Berg et al. 2013).

Additionally, the F2 population designed for GWAS
is more advantageous than a random population in
reducing false positives and improving the accuracy of
mapping (Ledur et al. 2010). Given that in most animal
breeding studies the importance of statistical methods
was considered and Bayesian methods based on
Gibbs sampling techniques have been concerned.
Although there is a published study on the present
data using a generalised linear model (GLM) and com-
pressed mixed linear model (cMLM) (Emrani et al.
2017), we hypothesised that there would be differen-
ces in the size and locations of important regions if
using other statistical methods such as Bayesian meth-
odologies. Alongside, SNP-based GWAS provides a
useful framework with which to carry out genomic
analyses. So, the goal of this study was conducted to
test the above hypothesis to identify SNPs surround-
ing the genes associated with body weight traits
through  SNP-based GWAS using the Bayes
Cpi method.

Material and methods
Phenotypic data

Phenotypic data used in this study was collected from
an F2 generation descended from reciprocal crosses
between a commercial broiler line named Arian (AA)
and an Iranian indigenous chicken (NN) named Urmia.
These birds are bred as a dual-purpose breed (eggs
and meat production). Arian line chickens are a com-
mercial fast-growing broiler strain and Urmia popula-
tion is a slow-growing indigenous strain in Iran. Arian
chickens have been under strong selection for body
weight and meat quality traits. Otherwise, the Urmia
chicken is an indigenous slow growth population
under natural selection for natural conditions and
more resistant to diseases and pathogens than Arian
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chickens. The probable genomic distance between these
two led us to use the benefits of the F2 generation for
association studies based on LD patterns by generating
an F2 population through reciprocal crosses between
Arian and Urmia chickens. Each of F1 males was crossed
to 4-8 females and finally, 450 F2 birds produced in six
different hatches, 52 full-sib and 8 half-sib families. Birds
were housed individually in battery cages and body
weight of all birds recorded weekly from 2 to 8 weeks
of age. On day 8, birds were moved to individual cages
with a temperature of 30°C and gradually decreased to
reach a final temperature of 22°C. Chickens were fed
starter diet (22.8% CP and 3025kcal of ME/kg) for the
first two weeks, a crumbled grower diet (20% CP and
2960 kcal of ME/kg) between 3 and 7weeks; and a
crumbled finisher diet (18% CP and 3070 kcal of ME/kg)
on the week 8 of age. Chickens were not vaccinated
against any diseases. Feed and water were provided ad
libitum (Begli et al. 2017).

To increase the accuracy of measurements, 8 hours
of fasting were applied to birds before each weighing.

Genotyping and quality control

A random collection of 312 birds were Genotyped
using blood samples using lllumina 60 k SNP chip
(llumina Inc., San Diego, CA) (Begli et al. 2017). Each
sample was genotyped for 54,340 SNP markers. Data
quality controls performed by PLINK 1.9 software.
SNPs with missing genotype greater than 10% and
minor allele frequency (MAF) smaller than 5% as well
as SNPs with p-value less than 1x107° in Hardy-
Weinberg test was removed from the analysis (Begli
et al. 2017). The total number of SNPs and population
used for analysis in each age are shown in Table 1.

Statistical analysis

SNP effects estimated using the Bayes Crt methodology.
This method splits the SNPs into two categories. One cat-
egory consists of the SNPs having effects and the other
category for non-effective SNPs on the phenotypic trait
(Habier et al. 2011). Starting values for genetic variance

Table 1. Summary of the phenotypic and genotypic data
used for the analysis in different weeks of ages.

Number of birds

Birds age (week) Number of SNPs

2 294 43588
3 292 43569
4 305 43605
5 304 43588
6 299 43577
7 307 43622
8 301 43577
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and the variance of residual were calculated by DMU
software (Madsen and Jensen, 2002) and Gibbs sampling
was conducted with Markov Chain Monte Carlo (MCMCQ)
technique. The number of iterations to reach the conver-
gence set to be 100,000 iterations. A number of 20,000
burn-in and a sampling interval of 100 used to calculate
the average posterior probability of the parameters. To
reach a stable posterior distribution in the Bayesian ana-
lysis, we start from a starting point which is called prior
parameter which is not informative enough based on the
data in MCMC chain. Therefore, there is some fluctuation
at the beginning of the chain to estimate the posterior
parameter and the posterior distribution. Usually, this
fluctuation period discarded from final calculation of the
parameters (genetic variance) which called burn-in phase.
After this phase the fluctuation becomes more stable
around a value that we call it convergence of the param-
eter. The convergence diagnostic of Markov chain poster-
ior samples (results) was conducted using trace plot
approach by plotting the posterior density function of
additive and residual variances which reflect chains
mixed satisfactorily.

A mixed regression model was used for data analysis.

This model contains sex and hatch effects as fixed
systematic factors and animal polygenic and SNP effects
as random effects. The following model was applied:

y = Xb + Zu + Wg + e

In the above model, y is a vector of phenotypes; X is
an incidence matrix related to systematic effects; b is a
vector of systematic effects; Z is an incidence matrix
related to random polygenic effects; u is a random vector
of polygenic effects of all individuals available in the pedi-
gree; W is a matrix (n x s) including genotype codes of
SNPs for each animal; g is a vector of SNP effects and e is
a vector of residual effects. In this approach Bayes Factors
were retrieved as an alternative threshold instead of p-val-
ues to assess the significance of SNP effects (Habier et al.
2011). Also, Bayes Cpi enhances all drawbacks of Bayes A
and B, treating the prior probability w that SNPs with zero
effects are unknown (Habier et al. 2011)

Significant Bayes factors corresponded to SNPs
effects under Bayesian regression compare the poster-
ior odds to their prior odds in any two hypotheses
(Wilson et al. 2010).which calculated by the following
formula (Kass and Raftery 1995; Habier et al. 2011):

p
()
)
where p is the posterior probability of the SNP effects

with non-zero effect and = is the a priori probability
of an SNP to be placed in the analysis (Habier et al.

BF =

2011). A Bayes factor is a statistical index that quanti-
fies the evidence for a hypothesis, compared to an
alternative hypothesis. Possible values for BF are any
value between 0 and infinity; and the interpretation of
different magnitudes can be a matter of convention
since different studies have been used slightly differ-
ent classification methods.

The following classification schemes have been
used to detect significant SNPs and interpretation of
Bayes factors (Kass and Raftery 1995):

BF = 3-20, they provide suggestive evidence;
BF = 20-150, they provide strong evidence;
BF > 150, they provide very strong evidence.

When BF is used, there is no place to Bonferroni
correction, because all SNPs can be analysed simultan-
eously in the model (Costa et al. 2015). In this study,
SNPs with BF greater than 150 were considered as sig-
nificant. Then the log10 of retrieved Bayes factors
were provided since log10 (150 =2.17 so the amounts
more than 2.17 considered as significant values in
Manhattan plots.

The analyses were executed by GS3 software devel-
oped by Legarra et al. (2011; https://snp.toulouse.inra.
fr/~alegarra). For mapping significant phenotype-asso-
ciated SNPs to the closest genes making molecular
sense of association studies, we considered 0.5 Mbp
up and downstream of the significant SNPs. Because,
Fu et al. (2015) reported that in the crossbred chicken
populations, the average r’LD between adjacent SNPs
across the genome measured as only 0.24 (Fu
et al. 2015).

Owing to multi-stage data available from a continu-
ous life span of the bird in this study it was worth-
while to look for selection signature for different ages.
Therefore, the density plot overall Bayes factors were
considered to look for such signals.

Results

Using the Bayes factor of 150 as significant thresholds,
16 significant SNPs were detected for body weights of
2-8weeks of age (Figures 1-7). Two SNPs for week3
(Gga_rs14453946 and Gga_rs312288120), three SNPs for
week 4 (Gga_rs13934188, Gga_rs14998801 and Gga_
rs313892216), five SNPs for week 5 (Gga_rs314085832,
GGa_rs315478364, Gga_rs314695269, Gga_rs14502415
and Gga_rs13934188), three SNPs for week 6 (Gga_
rs14657039, Gga_rs314695269 and Gga_rs315478364),
two SNPs for week 7 (GGa_rs315478364 and
Gga_rs14558098), and only one SNP (Gga_rs15998756)
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Figure 1. Manhattan plot of resulted from Bayes factors using BayesCt methodology for body weight at week 2 in the chicken
F2 population. The y-axes indicate the logarithm (base 10) of Bayes factors and the x-axes indicate the position of SNPs along the
genome in different chromosome numbers. A significant threshold is the base 10 logarithm of Bayes factor equal to 150.
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Figure 2. Manhattan plot of resulted from Bayes factors using BayesCrt methodology for body weight at week 3 in the chicken
F2 population. The y-axes indicate the logarithm (base 10) of Bayes factors and the x-axes indicate the position of SNPs along the
genome in different chromosome numbers. A significant threshold is the base 10 logarithm of Bayes factor equal to 150.

for body weight of week 8 were significantly associated
to their phenotypes. These SNPs were located close to,
or inside the 14 genes and they have distributed over 8
different chromosomes, of which 12 were protein-encod-
ing genes and the rest were noncoding regions. Non-
coding RNA regions are small and do not carry informa-
tion for protein synthesis, but they have particular func-
tional roles in the cell (Costa et al. 2015). These
sequences are involved in post-transcriptional regulations
of gene expression (Anderegg et al. 2013).

To identify genes surrounding each significant SNP
we considered 0.5 Mbp up and downstream of the
significant SNPs (SNP position +0.25Mb). In some

cases, the significant SNPs were inside Genes and in
some other cases, we presented the nearest gene to
the identified SNP (Table 2).

Beside significant SNPs that passed the significant
threshold, an overall view of the distribution of Bayes
factors across different weeks showed that the density
of SNP effects shifts from around zero in early ages of
weeks 2 and 3, and reaches its most distance from
zero in weeks 4, 5 and 6 (Figure 8). Surprisingly these
ages are the market goal ages in commercial broilers
nowadays. After these ages, the distribution of Bayes
factors shifts slightly back towards zero in weeks 7
and 8. Results show that the selection for market
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Figure 3. Manhattan plot of resulted from Bayes factors using BayesCrt methodology for body weight at week 4 in the chicken
F2 population. The y-axes indicate the logarithm (base 10) of Bayes factors and the x-axes indicate the position of SNPs along the
genome in different chromosome numbers. A significant threshold is the base 10 logarithm of Bayes factor equal to 150.
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Figure 4. Manhattan plot of resulted from Bayes factors using BayesCt methodology for body weight at week 5 in the chicken
F2 population. The y-axes indicate the logarithm (base 10) of Bayes factors and the x-axes indicate the position of SNPs along the
genome in different chromosome numbers. A significant threshold is the base 10 logarithm of Bayes factor equal to 150.

weight may be the main driver for the size of SNPs
effects of different ages. So, the presence of markers
with a larger effect sizes (more deviation from zero)
was considered as evidence of the selection signature.

Discussion

No significant marker found for body weight at week
2 of age. According to Calborg et al. (2004) non-addi-
tive effect contribution at an early age can be consid-
erable, therefore with models accounting for only
additive effects failing to detect significant merkers
are expected.

Since the present study is only looking for additive
effects for the SNPs then the results are comparable
with additive model in Carlborg et al. (2004).
Frequency distribution of the significant SNPs over the
weeks under study showed that the number and the
effect sizes of SNPs increasing from early age to the
week 5, which reaches its maximum of five significant
SNPs and decreasing again weekly to reach its min-
imum of only one significant SNPs in week 8. This pat-
tern may show the effect of artificial selection that
pressures on these ages (weeks 5 and 6) for commer-
cial and market purposes. Selection process may lead
to skewed distributions or some significant deviation
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Figure 5. Manhattan plot of resulted from Bayes factors using BayesCt methodology for body weight at week 6 in the chicken
F2 population. The y-axes indicate the logarithm (base 10) of Bayes factors and the x-axes indicate the position of SNPs along the
genome in different chromosome numbers. A significant threshold is the base 10 logarithm of Bayes factor equal to 150.
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Figure 6. Manhattan plot of resulted from Bayes factors using BayesCt methodology for body weight at week 7 in the chicken
F2 population. The y-axes indicate the logarithm (base 10) of Bayes factors and the x-axes indicate the position of SNPs along the
genome in different chromosome numbers. A significant threshold is the base 10 logarithm of Bayes factor equal to 150.

from mean effect (Pérez-Rodriguez et al. 2018).
Signatures of selection (SOS) have the potential to elu-
cidate the characteristics of genes and mutations asso-
ciated with phenotypic traits. Additionally, genetic
diversity, the essential material for breeding programs
can be investigated by SOS analysis. Therefore, SOS
has practical implications for the implementation of
genomic prediction and genomic selection. As
Bayesian models by introducing the global and local
parameters, which can shrink the effects of some
markers to zero and allow large effect markers to
escape from the shrinkage it can be considered as an

efficient and alternative model for genomic prediction
(Habier et al. 2011).

Results showed that chromosome 4 is the second
important chromosome in terms of the number of sig-
nificant SNPs. Chromosome 4 explains a relatively high
proportion of the growth variation observed in differ-
ent ages (Podisi et al. 2013), which is in agreement
with our results. Therefore, there is likely to be the key
genes related to growth traits on this chromosome.

In this study, most significant markers (9 SNPs)
were located on macro chromosomes (GGA1, GGA2,
GGA4, GGA5) which is an indication of the higher
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Figure 7. Manhattan plot of resulted from Bayes factors using BayesCt methodology for body weight at week 8 in the chicken
F2 population. The y-axes indicate the logarithm (base 10) of Bayes factors and the x-axes indicate the position of SNPs along the
genome in different chromosome numbers. A significant threshold is the base 10 logarithm of Bayes factor equal to 150.

contributions of these chromosomes to body weight
traits (Xie et al. 2012).

Chromosome 1 reported as the main chromosome
hosting several QTLs affecting body, breast muscle,
thigh, and wings weights as well as overall growth
(Rao et al. 2007). Among the significant markers,
Gga_rs315478364 located on chromosome 1, was sig-
nificant for body weights at three different ages
(weeks 5, 6, and 7). This marker is located 83.8Kb
downstream of the AKRID1 gene. Besides,
Gga_rs13934188 located on the same chromosome
was significant for two different ages (weeks 4 and 5).
This marker is located within the LOC7017571953 gene,
which is one of the non-coding genes. These two
markers are located in a relatively small distance from
each other (~10Mb) that could be an indication of
QTL presence in this region as declared by previous
studies (Nadaf et al. 2009).

The genomic region between 38.29 Mbp and 46.9
Mbp on chromosome 4 is reported as an effective
region on body weight for early ages (Sewalem et al.
2002). Although there was no significant SNP having
Bayes factor greater than 150 in this region there
were 7 SNPs with Bayes factor of 20-150 for week 2
which provides strong evidence of significance for this
trait. It seems the interference of non-additive causes
has the main responsibility to prevent SNSs located in
this region passing the Bayes factor of 150.

As shown in Table 2, different genes of various
metabolic pathways were identified, indicating a poly-
genic background of body weight. These genes were
classified into five categories according to their

Table 2. Significant SNPs, positions, and related genes associ-

ated with body weight at 2-9weeks of ages.
Gallus_gallus_5.0 (GCA_000002315.3).

Birds Position Nearest

age SNP ID Chr (bp) Gene Distance
BW3  Gga_rs14453946 4 38536266 DKK2 2Kb D
BW3 Gga_rs312288120 4 38295506 LEF1 87.8Kb D
BW4  Gga_rs13934188 1 123148233 LOC101751953 0
BW4  Gga_rs14998801 13 14041722 RASGEF1C 9Kb U
BW4 Gga_rs313892216 12 15998199 FOXP1 0
BW5  Gga_rs314085832 2 86159751 LPCAT1 2Kb D
BW5 GGa_rs315478364 1 56522937 AKR1D1 83.8Kb D
BW5 Gga_rs314695269 5 58320627 GPR137C 0
BW5  Gga_rs14502415 4 86852277 EIF2AK3 134.8Kb D
BW5 Gga_rs13934188 1 123148233 LOC101751953 0
BW6 Gga_rs14657039 8 28000752 ROR1 0
BW6 Gga_rs314695269 5 58320627 GPR137C 0
BW6 Gga_rs315478364 1 56522937 AKR1D1 83.8Kb D
BW7  Gga_rs315478364 1 56522937 AKR1D1 83.8Kb D
BW7 Gga_ rs14558098 5 59440955 LRFN5 178.5Kb U
BW8 Gga_rs15998756 22 1397579 XPO7 0
SNP ID: Single nucleotide polymorphism id; Chr: Chromosome; BW:

Body Weight.

DKK2: Dickkopf WNT Signalling Pathway Inhibitor 2; LEF1:Lymphoid
Enhancer Binding Factor 1; RASGEF1C =RasGEF Domain Family Member
1C FOXP1:Forkhead  Box P1;  LPCAT1:Lysophosphatidylcholine
Acyltransferase 1; AKR1D1:Aldo-Keto Reductase Family 1 Member D1;
GPR137C=G Protein-Coupled Receptor 137C; EIF2AK3: Eukaryotic
Translation Initiation Factor 2 Alpha Kinase 3; ROR1:Receptor Tyrosine
Kinase Like Orphan Receptor 1; LRFN5:Leucine Rich Repeat And
Fibronectin Type Il Domain Containing 5; XPO7: Exportin-7.

Y and P refers to upstream and downstream of gene.

metabolic functions. These categories are involved in
signalling Wnt genes (DKK2, LEF-1, ROR-1), biosynthesis
of various compounds, and metabolism (LPCATI,
AKR1D1, EIF2AK3), development of the nervous system
(FOXP1, LRFN5), and transferring nuclear materials
(XPO7). The last category including RASGEFIC and
GPR137C genes play roles in internal and external cell
transfer (protein transport through the membrane and
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Figure 8. The probability density function of the logarithm of Bayes factors for SNPs effects in different ages. Dotted lines are
referred to the weeks 2 and 3. Solid lines referred to the weeks 4, 5, and 6, and the dashed line referred to the weeks 7 and 8.

intracellular vesicle transportation, and controls the
cell vital processes including protein biosynthesis, dif-
ferentiation and growth, cellular signalling, cell prolif-
eration, stimulation cell growth, and tissue
regeneration.

The FOXP1 gene plays solely in the development of
the nervous system and cooperates with other family
members of FOXP genes in developing other organs
(Cheng et al. 2007). Also XPO7 plays a key role to
facilitate the nuclear transfer of the thyroid hormone
receptor (TR) gene (Stern 2015). TR is the main recep-
tor of the T5 hormone which regulates the metabolism
and growth rate. Additionally, it plays critical roles in
neurodevelopment, the development of lung, skeletal,
and bone mass.

Wnt signalling genes play role in embryonic devel-
opment. Currently, Wnt proteins are known as a major
family of growth signalling molecules (Cadigan and
Liu 2006). These genes encode diverse families of
secreted lipid-modified signalling proteins that are

required during the body development (Clevers 2006),
osteogenesis (Li et al. 2005), the regulation of cartilage
development and foetal growth (Surmann-Schmitt
et al. 2009). Also, the activation of canonical Wnt sig-
nalling is recognised as an important mechanism for
vascular development (Goodwin et al. 2006). Wnt
receptors through cooperating with TGF-f, regulate
cell fate and proliferation during development and tis-
sue homeostasis (Barker et al. 1999). Wnt signalling
extracellular activity is regulated by Dkk family factors
(Surmann-Schmitt et al. 2009). Binding DKK2 gene to
LRP5/LRP6 through forming a ternary complex with
trans-membrane proteins regulates the canonical Wnt
pathway. Canonical Wnt signalling stimulates osteo-
genesis, and Dkk2 gene is involved in late stages of
osteoblast differentiation into mineralised matrices.
During this time Wnt7b expression reaches its peak
level. Dkk2 deficiency in vitro affected osteocalcin and
osteopontin expression considerably (Li et al. 2005).
Osteocalcin is secreted by osteoblasts and it is



1476 (&) Z. ASGARI ET AL.

implicated in bone mineralisation and calcium ion
homeostasis. Osteopontin  helps to  myogenic
differentiation and finally muscle regeneration
(Uaesoontrachoon et al. 2008). Following the consecu-
tive transition of growth signals, Wnt can induce the
transcriptional activity of numerous developmental
genes through the activation of f-catenin/LEF-1 com-
plexes in the nucleus (Filali et al. 2002). Members of
the LEF1/TCF family of transcriptional factors can acti-
vate the transcription of genes by interacting with
p-catenin (@ downstream component of the Wnt sig-
nalling pathway) (Barker et al. 1999). The importance
of LEF performance in Wnt signalling has long been
proven in multiple developments and morphogenesis
models (Filali et al. 2002). RORs genes are members of
the nuclear receptor family of intracellular transcrip-
tion factors that can be considered as the main regu-
lators of Wnt signalling non-canonical pathways. These
pathways are activated via the binding of Wnt to the
frizzled domain and RORs as co-receptor. ROR-1 is a
member of the ROR family of tyrosine kinase-like
receptors that are highly conserved between various
species (Rodriguez-Niedenfuhr et al. 2004). Receptor
tyrosine kinases (RTKs) play an important role in many
cellular processes, including differentiation, prolifer-
ation, and cell migration, angiogenesis, and survival
(Green et al. 2008). In humans, skeletal development is
known as the fundamental performance of ROR pro-
teins (Green et al. 2008). Some studies have shown
ROR1 signalling is involved in late limb development
compared to early limb development (Rodriguez-
Niedenfihr et al. 2004).

The second group including LPCAT1, AKRIDI,
EIF2AK3 genes have an important role in growth by
participating in the biosynthesis and metabolism of
various substances. Steroid 5B-reductase (AKRID]T) is a
member of the Aldo keto reductase (AKR) (Mindnich
et al. 2011) enzyme. This enzyme is required for the
metabolism of hormones such as androgen, oestro-
gen, progesterone, and also prostaglandins (Seery
et al. 1998). Furthermore, the main physiological func-
tion of AKRI1D1 is participation in the biosynthesis of
bile acids that is known as an important metabolic
pathway in all vertebrates (Mindnich et al. 2011).
Steroid hormones such as oestrogens and androgens
have been raised as the main growth factor simula-
tors. Oestrogens regulate metabolic activity of growth
hormone (GH) either in the secretion or in the action
levels (Leung et al. 2004). Oestrogens also can affect
the pituitary secretion of GH. Moreover, it specifically
can increase the expression of the suppressor cytokine
signalling 2 that is a negative regulator of the GHR-

JAK2-STAT5 signalling pathways (Rico-Bautista et al.
2006). On the other hand, Bile acids have a critical
function to digestion and absorption of dietary fat
and fat-soluble vitamins, due to forming mixed
micelles in the small intestine.

EIF2AK3 membrane protein acts as a sensor to regu-
late the total protein synthesis. It is also essential for
the normal turnover of insulin secretion from beta
cells and bone growth (Liu et al. 2012). Insulin is a
hormone that plays a key role in metabolism. It also
involves in the storage of glycogen in muscles and
amino acid transferring of the skeletal muscle system.
This hormone has a GH-like act through increasing the
consumption of amino acids and exchanging them to
proteins and preventing degradation of available pro-
teins in cells. Insulin is involved to transfer the
received carbohydrate by the muscles. In this way, it
plays an important role to build a muscular body
(Ghorbani and Hashtrodi 2014).

Finally, comparing the compressed mixed linear
model used by Emrani et al., in 2017 and a recent
study represented the complete differences in terms
of potential candidate genes resulted from these dif-
ferent methodologies. As expected, no commonness
can be seen in this comparison. 10 candidate genes
reported by Emrani et al, in 2017 included DIS3,
BORA, UBE2H, CNOT10, SGOL1, ADGRB3, DTNB, SETD3,
EFNA5, and SPINZ (Emrani et al. 2017) however, the
recent study detected 16 candidate genes including
DKK2, LEF1, RASGEF1C, FOXP1, LPCAT1, AKR1DIT,
GPR137C, EIF2AK3, ROR1, AKR1D1, LRFN5, XPO7,
LOC101751953 and LOC101751953.

Conclusions

Our results have provided a list of candidate genes for
body weight at ages 2-8 weeks. Results can be used
in genomic selection and marker or gene assisted
selection to improve growth rate in chicken. Macro
chromosomes showed a remarkable role in growth
control. According to the obtained results, GGA1 and
GGA4 are the most important chromosomes that con-
tain QTLs associated with the growth traits in the
chicken genome. On the other hand, there were differ-
ent genetic regions responsible for early and late ages
for the observed traits. Ages of 4, 5, and 6 had the
highest number of significant SNPs, and weeks 2 and
3 had the lowest number of significant SNPs. It may
be due to the effect of non-additive drivers or due to
selection goals for broilers which are weeks 4, 5, and
6 in modern commercial broiler types. This conclusion
confirmed by drawing the overall density of all SNPs



effects of different ages. The difference in the number
of significant SNPs in different ages indicates the
effect of artificial selection, which admit the breeding
has been working properly in the chicken groups for
the ages of importance. This is important as such that
different regions in the genome may cause the trait of
interest in different stages of life time.

It shows that the density of SNPs effects for the
intended market ages is more segregating than
other ages.
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