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ABSTRACT ARTICLE HISTORY
This paper describes the development and validation of landslides Received 3 March 2021
susceptibility models for mountainous regions using advanced Accepted 21 July 2021
data mining techniques. The investigation was carried out to
ascertain the effectiveness of Naive Bayes Multinomial (NBM) and
Bandom Trees (RT) in landslide susceptibility “mapping. The ‘NBM susceptibility mapping; soft
is an advancement of the frequently used .Na.lve. Bayes classifiers, computing; machine
while the RT was built to overcome the limitations of the trad- learning and GIS; data
itional forest classifiers. A geospatial database for this investiga- mining; conditioning

tion comprises 148 landslide locations influenced by ten (10) factors; frequency ratio
landslide conditioning factors. The factors (Slope Angle, Slopes

Elevation, Slope Aspect, Plan curvature, Profile Curvature,

Lithology, Soil type, Stream power index (SPI), Sediment transport

index (STI), and Rainfall precipitation) were drawn using a Multi

Collinearity Decision Making (MCDM) technique. A Frequency

Ratio (FR) analysis was used to obtain the relative significance of

the factors in the slides. Predictive models were also developed

by quantifying these models using data mining techniques. A sec-

tion of the entire geospatial data (70%) was used as training data-

sets, while the remaining part of the data (30%) was used to

validate the trained datasets. SVM, RT, and NBM algorithms were

used to produce predicted datasets from the training datasets.

These predicted datasets were used to develop the Landslides

Susceptibility Models. A comparative assessment between the

two classifiers against the famous traditional learning algorithm,

the Support vector machines (SVM), was conducted. Model per-

formance evaluators such as the AUROC, RSME, F-measure, MAE,

and ACC were employed to check the predictive capabilities and

accuracies of the models. The indices indicated that the SVM

model performed better than the other two algorithms in both

training and validation datasets. Further analysis and comparison

of the models reveal that the new data mining techniques are

reliable for landslide susceptibility. Simultaneously, the traditional

algorithm is also useful and remains relevant, especially with simi-

lar site conditions. This study has provided insights on better
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planning and development and provision of mitigation strategies
and further analysis on landslides in the study area, particularly in
cases of limited data availability.
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1. Introduction

Landslides are generally a form of geo-hazards because it affects human lives either
directly or indirectly (Collins and Znidarcic 2004; Gue and Tan 2006; Ibrahim MB et
al. 2020). It occurs when the soil or rock mass is displaced under the influence of
gravity. This phenomenon causes great destruction of lives and properties (Figure
la-f), and it is a cause of concern to many governments. It also posed fear to the
people living in places that are susceptible to landslides. Generally, there are at least
five primary forms of landslides based on the nature of material displacement. These
include rock falls, topples, slides, spreads, and flows (USGS 2004). Landslides are
believed to have multiple complex causative factors and triggering factors that are
dependent on the nature of the environment. When loss of life is directly involved,
then the phenomenon is labelled as hazardous. Landslides affect the environment,
such as vegetation and farmlands, in areas that humans are not inhabited. It also
affects the infrastructures built across rough terrains such as pipelines, roads, high-
ways, earth dams, retaining walls, housing, small cities. These and many more are
endangered by landslides (Bacha et al. 2020; Chang Z et al. 2020; Diaz et al. 2020; Li
L et al. 2020; Prakash et al. 2020).

Landslides are now a global problem; according to world bank data, approximately
3.7 million km?> of the earth’s landmass is under serious threat from landslide activ-
ities (Mandal et al. 2021). The report also identified some 300 million people living
within those high landslide susceptible areas, putting their lives in danger, and
destructing massive economic activities within the areas. A recent study conducted by
Balogun et al. (2021) reported a total death of 1370 and 784 injuries in 27 European
countries alone from 1995 to 2014. In addition, a compensatory cost of about
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Figure 1. (a) Indicating the event of a landslide within a community in the study area; (b) A road
linking two towns is completely cut out; (c) showing the devastating effects of landslides along a
road section linking some communities in the state of Sarawak; (d) A gas pipeline in the study
area that got ruptured and lit up the whole area, the event was caused by landslides activities trig-
gered by nonstop rain that happened in the area; (e) Part of a road leading from Song bazaar to
SMK Song, deep in the remote Kapit Division in Sarawak, has been cut off due to a landslide; (f)
The condition of a house after a landslide which occurred near the water treatment plant in
Paitan; Bernama pic, January 15, 2021 (internet sources).

4.7 billion euros to property loss. Another 200 million dollars was expended to
restore damages from two landslide events (1974 and 1998) in Peru. From 1995 to
2004, the world has recorded some 163,658 deaths with 11,689 injuries to landslides
hazards alone. While from 2004 to the year 2016, China alone has spent over one bil-
lion dollars on non-seismic landslides. Overall, the figures relating to landslide losses
have been rising despite governments’ and individuals’ efforts to curtail the phenom-
enon (Remondo et al. 2003; Petley 2012; Pourghasemi and Rahmati 2018;
Althuwaynee et al. 2021).
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Due to the dynamic nature of landslides and their analysis, there have been
improvements in studies that analyze landslides and provide early warnings of their
occurrence in susceptible regions. Geotechnical and geological data obtained mainly
from laboratory experimentations were used to produce physical models to determine
susceptibility in early landslides studies (Pourghasemi and Rahmati 2018). Limitations
and challenges encountered while analyzing landslides using the physical model (e.g.
time wastage in actual data collection and analysis, huge experimental cost, especially
in the analysis of larger areas) led to statistical analysis. The statistical models best
correlate the dynamism in landslides between many predisposing factors and land-
slides (Balogun et al. 2021). To this effect, many statistical models such as frequency
ratio (Guzzetti et al. 1999; Gorsevski et al. 2006), fuzzy logic (Akgun et al. 2012; Balal
and Cheu 2018; Chen W et al. 2017a; Hauser-Davis et al. 2012; Irvin et al. 1997; Tien
Bui et al., 2017a), the weight of evidence models (Chang M et al. 2020; Lee JH et al.
2018; Pamela et al. 2018; Polykretis and Chalkias 2018), logistic regressions (Bai et al.
2010; Chen W et al. 2017b; Chen W et al. 2019; Pradhan 2010), analytical hierarchy
process (Althuwaynee et al. 2014; Saadatkhah et al. 2014; Mardani et al. 2015;
Asadabadi et al. 2017) and many more have all been utilized to produce susceptibility
models. More recently, soft computing procedures (Data mining) are increasingly
being adopted for landslide susceptibility analysis due to their impressive perform-
ance. This approach combines GIS data and machine learning algorithms to analyze
the landslide, predict and produce susceptibility maps statistically (Li DQ et al. 2021;
Saravanan et al. 2021).

The technique uses approximate values to produce very accurate and valuable
solutions (Tsangaratos and Ilia 2017b; Moayedi et al. 2019; Goel 2020). Overall, the
accuracy of the models developed using this technique has shown high prediction
performance and high success rates (Ayodele 2010; Oladipupo 2012; Goetz et al.
2015; Dickson and Perry 2016; Shirzadi et al. 2018; Ghorbanzadeh et al. 2019;
Hegde and Rokseth 2020). The dynamic nature of landslides with their condition-
ing and triggering factors across different locations made researchers explore dif-
ferent algorithms to harness the maximum prediction rate from the soft computing
techniques (Chen X and Chen W 2021; Diana et al. 2021; Saha et al. 2021; Youssef
and Pourghasemi 2021). To date, many researchers are using machine learning
algorithms to mine data and make valuable predictions of landslide occurrence
effectively. For instance, (Chen W et al. 2019) used kernel logistic regression, naive
Bayes, and radial basis function network to produce landslide susceptibility maps.
While (Oh and Lee 2017) utilized artificial neural networks and boosted trees to
produce landslide susceptibility maps. Others like (Chen W et al. 2019; Dou et al.
2019; Fallah-Zazuli et al. 2019; Chen 2019; Hong et al. 2016; Lay et al. 2019; Lee S
et al. 2017; Nhu et al. 2020a; Song et al. 2012; Tien Bui et al. 2016; Vafakhah et al.
2020; Vakhshoori et al. 2019; Liu Z et al. 2021; Oliva-Gonzdlez et al. 2019; Wang
et al. 2021) have used different machine learning algorithms to mine data and pro-
duce susceptibility maps.

Studies to assess the comparative performance of various algorithms have revealed
that the study environment and conditioning factors under consideration affect the
outcome of the analysis (Chen X and Chen W 2021; Hong et al. 2017; Mohammady
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et al. 2019; Liang et al. 2020; Sun et al. 2021; Tsangaratos and Ilia 2017a; Xu et al.
2016; Yeshwanth et al. 2019 ). Different predictive results were recorded for the same
machine learning algorithms used in different locations. For instance, (Merghadi et
al. 2020) reported that the RF algorithm outperformed the conventional SVM. Even
though both algorithms performed well by surpassing the 0.7 success rate benchmark.
Tien et al. (2020) suggested that Deep learning neural networks perform better than
the conventional learning algorithms followed by the SVM and then the RF models.
Contrary to the previous investigation (Achour and Pourghasemi 2020), the RF
model has performed better than both SVM and Boosted Regression Tree (BRT).
However, most researchers have concluded that data mining techniques can be
improved by exploring more study areas with different and enhanced newer machine
learning algorithms (Balogun et al. 2021).

Thus, this paper explores relatively new machine learning algorithms, the Naive
Baise Multinomials (NBM) and Random Trees (RT). These algorithms are expected
to perform better in developing landslides susceptibility maps in a mountainous
region. Mountainous regions have often been characterized as data-scarce environ-
ments for soft computing analysis (Buijs et al. 2009; Lee JH et al. 2018; Marin et al.
2021). Data scarcity is when the needed data or information for a successful analysis
is not readily available. Some forms of qualitative judgments, such as the weight of
evidence WoE and the analytical hierarchy process AHP, are employed to augment
the missing data (Ibrahim Sameen et al. 2019; Medwedeff et al. 2020; Marin et al.
2021). Although, the overall quality of the soft computing techniques depends on the
quality and quantity of the data. Research has however, discovered that some of these
algorithms could perform wonderfully well in such environments. For instance, the
SVM algorithm is identified to evade overfitting by handling fewer training data over
other algorithms (Rahmati et al. 2017; Ibrahim Sameen et al. 2019; Achour and
Pourghasemi 2020). The NBM is an advancement of the frequently used Naive Bayes
classifiers, while the RT was built to overcome the limitations of the traditional forest
classifiers with the potential of enhancing the accuracy of results. The final models
were compared with the conventional data mining algorithm, the Support Vector
Machines (SVM), to assess the performance of the new algorithms. The choice of
SVM for validation is due to its impressive performance in previous studies, particu-
larly with fewer learning data on many occasions (Ghorbanzadeh et al. 2019; Goetz et
al. 2015; Ibrahim Sameen et al. 2019; Lee JH et al. 2018; Marin et al. 2021; Nhu et al.
2020b; Vakhshoori et al. 2019).

The random trees (RT) were obtained from the combination of the RF and DT, an
additional step to computing the splits (Merghadi et al. 2020). Furthermore, the RT
classifies the dataset decision by providing other subsets to tackle overlearning and
overfitting, especially with insufficient data. Another advantage of considering this
algorithm is that it can reduce the dataset variance more effectively because a total
learning sample is used to establish the trees, replacing bootstrap. The Naive Bayes
Multinomial was the second ensemble used in this research. The algorithm is built
based on the Bayesian theorems with improvements to the conventional Naive Bayes
(Chen W et al. 2017c). The idea is to see how well it will perform in terms of land-
slides predictions within its class compared with the other two algorithms.
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The landslide conditioning factors in this work were not randomly selected. A tech-
nique that involves probability future selection technique was used to choose the factors
influencing landslides in the study area (Cinelli et al. 2014; Yeshwanth et al. 2019; Jena
et al. 2020). The factors were selected from a procedure called the weight of evidence,
which is a part of the MCDM technique. The technique pairs the factors against each
other, thereby placing the most influencing factor above the other based on supplied
evidence (Pourghasemi et al. 2013b; Chen et al. 2016; Polykretis and Chalkias 2018).
The selected factors were again scrutinized using frequency ratio FR. The FR further
reduced the factors into a precise number of factors needed to influence landslides
within the study area. The factors selection procedure will cause an improvement to the
old ways of analyzing landslides using GIS data and machine learning. The discrepan-
cies that are likely in this procedure, especially when allocating values, can be avoided
through careful inputs of the weights and proper allocation of the discounts as the
weight of evidence (Ghorbanzadeh et al. 2019; Wang Y et al. 2019; Mohan et al. 2020).

The rest of this paper is structured as follows: Section one (Introduction) talks
about the importance of landslides analysis. Highlights of the various methods like
the physical methods, statistical methods, and data mining methods were discussed.
Limitations of existing techniques, the significance of data mining techniques, and the
identification of the research gap are also discussed. Section two presents details of
the study area. It describes the geology and the geomorphology of the study area. A
detailed discussion on the methodology adopted follows in the third section. Results
were discussed in section four. Finally, conclusions and recommendations are pro-
vided in the last section of the paper.

2. The study area

The study area for this research is a region of mountainous terrain with a gas pipe-
line that transports natural gas from Sabah to Sarawak in Malaysia (Figure 2). The
site lies within latitudes 0'02'45' N and 01'32'45 N and longitudes 105 2405 E and
106 1045 E and it is covering some 3,811.9km?. The area has a population of about
35,300 from the year 2000 census report. Being a transit district, major roads that
link the capitals of the two states Sabah and Sarawak, remain busy almost throughout
the day. Economic activities in the area comprise some apple cultivation as well as
palm plantations in the high lands. The region is well known for its rough mountain-
ous terrains measuring over 1800 m above mean sea level at some points.

The climate in Lawas is that of a typical rain forest or simply an equatorial climate
that is common to areas situated between 10° to 15° latitude to the equator. The tem-
peratures are apparently high and very humid at some points in the year. An annual
average temperature of about 30 °C remains the peak temperature, while an annual low
temperature of 24.4°C is also attainable within the study area. In contrast, the rainfall
in this area is a typical northern Borneo monsoon rain that falls intensely from
September to March. High annual rainfall of up to 4,178mm can be recorded within
the mountainous regions of Lawas. These rains are sometimes characterized as continu-
ous downpours because they usually fall continuously for several hours or even days.
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Figure 2. Study area of gas pipeline placed within Sabah and Sarawak area.

Lawas geologically is classified as stable, which means there are no seismic activ-
ities recorded yet in the area. The geological composition consists of thick and
sequence layers of Eocene-Oligocene grey bluish fine to medium-grained sandstones.
In addition, a formation of red/grey shales forms the soil beds traced to the ‘Crocker
Formation’. The Crocker formation has strata that extend towards the northeast
forming steeper terrains as it moves to the east or west. Lithological units in the area
comprise some thick to very thick-bedded rock units of sandstones and interbedded
shales. Rock stratification in this area can be categorized into two categories: the
‘sandy sequence’ and the ‘shale sequence’. An extension of low-lying flat areas that
lies towards the coastal regions and extends in wetlands and swamps. At the same
time, the hilly regions provide for most of the inhabited lands of the region. The
geology and geomorphology of the study area have classified it as an area where land-
slides can quickly occur with a bit of trigger.

3. Data and methods

The methodology adopted for this research is as shown in (Figure 3). The work starts
with data collection after an extensive literature review on landslides and their ana-
lysis. The identification of the landslide points leads to the development of an inven-
tory map. This inventory is developed using landslides’ history records, interpretation
of satellite images, and site visitation reports for the past ten years. A total number of
148 landslide locations were identified from this study area. These landslide locations
served as a preference for training and validation datasets. In other to avoid the bias
associated with probabilities, the same number of non-landslides locations were iden-
tified. Digital Terrain Model (DTM) of the study area with a high resolution of
50 x 50 cm was used to derive all the spatial factors contributing to landslides in the
area for the past ten (10) years. The datasets were randomly divided into a ratio
(70%-30%) (Hegde and Rokseth 2020; Mohan et al. 2020). As stated earlier, 70% of
the total data is used to train the algorithms. The remaining 30% is used as validation
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Figure 3. Study flow chart.

data. Splitting the datasets into training and validating or testing is necessary for data
mining analysis. The idea is to use most of the data for training sets while fewer parts
validate the trained data sets. Selection of landslides and non-landslides locations is
conducted to ensure that there is a similarity in the data when it is split in tow.
Validation datasets are being used to make predictions against the training datasets.
The validation datasets have values already known in the attributes, making it easy to
identify the correctness of the predictions.

A clustering method was applied to sample the landslides data from the non-land-
slides data. The K-means algorithm can place and group data to the specified cluster
or centroid (Chang Z et al. 2020; Keyport et al. 2018). The Datasets were partitioned
into the specified number of clusters (landslides and non-landslides). Simultaneously,
the clustering is continued by grouping the datasets into the predefined clusters from
the centroid. The landslides conditioning factors were selected using a modified
future selection methods (Goetz et al. 2015; Huang and Zhao 2018; Ibrahim et al.
2020 MB). Ten landslide conditioning factors, including Slope Angle, Slope Elevation,
Slope Aspect, Profile Curvature, Plan Curvature, Lithology, Soil Type, STI, SPI, and
Rainfall, were used for the analysis. (Table 1) explains the data sources classification
and the type of data or model obtained, while (Table 2) indicates details of soil and
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Table 1. Spatial data types and data layers of the site.

Output Output

S/No Data source Data format Input scale and resolution  Data layer developed  format  resolution

1 Digital terrain Raster 50 cm interval Slope, aspect, elevation, Grid 05%x05m

model (DTM) plan curvature,
profile curvature
2 Geology Map Line 1:250,000 Soil type Grid 0.5x 0.5 m
Lithology

3 Precipitation Weather 10 years return period Rainfall map Grid 0.5%x0.5m

stations of annual rainfall data

Table 2. Geological details of the study area.

Geological information

S/No Name of formation Description

a. Temburong formation Predominantly argillaceous, composed of a laminate sequence of
siltstones and shale, and is the laminate sequence of a staffer

b. Belait formation The Belait formation contains some conglomerate and pebbly
sandstone at the base, passing upwards into alternating
sandstone, shale, and coal. A more significant portion is
occupied by medium- to very coarse-grained fluvial pebbly
sandstone and conglomerate. Interbedded with the
conglomerates are pebble-free medium to fine-grained
sandstones and minor mudstones.

C Crocker formation This formation comprises a few lithology types, including thick
sandstone units, interbedded sandstone, shale unit, and thick
shale unit.

d. Kelalan formation The Kelalan formation is characterized by having inter-bedded
sandstone and hard grey shale, and rare limestone lenses. The
sandstone beds of the Kelalan formation are thicker, and the
strata are more metamorphic.

e. Nyalau formation The Nyalau formation (Middle Miocene) of the Bintulu area,
Sarawak, occurred as offshore subtidal estuarine with
sandstones, sandy shales, and shales.

f. Meligan formation The Meligan formation consists dominantly of white-grey, thick-
bedded, well-cemented, frequently cross-bedded medium to
coarse-grained sandstones.

g. Setap shale formation The Setap Shale formation consists of a thick, extensive, and
monotonous shale succession with subordinate thin sandstone
beds and a few thin limestone lenses. The typical lithology is
grey shale, grey mudstone, sandstones, and a few limestones.

Soil

No. Description of soil area Description of soil composition

1 Mountain Cuestas Mudstone, Sandstones and miscellaneous rocks, cambisols/lithosols

2 Mountains and Hills Ultrabasic igneous rock, rhodic and orthic ferrasols/lithosols

3 Pleau with Gentle Undulating surfaces  Colluvium Gleyic podzol, dysteric gleysols

4 Dissected terraces of 15-25 degrees Alluvium sandstones and mudstones, orthic acrisols

5 Terraces Alluvium, gleyic, and dysteric cambisols

6 Valley floor and terraces Alluvium derived from ultrabasic rocks, orthic ferraisols

7 Swamps Alluvium peat, humic and dytric histosols

8 Floodplains Alluvium dystric/eutric regosols, humic dytric

9 Meander belts Calcareous alluvium, calceric regosol/humic gleysol

10 Tidal Swamps Sulphidic alluvium, thionic fluvisol/dysteric histosol

geological formations of the study area. Factors associated with the ground’s surface
are usually developed out of terrain models such as Digital Terrain Models DTM or
Digital Elevation Models DEM. Similarly, the remaining landslides’ spatial models
were created from the topographical maps and charts. Landslides’ spatial models that
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have to do with the weather and climate are developed using detailed and up-to-date
weather records of the study area.

3.1. Factor selection process

Various kinds of literature are yet to identify the number of factors to be used in a
landslides analysis or how these factors can be drawn. The reason is that problems
associated with landslides are always complex, depending on the nature of the
environment (Chen W et al. 2019; Truong et al. 2018). Therefore, the model qual-
ity of any landslides analysis as observed depends on the quality of these factors.
However, statistical interpolations in recent years were employed to help select
relevant factors for the analysis, and results of such statistical selection have been
overwhelmed, for example in (Gigovi¢ et al. 2019; Pham et al. 2020; Zhao and
Chen 2020).

In this research, the weights of evidence (WofE) method was used to trim the
number of conditioning factors identified based on the site visitation/investigation
reports. The principles of this method are like that of Bayesian probability models
(Chen X and Chen 2021; Ghorbanzadeh et al. 2019; Ibrahim M et al. 2019). Many
researchers have used this principle to develop landslides susceptibility models for
many study scenarios. The WofE technique calculates the weights of every landslide
conditioning factor (B) in areas or locations of landslides or no landslides within the
selected study area. Thus,

. P{BL}
C = o) W
_ . P{BL}
LT @

Where P represents the probability, In is the natural log, B is the potential landslides
predictive factor, B potential non-landslides predictive factor, L is the locations of the
landslides and L represents the non-landslides locations or points. W;" Indicates the
presence of a predictive variable within a landslide location with a magnitude that
explains a positive correlation between the landslides and the predictive variable pres-
ence (Equation (1)). While W indicates the absence of a predictive variable with a
negative correlation (Equation (2)).

A difference between the two weights W', W is defined by a factor called weight
contrast Wy (Equation (3)) thus,

Wy =W —Ww; (3)

This expression represents the entire spatial relationship between the predictor vari-
able and landslides.

The second phase was to use the Frequency Ratio (FR) method to quantify the level of
involvement of the factors in the slides. The method of FR in landslides susceptibility
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Table 3. Frequency ratio of the landslide influencing factors.

Pixel % Number of  Landslides % Landslides Frequency
Factor Classes count (z) pixel count (x) pixel count (y) pixel count (a) ratio (FR)
Slope angle 0-10 845817 17.15 4312 3.71 0.22
10-20 914,561 18.54 12,480 10.73 0.58
20-30 992,415  20.12 65,874 56.64 2.82
30-40 623,458 12.64 7531 6.47 0.51
40-50 514,689 1043 12,549 10.79 1.03
50-60 445,287  9.03 5324 5.01 0.55
60-70 269,732 547 1283 11 0.2
70-80 215483 437 4218 3.62 0.83
>80 110,269 2.24 2739 2.35 1.05
Elevation <150 990,031  20.07 19,873 6.24 0.31
150-500 679,763  13.78 98,652 30.96 2.25
500-750 507,239 10.29 53,278 16.71 1.62
750-1000 977,761 19.83 35,981 11.29 0.57
1000-1200 960,387 19.47 25,698 8.06 0.41
1200-1400 493,422 10 15,329 481 0.48
>1400 323,108 6.55 69,875 21.93 3.35
Slope aspect  Flat 235411 477 8641 7.43 1.58
North 487,951 9.89 9861 8.48 0.86
Northeast 565,073 11.46 6587 5.66 0.49
East 621435 12,6 5698 49 0.39
Southeast 569,832 11.55 43,259 37.19 3.22
Southeast 548,763 11.13 23,478 20.19 1.81
Southwest 689,753  13.99 1653 1.42 0.1
West 589,712  11.96 14,586 12.54 1.05
Northwest 623,781 12.65 2547 2.19 0.17
Profile Concave 2,143,114 43.46 458,785 78.41 1.8
curvature Flat 85,785 1.74 854 0.15 0.09
Convex 2,702,812 54.8 125,496 21.45 0.39
Plan curvature <(-0.001) 3,245,876 65.82 327,568 41.31 0.63
(-0.01)-(0.01) 439,939  8.92 6572 0.83 0.09
>(0.01) 1,245,896 25.26 458,796 57.86 2.29
Lithology Temburong formation 654,791  13.28 84,561 27.46 2.07
Belait formation 959,214 1945 62489 20.29 1.04
Croacker formation 621,487 126 31,562 10.25 0.81
Kelalan formation 754,763 153 31,291 10.16 0.66
Nyalau formation 570,137 11.56 48,561 15.77 1.36
Meligan formation 658,741 13.36 36,946 12 0.9
Setap Shale formation 712,578 14.45 12,548 4,07 0.28
Soil type Cambisols/Lithosols 457,812 9.28 54,879 21.68 234
Ferralsols/Lithosols 654,812 13.28 6451 2.55 0.19
Podzols/Dysteric gleysols 345,874  7.01 25,548 10.09 1.44
Orthic acrisol 327,812  6.65 4521 1.79 0.27
Alluvium gleyic 214,587 4.35 21,544 8.51 1.96
and cambisols
Orthic ferralsol 439,361 891 2648 1.05 1.15
dytric histosols 987,452  20.02 4712 1.86 0.09
Humic/Dytric 687,452 1394 18,753 741 0.53
Calceric regosol/ 458,735 9.3 15,489 6.12 0.66
humic gleysol
Thoinic fluvisol/ 357,814 7.26 98,621 38.96 5.37
dystric histosol
Rainfall 0-500 359,874 7.3 9875 3.27 0.45
500-1000 687,458 13.94 58,746 19.47 1.4

(continued)
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Table 3. Continued.

Pixel % Number of  Landslides % Landslides Frequency
Factor Classes count (z) pixel count (x) pixel count (y) pixel count (a) ratio (FR)
1000-1500 865,743  17.55 65,781 21.8 1.24
1500-2000 245,887  4.99 6987 232 0.46
2000-2500 751,368 15.24 32,548 10.78 0.7
2500-3000 434149 88 32,578 10.79 1.23
3000-3500 621,358 126 87,452 28.98 0.71
>3500 965,874  19.58 7823 2.59 0.13
STl 5-10 565,229 11.46 62,547 22.01 1.92
10-15 542,894 11 87,652 30.85 2.8
15-20 794,344  16.11 24,589 8.65 0.54
20-25 713,169  14.46 32,598 11.47 0.79
25-30 637,306 1292 42,583 14.99 1.16
30-35 875493 17.75 21,546 7.58 0.42
35-40 803,276  16.29 12,587 443 0.27
SPI -5-0 2,659,412 53.93 128,456 18.99 0.32
0-3 2,272,299 46.07 547,832 81.01 1.76

analysis has been in use for quite some time now (Yan et al. 2019). Could be the first
researchers to have reported the use of the technique for landslides analysis. The method
solely provides the relationship between landslides in the area, the conditioning factors,
and the interrelationship between the factors’ variables. The FR is classified as a quantita-
tive statistical approach that can relate the spatial distributions of the factors leading to
landslides within their interdependencies and landslides. The FR as computed for this
research (Table 3) indicates the probability of the ten (10) landslides conditioning factors
as dependent variables and the inter-dependency within the component’s pixel counts.
The pixel counts signify the specific area of coverage by each factor occupied in the land-
slide and non-landslide locations. The percentage of the pixel counts is computed as the
percentage of landslide pixel size to the variable corresponding to the percentage pixel
count (Acharya and Lee 2019). The FR is interpreted as the values that specify the prob-
ability of involvement in the landslide occurrence shown by a particular factor. Those fac-
tors with higher probabilities indicate higher participation than those with lower
probability values in the landslide occurrence. The FR respective probabilities can easily
be compared to find factors contributing to the landslides more (higher probabilities) and
those that contribute less (lower probabilities).

3.2. Preparation of landslides spatial models

As stated above, we selected ten landslides predisposing factors for this analysis. The
number of factors is decided after series of factor selection procedures are conducted.
Again, the nature of the study area’s terrain could also be responsible for the number
of factors selected. Afterward, the landslides spatial models were prepared using the
relevant data and methods as explained below.

3.2.1. Slope angle
The slope angle provides details of the surface steepness or inclination with the hori-
zontal plane. Sloppy terrains with higher angles of inclination are more susceptible to
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Figure 4. Showing the landslides visualization of conditioning factors (a) elevation; (b) slope; (c)

aspect; (d) plan curvature; (e) profile curvature; (f) lithology; (g) soil; (h) SPI; (i) STI; (j) rainfall.

landslides. The slope angle has been used to date by many researchers for landslide
prediction because of its relationship with gravitational forces that act on the detach-
ing materials (Nath et al. 2020). Landslide occurs at specific critical slopes, usually
termed unstable slopes. It is hard to single out and label a slope as safe or unsafe to
landslides despite the size of its angle of inclination without considering other factors.
From our study area, the slopes have ranged from 0 to about 82 (Figure 4b) which

is a value too high for safe slopes under normal conditions.
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Figure 4. Continued

3.2.2. Profile curvature

Profile curvature (Figure 4e) affects running water flow velocity down slopes because
it exits along the slopes’ vertical plane. The slopes’ rate of change can easily be meas-
ured with a change in the ground elevation (Pham et al. 2017)

3.2.3. Plan curvature
The curvatures specify the slopes’ surface’s nature; it is sometimes referred to as the
‘slope of the slopes’. The curvatures originate from the intersections of planes with
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Figure 4. Continued

the direction they are situated on the earth’s surfaces. Plan curvature (Figure 4d) has
to do with the convergence of water or its divergence when there is a water flow
down the slope. This process can quickly erode the sloped surfaces at some sections
causing them to fail. Subsequently, landslides can quickly occur in the eroded sec-
tions. The nature of these uncertainties has made the plan curvature a critical factor
for this analysis. The organic matter distribution in an area is greatly affected by this
factor because it reflects the terrain’s morphology (Ramakrishnan et al. 2013).

3.2.4. Slope aspect

The slope aspect is concerned with the orientation of the slopes in the study area.
The slopes’ exposure is critical because some slopes’ faces orient to heavier rainfall
directions than others. This action might subject such faces to weathering and deg-
radation that will eventually trigger a landslide. Other parameters related to the
nature of the slopes’ orientation include exposure to direct sunlight, dry/wet heavy
winds, saturation degrees, and other forms of discontinuities (Pradhan 2010; Gigovi¢
et al. 2019). From the study area (Figure 4c), the values translating the aspects range
from —1  that represents the flat land areas to 360 .

3.2.5. Slope elevation

The slopes’ elevation defines the slopes™ height above the mean sea level (Figure 4a).
Researchers have considered slope elevation an essential factor because it relates the
detaching mass with slope stability conditions and variables. Unfortunately, the study
area for this research has some unprecedented heights of over 800 m above the main
sea level, making it more susceptible to landslides (Pourghasemi et al. 2013a).



GEOMATICS, NATURAL HAZARDS AND RISK 2445

3.2.6. Rainfall

Rainfall is a vital conditioning factor and a triggering mechanism. Many research-
ers emphasize the influence of rainfall above other factors on landslides occur-
rence, especially in areas with no seismic activities (Li WY et al. 2017). Therefore,
the kriging method was used to develop the rainfall model (Figure 4j) using rainfall
data for the past ten (10) years collected from 16 weather stations across the
study area.

3.2.7. Lithology

This factor is vital in deciding landslides in the area because it reveals the type of
rock formation. Furthermore, it is an essential factor because it relates to rocks™ deg-
radation, making it necessary to know the area’s underlying rocks’ properties. The
model of the lithology of the study area was obtained by digitizing the details of the
rock formation obtained from the geological department. So far, seven (7) classes of
the formation were identified (Figure 4f), which brought about the formation of
more hardened layers in the study area (Pham et al. 2017).

3.2.8. Soil type

The morphological changes made by the soil type when trying to establish the
landslides’ susceptibility are significant. Therefore, landslide intensity is mainly a
function of the nature of the soil in that area. Ten (10) categories of soil classes
(Figure 4g) were identified. The soil model was digitized from a detailed soil top-
ography map of the study area obtained from the relevant authorities
(Ramakrishnan et al. 2013).

3.2.9. Sediment transport index/stream power index (STI/SPI)

Sediment transport index STI (Figure 4i) characterizes the erosion rate within the
study location and the rate flow of the erosion materials, and it was developed using
the DTM of the study area. Another important factor determining water in an ero-
sion flow scenario is the SPI (Figure 4h). The SPI for this research was also carved
out from the high-resolution DTM of the study area.

3.3. The support vector machine

This algorithm is widely used to establish the landslide susceptibility maps of many
places. It separates the linear case from the non-separable linear case, using a
low-dimensional input space to map a nonlinear situation (Nath et al. 2020). An
optimum hyperplane provides for the best separations in the classes, thus the
expression;

yilwxi+b)/ > 1= 4)

here w determines the position of the hyperplane in the future space, which is termed
as the coefficient vector, b defines offsets that exist between the hyperplane and the
origin and ¢; is the positive slack variables.
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To determine the optimum hyperplane, we have the expression below by solving
Equation (1),

zn:a,» — lz Za ajyiyj(xix;), subject to Za,y] =0, 0<a<C (5)
-1

i=1 j=1

a; is the multiplier of the Lagrange, C is the constant called the penalty. The equation
can be rewritten to give a classification decision function as,

g(x) = sin (i Viaix; + b> (6)
i=1

This classification decision function can be written to determine the separating hyper-
plane using the linear kernel function.
Thus,

g(x) = sin <Zy,~a,~K(x,~,y,~) + b) (7)
i=1

The function K(x;, xj) represent the kernel function.

The SVM algorithms under this expression provide four (4) different types of
input or kernel functions. These include the radial basis function (RBF), Polynomial
(PL), Sigmoid (SIG), and Linear (LN) functions.

3.4. Random trees classifiers

Random forest is a machine-learning algorithm that has been used in many landslide
situations to make predictions and implement the predictions into maps with GIS
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Figure 5. Random trees classifiers.
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software. In this research, the random forest classifiers (Figure 5) address the classifiers’
limitations. The random forest classifiers usually suffer from many high variances,
which affects their accuracy compared to other classifiers (Ghorbanzadeh et al. 2019).
Furthermore, random tree classifiers are introduced to overcome conventional forest
algorithms’ limitations when dealing with many variances. Landslide indeed has many
variances when trying to analyze the phenomenon using soft computing procedures. In
this situation, the random trees’ capability to handle the variances was checked using
the algorithm to train the datasets and monitor the outcomes’ training processes.

Overall, unlike the support vector machines, this classifier can deal with mixed cat-
egorical and numerical variables. The classifier also has a lesser sensitivity when scal-
ing the data, unlike the SVM that must normalize the data before the training
process began. As reported by many scholars, the advantage of SVM over the random
forest is that it performs with even a small data size or with an unbalanced data type
(Ibrahim MB et al. 2020).

3.5. Naive Bayes multinomial

The NBM algorithm belongs to the class of algorithms with the Bayesian theorems
principles. This research considers using this algorithm to provide for the advance-
ment of the frequently used Naive Bayes classifiers. The improvement in the classifi-
cation process can be viewed as a form of optimization to the Naive Bayes
performance. Multinomial Naive Bayes classifiers compute a random variable’s likeli-
hood counts differently from Naive Bayes (Chen W et al. 2019).

3.6. The landslide susceptibility modelling

In this paper, ten landslide-conditioning factors were used as the landslide predictors
in the study area (Figure 4a—j). The relationship between landslide points as identified
on the inventory map and the conditioning factors were extracted. The extracted data
were then divided randomly into the mentioned ratio of 70% as training datasets and
the remaining 30% as testing or validation datasets (Figure 6a). Next, the three algo-
rithms discussed earlier were applied to the training datasets for classification. After
the training procedures, the results now predicted values were used to develop the
landslides susceptibility maps. Then, the susceptibility map was reclassified into five
zones of landslides in the area based on the severity of the slides. Subsequently,

In developing the landslides susceptibility maps, landslides susceptibility indices
(LSIs) were established from the training and testing datasets (Balogun et al. 2021).
These values constitute the landslides susceptibility map of the area developed using the
ArcMap software. In addition, generated maps were reclassified, meaning the maps
were categorized according to the severity of the landslides’ susceptibility. As a result,
five categories were identified: regions of very high landslides susceptibility, high land-
slides susceptibility, moderate landslides susceptibility, low landslides susceptibility, and
very low landslides susceptibility were classified from the original map. The landslides
susceptibility maps are shown in (Figure 6b) for the SVM model, the Random trees
(Figure 6¢), and the Naive Bayes Multinomial (Figure 6d) (Li WY et al. 2017).
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Figure 6. (a) Showing the landslides inventory and datasets; (b) landslides susceptibility map by SVM
model; (c) landslides susceptibility map by RT model; (d) landslides susceptibility map by NBM model.

3.7. Evaluation of the model’s performance

The ROC and AUC measure and visualizes the performance characteristics of our
models in the multiclass classification. (Figure 7) shows the classes in a confusion
matrix where the algorithms’ performance on the datasets is put into classes. The
classes include True Positive (TP), False Positive (FP), True Negative (TN), and False
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Figure 7. A confusion matrix.

Negative (FN). The sensitivity (True positive or Recall) tells the proportion of positive
class (landslides locations) that are correctly classified as landslides (Equation (8)). In
contrast, the specificity (True Negative Rate) tells the proportion of negative class
(non-landslides locations) that are correctly classified as non-landslides (Equation
(9)). Between sensitivity and specificity lies False Negative Rate (FNR), which signifies
the proportion of landslide points wrongly classified as landslides (Equation (10)).
The False Positive Rate (FPR) tells the proportion of non-landslides incorrectly classi-
fied as non-landslides (Equation (11)).

TP

W 8
Sensirivi y TP T EN ( )

TN
ity — 9
specificity TN + EP )
PNR= 1N (10)

~ TP+FN

FP

FPR = NP 1 — specificity (11)

Other statistical analyses reveal the model performance when it functions separately in
the presence or absence of the datasets. These include the Root Mean Square Error
(RSME), the Mean Absolute Error (MAE), Accuracy (ACC), and the F-Measure. For
example, the RSME (Equation (12)) takes the square root of the difference between
each observed data and predicted data per the total number of non-missing data points.
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Table 4. Performance evaluation of the models for training and validation datasets.

Training datasets Validation datasets

SVM RT NBM SVM RT NBM
Sensitivity 0.807 0.776 0.732 0.833 0.767 0.787
Specificity 0.782 0.778 0.741 0.791 0.797 0.803
ACC 0.795 0.777 0.736 0.814 0.763 0.793
AUC 0.833 0.814 0.792 0.841 0.822 0.814
RSME 0.224 0.241 0.274 0.475 0.512 0.489
MAE 0.445 0.521 0.327 0.481 0.573 0.349
F-measure 0.794 0.777 0.736 0.811 0.782 0.795
Kappa 0.589 0.553 0.579 0.590 0.564 0.625

RSME =
where i = variabe i,

(12)

N = number of non — missing data points
x; actual obseved time series and

Xx; = estimated time series

The percentage of correctly predicted values to instance summation defines the
(ACC) of the algorithm (Equation (13)).

Accuracy(ACC) = P+ 1IN (13)
Y " TP+ FP+ TN + FN

The MAE measures the acquired errors between the paired observations in the same
class expression (Equation (14)).

pr—a1| + |p2 — a2 + ... + [pn — aul
n

MAE:|

(14)

where p; is the predicted value and g; is the actual value.

The F-Measure is another statistical technique that measures the model’s perform-
ance. It combines the precise values and sensitivity values to form a single measure
that captures both properties with their exact weighting (Equation (15)).

(2 x Sensitivity x Specificity)

F — measure = —— — (15)
Sensitivity + Specificity
Kappa index
The kappa index is denoted by the following relationship (Equation (16))
5 (TP+TN)—(EN%EP)
(TP+FN) + (TP+FP) + (2+TP+TN) + (FN?) + (EN*TN) + (FP2) + (FP+TN)

(16)
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Figure 8. Sensitivity vs. Specificity graphs (a) training datasets; (b) testing datasets.
Table 5. Showing the significance level among the models.
Pairs Z-value P-value Significance
SVM vs. RT -3.678 0.000 Yes
SVM vs. NBM -3.521 0.001 Yes
RT vs. NBM -2.989 0.000 Yes

Table 4 expresses the results obtained from validating the three data mining algo-
rithms’ performances. The performance evaluation is conducted on both the training
and validation datasets. As stated earlier, four (4) performance evaluators were used
to check the prediction rate and the success rate of the models developed and the
data used in developing them. Performance validation from the training datasets
shows that the traditional data mining algorithm (SVM) is still significant in creating
landslides susceptibility models from this study area (Figure 7). However, the two
new models have also performed above the benchmark of 0.75 and could be used in
landslides susceptibility analysis (Table 4).

3.8. Significance of the statistical evaluation

Landslides models obtained through mathematical simulations are evaluated for the
model performance using statistical evaluation methods such as the AUC (Figure 8),
RSME, MAE, F-Measure, Kapper, to mention a few. When two or more models are
involved in an assessment, a statistical significance test is usually conducted to establish
the best model and reduce the subjectivity level in the final report (Table 5). The P-value
and Z-value test for the models were computed and explained using Wilcoxon signed-
rank test technique (Tsangaratos and Ilia 2017a; Khosravi et al. 2018; Hong et al. 2020).

4, Results and discussion

The predicted models were built using WEKA software and data from ten (10) condi-
tioning factors mentioned earlier (Figure 4a-j). The factors were selected using factor
selection procedures and re-screened and quantified using frequency ratio FR. We
compute the values of 8 performance indicators using various methods. These
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performance indicators include the Sensitivity, Specificity, ACC, RSME, F-measure,
MAE, AUC, and Kappa. As captured in (Table 4), the performance analysis was con-
ducted to validate further the landslides predictions obtained from the SVM, RT, and
NBM algorithms. Furthermore, these indices were established to further explains the
models’ maximum likelihood, for example, in the work of (Gholami et al. 2020;
Balogun et al. 2021). Statistical significance test (Table 5) is conducted to check the
level of significance among the models, which helps in reducing subjectivity (Ritter
and Munoz-Carpena 2013). The P-Value and the Z-values test were part of the statis-
tical significance investigation on the models as reported similarly by (Chen W and
Zhang S 2021; Mohammadifar et al. 2021).

The landslides susceptibility models developed from the SVM, RT, and NBM algo-
rithms (Figure 5¢,d) were subjected to the performance evaluation (Hong et al. 2020;
Li L et al. 2020; Shin 2020). Conducting a performance analysis on results obtained
through data mining techniques is crucial and cannot be over-emphasized (Remondo
et al. 2003; Brock et al. 2020; Mohammadifar et al. 2021). In addition, the evaluations
help verify and define the level of accuracy and performance of the landslides suscep-
tibility models (Althuwaynee et al. 2021). Results from the performance evaluation
show that the AUROC value for SVM on the training datasets is 0.833 against 0.814
and 0.792 for both RT and NBM. This means that the SVM models have higher
accuracy over the remaining two algorithms. Thus, an area with similar environmen-
tal conditions with this study location can opt for the SVM algorithms even though
the remaining two algorithms have performed wonderfully well. The SVM algorithm
was observed to have higher strength in determining the probability of landslides pix-
els correctly classified as landslides (sensitivity). A 0.807 sensitivity value was
observed for the SVM, while the remaining were computed to be 0.776 and 0.732 for
both RT and NBM, respectively. The SVM recorded a specificity value of 0.782, and
RT recorded 0.778, while NBM recorded 0.741 for the training datasets. Specificity
values indicate the non-landslides regions or zones that are correctly classified or
identified as non-landslides.

Another performance evaluator computed for this study is the Kappa index. This
index is necessary to find a substantial agreement or disagreement between the pre-
diction and observation outputs. For this study, kappa values obtained were 0.589,
0.553, and 0.579 for the SVM, RT, and NBM algorithms with the training data.
Similarly, other statistical performance indicators computed were the RSME which
recorded 0.224, 0.241, and 0.274 for the three algorithms (SVM, RT, and NBM). In
addition, SVM recorded an accuracy (ACC) value of 0.795, 0.777 for the RT algo-
rithm, and 0.736 was observed for the NBM. Similarly, these indicators were also
computed on the validation or testing datasets (Table 4). In other words, the statis-
tical evaluation of the testing datasets a way of validating the training process and the
datasets used for the training (Chung and Fabbri 2003; Begueria 2006; Pradhan 2013;
Truong et al. 2018).

The performance assessment on the three models (Table 4) also revealed the dif-
ferences in classification accuracy for both the training and validation datasets.
Although the models were observed to perform better with validation datasets, for
instance, with an ACC value of 0.791, the SVM has recorded an AUC value of
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0.841 higher than RT and NBM that recorded 0.822 0.814 respectively. This indi-
cates a better prediction accuracy as well ahead of the RT and NBM for this study
area, as confirmed by a similar study (Chen W et al. 2019). Furthermore, the
observation made on the validation data for the three models indicated that the
SVM outperforms the remaining two algorithms in prediction capabilities (Table
4). The trend in the results and the slight difference between the training datasets
and the validation datasets may be attributed to the conditional independence
assumptions (Chen W et al. 2019). These assumptions were specific to violations
made in the training datasets, resulting in the variance and even the lower per-
formance in some of the indicators recorded for the training datasets. Therefore,
despite the NBMs’ low classification rates in many of the indices or indicators, it
displayed a better ability to make adjustments to the weights of some of the varia-
bles affected by the assumptions, this was also observed in similar studies (Chen X
and Chen 2021; Liu X and Wang Y 2021).

In the case of the statistical significance, the Wilcoxon signed-rank test was com-
puted for the p and z values. A comparison between the SVM, RT, and NBM con-
ducted indicated the significant difference of the models. With the significance level
in p values less than 0.05 and z values not exceeding the critical z (-1.96 to +1.96),
the models are considered significantly different. The significant test results obtained
in this research align with many findings using data mining techniques (Chen W et
al. 2019). Thus, the results obtained from the Wilcoxon test shows that the suscepti-
bility models developed from the three algorithms in this study are significantly dif-
ferent. Hence, based on this evaluation, the three models comprising SVM, RT, and
NBM are acceptable statistically for landslides susceptibility analysis and mapping in
this study area. Furthermore, the reliability of the models (Figure 6b-d), when com-
pared, has been enhanced. The obtained differences are attributed to how well the
training process was carried out, plus the sufficiency of the training datasets; these
were also observed in many works of literature (Chen W and Zhang Y 2021;
Mohammadifar et al. 2021). Lack of a considerable factor difference from model com-
parisons entails the absence of significant data overfitting in the training process
(Hong et al. 2017). With the results analyzed so far, SVM models have outperformed
the remaining algorithms by a small margin. However, the margin is significant
enough to conclude that the SVM is the better algorithm for this study area among
the three. This is in line with many findings, e.g. (Chang Z et al. 2020; Hong et al.
2017; Mohammadifar et al. 2021; Pradhan 2013) that reported SVM outperformed
other traditional algorithms.

Landslides analysis using data mining techniques to produce regions of landslides
susceptibility from GIS data has been an essential tool in regional planning and man-
agement (Hong et al. 2017). In addition, literature has proven that the data mining
technique produces landslides susceptibility maps of high predictive accuracies that
tackled real-life landslides scenarios (Ma and Xu 2019; Nhu et al. 2020c; Saha et al.
2021). Although, it is still challenging to produce high accuracy landslide models
from the technique in various places due to the dynamism of landslides and the fac-
tors involved (Tien Bui et al., 2017b; Tien et al. 2020; Balogun et al. 2021). So far, no
machine learning algorithm used in the data mining technique was observed to fit all
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regions under all landslides conditioning factors perfectly. For instance, the SVM
used in this analysis was discovered to perform better in many landslide incidences
(Hong et al. 2017). With this in mind, we compare the SVM models with models
from NBM and ensembles of DT and RF to find a higher-accuracy landslide model.
The model will help manage landslides for this study area with substantial economic
relevance that is often disrupted due to landslide activities.

5. Conclusion

This study has assessed the effectiveness of advanced data mining techniques to
evaluate landslides in Lawas, an economic giant town in Sarawak, Malaysia. In
achieving the said objectives of the study, three machine learning algorithms, namely
the SVM, RT, and NBM, were used to train geospatial data extracted from various
GIS sources (Bacha et al. 2020; Althuwaynee et al. 2021). The training was made to
develop classification between identified landslides location in the area to non-land-
slides locations by examining the pixels of two classes. An equal number of non-land-
slides (148) locations was also identified to tackle the problems associated with
imbalances in the probability distribution. The results obtained from this analysis are
guaranteed comparable with results from the literature.

The ten (10) landslides conditioning factors drawn using the WoE technique were
quantified using the FR method to establish the most influencing. The landslides spa-
tial models were developed using respective data layers. The selection of the landslide
location was evenly distributed across the study area to enhance the likeness in the
split data and the training process. It was also observed from the performance evalu-
ation test conducted (Table 4), the whole analysis was rightly executed and success-
fully analyzed. Although all three models displayed positive predictive capabilities,
SVM turns out to work fine with the geological/geomorphological conditions of the
study area. The geological factors were observed to have the highest contributions to
landslides events in the area. Soil type, Slope angle, Elevation, and Curvatures were
observed to higher FR values than the raining factors. According to reports, the latest
landslide events happened after a continuous downpour event that lasted for several
hours. With this information compared to our results, it can conclude that the rain
in the first place serves as a triggering factor. The slopes could have survived the con-
tinuous rain that becomes the suspected most influencing factor.

This study can advise that despite the considerable rainfall intensity in parts of the
study area, infrastructures like the pipeline can be protected using the SVM model to
plan maintenance accordingly. Overall, the data mining technique looks very promis-
ing in managing the landslide mysteries from this study area. However, the study has
now revealed more insight into the landslides’ causative factors than just rain. When
planning, those identified geomorphological factors such as the nature of the soil and
the slope and height of the terrain should be given proper attention.
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