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Qualitative study of Riccati difference equation
on maneuvering target tracking and fault
diagnosis of wind turbine gearbox
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Abstract: Various performance analyses using Interacting Multiple Model (IMM)
algorithm for the stability of tracking a maneuvering target are dealt with the state
error covariance. A noble way of analyzing the stability of the IMM algorithm for a
linear systems with the upper and lower bounds of the error covariance is analyzed. For
this persuasion, a two-model Interacting Multiple Model Kalman Filter (IMMKF) with
constant acceleration and constant jerk model has been applied for two different case
studies. One is tracking a maneuvering target, and the another is tracking a vibration of
wind turbine gearbox, which helps to identify failure component in wind energy system.
The required data are collected from a radar and a defected gear box of a test wind
turbine, and the efficiency of IMM algorithm is analyzed by simulation experiments.
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filter has many technological applications and
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of state error covariance by using Riccati differ-
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tion data was sensed by 12 sensors. Using
Interacting Multiple Model Kalman Filter algo-
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covariance were computed and this helps us to
diagnose the fault in the gearbox.
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1. Introduction
In numerous fields of engineering theory, especially in optimal control and filtering theory the
Riccati equation enacts an essential role. Successful applications of this theory is witnessed in
various practical engineering systems such as robot manipulators, underwater vehicles, power
systems, electrical motors, automotive engines, etc. Nowadays, a contemporary way of solving the
problems in discrete time non-linear systems using filter and optimal control has gained much
attention. Generally, a filter is a collection of specified mathematical equations, which provide a
dynamic computational means to determine the state of a process that reduces the mean square
error. The support extended towards the estimation of current and previous states and also the
forthcoming states is a powerful aspect of the filter. Estimation projection is an analytical method
of incorporating state equality constraints in the Kalman filter (Berg, 1983). Here the filter is
established just as the well-known relations among the state variables are satisfied by the state
estimate. The determination of the steady state solution of the Riccati difference equation directly
without iteration is discussed in (Vaughan, 1970) by D.R Vaughan and the robustness of fast
computational for the discrete Riccati equation’s solution is presented in (Lainiotis, 1975) by D.G.
Lainiotis. Multiple filter model enables the accuracy of target state estimation with dynamics. The
provision of a structure through the interacting multiple model (IMM) algorithm efficiently man-
ages multiple filter models. The estimated states are generally the kinematic quantity of position,
velocity, and acceleration (Bar-Shalom & Rong Li, 1995). Filters are utilized to reduce the uncer-
tainty caused by noise in observation and to estimate quantities not directly observed in these
measurements of condition. The filter uses a state process model that can be used to predict the
behavior of the observed target accurately to estimate the desired kinematic quantities.

In the filtering problem, P2 �k
� �

is physically interpreted as the prediction error covariance of

Equation (2.12) in (Chan, Goodwin, & Sin, 2002). Consequently, P2 �kþ1 ¼ �F �k P2 �k
�F T
�k
� �F �k P2 �k

�H T
�k

ð�H �k P2 �k
�H T

�k
þ R�kÞ

�1�H �k P2 �k
�F T
�k
þ Q�k is therefore a real, symmetric, and non-negative definite. A com-

plete investigation of the problems and techniques of tracking targets is studied by Li and Jilkov in
(Li & Bar-Shalom, 1991; Li & Jilkov, 2003, 2010, 2005) and a different approach of survey for self-
adjusting IMM algorithm is contributed by Y.Bar-Shalom in (Mazor, Averbuch, Bar-Shalom, & Dayan,
1998). Determining the solutions of the algebraic equation and the Riccati difference equation
when the system can be observed or detected but not necessarily stabilized in the filter is
discussed by Siew Wah Chan et al. in (Chan et al., 2002), C.E DeSouza et al. have done a further
analysis in (De Souza, Gevers, & Goodwin, 1986) for the case of singular state transition matrices.
Upper and lower bounds can be used to evaluate the performance of a tracking system or as a
means for the scheduling of sensors in real time. Derivation of the error covariance upper and
lower bounds along with the criterion for the exponential by varying IMM algorithm’s stability for
one of the classes of the Markov jump linear system is already presented (Hwang, Seah, & Lee,
2017). In the same manner, the asymptotic stability and exponential stability of Riccati equation
are analyzed in (Agarwal, 1992; Deyst & Price, 1968) and (Wang & Guo, 1999) respectively. Zhou
Fucheng (Fucheng, 2010) explains the undecimated discrete wavelet transformation of the lifting
system to analyze wind turbine gearbox failure diagnosis. A strong analysis of IMMKF for target
tracking with constant acceleration and constant jerk model is performed by V.P.S Naidu (Naidu,
2009, 2010; Naidu & Raol, 2008). Diagnosis of the fault signal is done by Zhou Wen-jing (Wen-jing,
Yan-xia, & Long, 2012) and Zijun Zhang (Zhang, Verma, & Kusiak, 2012) with the help of wavelet
analysis of time-frequency characteristics. A unique case of the IMM algorithm with a simple
mixing probability, is the IMM algorithm to which the stability analysis is reasonably applied, is
presented in this article. The behavior of the upper and lower bound performance of the IMM
Kalman Filter is demonstrated by virtue of two examples namely (i) a maneuvering target tracking
problem in air traffic control with constant acceleration,constant jerk models and (ii) a defective
wind turbine gear box. One can refer (Bar-Shalom & Rong Li, 1995) to understand the basic
principles and techniques on tracking. For further study on the literature the reader can refer
(Anderson & Moore, 2005; Bar-Shalom, Rong Li, & Kirubarajan, 2001; Li & Bar-Shalom, 1993;
Mehrotra & Mahapatra, 1997; Sinopoli et al., 2004). To the best of our knowledge, the investigation
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of jerk data obtained from the vibration of acceleration data via the IMM Kalman filter is a novel
endeavor in the model monitoring to diagnose changes in the vibration excitation of the gearbox.

1.1. Motivation and contribution

In previous literature, most of the researchers use � 2
ffiffiffiffiffiffiffiffiffiffiffi
P̂--ð�k j �kÞ

q
as a theoretical bounds to verify

state error in (Naidu, 2009). In other words, the bounds of state error ð˘� ^̆Þ is computed with the
help of state error covariance matrix. When the state errors are within the bounds, then the
uncertainty in the state estimates is limited and the filter is robust. This paper focuses on analyzing
the stability of IMMKF algorithm by verifying the upper and lower bounds of state error covariance
in (Hwang et al., 2017).The stability of IMMKF algorithm through upper and lower bounds of state
error covariance matrix is determined using the Equations (21)–(33) .It is observed that values of
the state error covariance are within the bounds, which shows that the IMMKF is more stable and
robust. In this paper, at the beginning, the major contribution of the above-mentioned algorithm
using IMMKF has been applied for tracking maneuvering target then it is extended by tracking
vibration of wind turbine gearbox. At this moment, to meet the increasing energy demand in the
electric power sector, renewable energy system plays a leading role in power system. One of the
major sources of renewable energy is wind energy. In wind energy system, gearbox acts as a main
component. The fault signals of the gearbox are non-stationary. The vibration of wind turbine
gearbox has to be tracked accurately in order to diagnose the fault in gearbox of wind turbine.

The current research article is framed as follows. In section 2, we introduce the stability of IMM
algorithm through upper and lower bound while the examination of a maneuvering target using
the Constant Acceleration Model and Constant Jerk Models is presented in section 3. Identification
of the failed components by the usage of the IMMKF algorithm with the upper and lower bounds of
the state error covariance is investigated in section 4. The computational requirements of the
algorithm are presented in section 5. Conclusions are elucidated in Section 6. It is observed that
the suggested heterogeneous step algorithms with upper and lower bounds are more desirable for
tracking maneuvering target and for failed component identification.

2. The IMMKF algorithm
The IMM algorithm incorporates r interacting filters (see Figure 8) functioning simultaneously with
every filter corresponding to a model of the following stochastic hybrid system, (Hwang et al., 2017)

˘ð�kÞ ¼ �FmðkÞ˘ð�k� 1Þ þ ωmðkÞð�kÞ (1)

�zð�kÞ ¼ �HmðkÞ˘ð�kÞ þ υmðkÞð�kÞ (2)

where ˘ 2 <n is the state of every system and �z 2 <P is the measurement vector.

�FmðkÞ and �HmðkÞ are the matrices of the system corresponding to every model mðkÞ 2 f1;2 . . . rg at
time �k : wmðkÞð�kÞ and vmðkÞð�kÞ are uncorrelated Gaussian noise vectors with white zero mean, �QmðkÞ

and �RmðkÞ are the respective covariance matrices. The evolvement of the model mðkÞ is denoted by

p mðkÞ ¼ _bjmðk� 1Þ ¼ _a
h i

¼ π _a _b for _a; _b ¼ 1;2 . . . r, where π _a _b is a constant; p :j:½ � symbolize a con-

ditional probability. In the above system, for all _a; _b ¼ 1;2 . . . r, we consider that �F _b is non-singular

with 0< �1I � �Q _b � �2I, 0< �3I � �R _b � �4I (3)

where I is the identity matrix.

Let Zk :¼ �zð1Þ;�zð2Þ; � � ��zðkÞf g be the set of measurements up to time �k. The IMM algorithm

calculates the relative posterior mean _̆̂
_bð�kÞ and P2 _bðkÞ for each Kalman filter _b, and the mode

probability α _bðkÞ: ¼ p mðkÞ ¼ _bjZk
h i

recursively as follows in (Agarwal, 1992). Let us suppose that,
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α _bð�k� 1Þ; ^̆ _bð�k� 1Þ, and P2 _bð�k� 1Þ for _b ¼ 1;2 . . . r are estimated from the last iteration at time �k�
1 then the IMM algorithm computes the following for every �k:

• Interaction/Mixing

Calculate the mixing probability

�γ _b _að�k� 1Þ :¼ p mðk� 1Þ ¼ _ajmðkÞ ¼ _b; Zk�1
h i

¼ 1
∑r

,¼1π, _bα,ð�k� 1Þ
π _a _bα _að�k� 1Þ:

For every Kalman filter _b the initial conditions are calculated as

_̆̂
_b0ð�k� 1Þ ¼ ∑r

_a¼1�γ _b _að�k� 1Þ _̆̂ _að�k� 1Þ; (4)

P2 _b0ð�k� 1Þ ¼ ∑r
_a¼1 P2 _að�k� 1Þ þ ½ _̆̂ _að�k� 1Þ � _̆̂

_b0ð�k� 1Þ�½ _̆̂ _að�k� 1Þ � _̆̂
_b0ð�k� 1Þ�T

n o
�γ _b _að�k� 1Þ: (5)

• Kalman Filtering

For each _b; Kalman filter computes

_̆̂
_bð�kÞ ¼ �F _b

_̆̂
_b0ð�k� 1Þ þ �K _bð�kÞυ _bð�kÞ (6)

�K _bð�kÞ ¼ P2 _bð�kj�k� 1Þ�CT_b�S
�1
_b ð�kÞ (7)

P2 _bð�kj�k� 1Þ ¼ �F _bP
2

_b0ð�k� 1Þ�FT_b þ �Q _b (8)

P2 _bð�kÞ ¼ P2 _b
�1ð�kj�k� 1Þ þ �H

T
_b
�R
�1
_b
�H _b

h i�1
(9)

where υ _bð�kÞ ¼ �zð�kÞ � �H _b
�F _b

_̆̂
_b0ð�k� 1Þ represents the residual, �K _bð�kÞ is the gain of the Kalman filter,

�S _bð�kÞ ¼ �H _bP
2
_bð�kj�k� 1Þ�HT

_b þ �Ra _b denotes the residual covariance, and P2 _bð�kÞ; ðP2 _bð�kj�k� 1ÞÞ is the poster-

ior (prior) state covariance.

• Model Probability Update

Herewith �Λ _bð�kÞ :¼ N pðυ _bð�kÞ;0; �S _bð�kÞÞ is the Likelihood function with p dimension and

υ _bð�kÞ;N p �;0;∑ð Þ is a p—dimensional multivariate Gaussian probability density function along

with mean zero and ∑ covariance. The model probability is then given by

α _bð�kÞ ¼ 1
∑r

,¼1
�Λ,ð�kÞα,ð

�kÞ
�Λ _bð�kÞ ∑

r
_a¼1π _a _bα _að�k� 1Þ

� �
.

• State Estimate and Covariance combiner

_̆̂ ð�kÞ ¼ ∑r
_b¼1α _bð�kÞ _̆̂ _bð�kÞ: (10)

P2ð�kÞ ¼ ∑r
_b¼1fP2 _bð�kÞ þ ½ _̆̂ _bð�kÞ � _̆̂ ð�kÞ�½ _̆̂ _bð�kÞ � _̆̂ ð�kÞ�Tgα _bð�kÞ: (11)

2.1. Stability of the Kalman filter
Let us formulate a stochastic linear time-varying system with discrete-time as

xð�kÞ ¼ �Fð�kÞxð�k� 1Þ þ ωð�kÞ (12)

�zð�kÞ ¼ �Hð�kÞxð�kÞ þ υð�kÞ (13)
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where �Fð�kÞ is nonsingular. E½ωð�kÞωTð,Þ� ¼ �Qð�kÞδ�k,, E½υð�kÞυTðlÞ� ¼ �Rð�kÞδ�k,: Here δ�k, denotes the

Kronecker delta. The covariance P2ð�kÞ is obtained by substituting (8) into (9), which is represented
as the recursive equation

P2ð�kÞ ¼ f½�Fð�kÞP2ð�k� 1Þ�Fð�kÞT þ �Qð�kÞ��1 þ �Hð�kÞT�Rð�kÞ�1�Hð�kÞg�1: (14)

The function Υð�kÞðP2Þ is defined as Υð�kÞðP2Þ :¼ �Fð�kÞP2 �Fð�kÞT þ �Qð�kÞ þ �Hð�kÞT�Rð�kÞ�1�Hð�kÞ
n o�1

: (15)

Hence, P2ð�kÞ is provided by P2ð�kÞ ¼ Υð�kÞðΥð�k�1Þ � � �Υð1Þ P2ð0Þð Þ
� �

� � �Þ. (16)

2.2. A lower bound for P2 _bð�kÞ
Let us consider the Markov jump linear system (1)–(2) as a particular case of the stochastic linear time-
varying system (12)–(13) in which the matrices �FðkÞ; �Kð�kÞ, etc. are finite sets. To obtain a lower bound

for P2 _bð�kÞ of the IMMalgorithm,we reformulate the equations of covariance in IMMalgorithmas follows:

�Q
e
_bð�kÞ ¼ �F _b ∑r

_a¼1γ _b _að�k� 1Þ _̆̂
_að�k� 1Þ � _̆̂

_b0ð�k� 1Þ
h i

_̆̂
_að�k� 1Þ � _̆̂

_b0ð�k� 1Þ
h iT� �

�F
T
_b (17)

where �Q
e
_bð�kÞ is a positive semi-definite matrix. Using the above, we can rewrite (5),(8) as

P20
_bð
�k� 1Þ ¼ ∑r

_a¼1�γ _b _að�k� 1ÞP2 _að�k� 1Þ (18)

P2 _bð�kj�k� 1Þ ¼ �F _bP
20
_bð
�k� 1Þ�FT_b þ �Q

e
_bð�kÞ þ �Q _b (19)

Lemma 1 (Deyst & Price, 1968). Supposing that the discrete time linear system (12) and (13) is
uniformly controllable and uniformly observable with P2ð0j0Þ>0, then the covariance of the Kalman
filter is given by (16)is bounded above and below uniformly for all k � N.

Lemma 2 (Hwang et al., 2017). For each positive definite matrices P2 _a; _a ¼ 1;2 � � � r, non negative

scalars γ
^

_a with ∑r
_a¼1γ

^

_a ¼ 1 and positive semi-definite matrices �Q; �R we have

∑r
_a¼1γ

^

_aP2 _a þ �Q
h i�1

þ �R
� ��1

� ∑r
_a¼1 �γ _aP2 _a þ �Q

� ��1 þ �R
n o�1

(20)

Theorem 1. If the system (1)–(2) is uniformly controllable and uniformly observable, then P2 _bð�kÞ �
β1I>0 for �k � N.

Proof. By the replacement of (18) and (19) into (9), we have with a change in notations of the

subscripts P2 _b�kð�kÞ ¼ f �F _b�k∑
r
_b�k�1¼1�γ _b�k _b�k�1ð�k� 1Þ _b�k�1ð�k� 1Þ�FT_b�k þ �Q

e
_bð�kÞ þ �Q _b�k

h i�1
þ �H

T
_b�k
�R
�1
_b�k
�H _b�kg

�1:

Here _b�k; _b�k� 1; � � � denote the sequence of models mðkÞ ¼ _b�k;mðk� 1Þ ¼ _b�k� 1. Since
�Q
e
_bð�kÞ � 0, we have

P2 _b�kð�kÞ � �F _b�k∑
r
_b�k�1¼1γ _b�k _b�k�1ð�k� 1ÞP2 _b�k�1ð�k� 1Þ�FT_b�k þ �Q _b�k

h i�1
þ �H

T
_b�k
�R
�1
_b�k
�H _b�k

� ��1
(21)

The function Υ _bðP2Þ is defined to be Υ _bðP2Þ: ¼ �F _bP
2 �F T

_b
þ �Q _b

h i�1
þ �H

T
_b
�R
�1
_b
�H _b

� ��1
: (22)

From (21) and (22), P2 _b�kð�kÞ � Υ _b�k ∑r
_b�k�1¼1�γ _b�k _b�k�1ð�k� 1ÞP2 _b�k�1ð�k� 1Þ

� �
. Repeated iteration using

Lemma 2 derives P2 _b�kð�kÞ � ∑r
_b�k�1¼1 � � �∑

r
_b0¼1�γ _b�k _b�k�1ð�k� 1Þ � � ��γ _b1 _b0ð0ÞP2

�ð�kÞ (23)

where P2�ð�kÞ ¼ Υ _b�kðΥ _b�k�1ð� � �Υ _b1ðP2 _b0ð0ÞÞÞ � � �Þ (24)
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By analyzing (16) and (24), we see that P2 �ð�kÞ can be considered as the Kalman filter covariance of

the system(12)–(13) with �Fð�kÞ ¼ �F _b�k;
�Fð�k� 1Þ ¼ �F _b�k�1, and so on. Hence by the above Lemma 1,

where β _a is the positive scalar in a such way that Υ _b�kðΥ _b�k�1ð� � �Υ _b1ðP2 _b0ð0ÞÞÞ � � �Þ � β _aI (25)

where _a is the dependency on a given model sequence (the _a-th desirable realization of the

model sequence _b0; _b1; � � � ; _b�kÞ. From ∑r
_a¼1�γ _b _að�kÞ ¼ 1;" _b ¼ 1;2; � � � r : �k ¼ 0;1 � � � , we have

∑r
_b�k�1¼1 � � �∑

r
_b0¼1�γ _b�k _b�k�1ð�k� 1Þ � � � γ _b1 _b0ð0Þ ¼ 1 (26)

Thus, P2 _b�kð�kÞ � β1I where β1 ; minfβ1; β2; � � � βr
�kg.

2.3. An upper bound for P2 _bð�kÞ
From (7) the upper bound of the covariance P2 _bð�kÞ is derived where �K _bð�kÞ of the IMM algorithm is

given by �K _bð�kÞ ¼ P2 _bð�kj�k� 1Þ�HT
_b
�H _bP

2
_bð�kj�k� 1Þ�HT

_b þ �R _b

h i�1
. (27)

Furthermore, �K _bð�kÞ�R _b
�K
T
_bð�kÞ ¼ I� �K _bð�kÞ�H _b

� �
P2 _bð�kj�k� 1Þ�HT

_b
�K
T
_bð�kÞ. (28)

We get

P20
_bð
�kÞ ¼ ∑r

_a¼1�γ _b _að�kÞP2 _að�kÞ I� �K _að�kÞ�H _a
� �T þ∑r

_a¼1γ _b _að�kÞ _að�kÞ�H
T
_a
�K
T
_að�kÞ (29)

P20
_bð
�kÞ ¼ ∑r

_a¼1�γ _b _að�kÞf I� �K _að�kÞ�H _a
� �

�F _aP2
0
_að�k� 1Þ�FT_a þ �Q

e
_að�kÞ þ �Q _a

h i
½I� �K _að�kÞ�H _a�T þ �K _að�kÞ�R _a

�K
T
_að�kÞg:

We define a function χ _a;�kðP2; �KÞ :¼ ½I� �K�H _a�½�F _aP2 �F
T
_a þ �Q

e
_að�kÞ þ �Q _a�½I� �K�H _a�T þ �K�R _a

�KT. (30)

Hence P2 0
_b
ð�kÞ ¼ ∑r

_a¼1χ _a;�kð
0
_að�k� 1Þ;K

^

_að�kÞÞ (31)

Lemma 3. Suppose �γ _b _að�kÞ and �Q
e
_bð�kÞ, for �k>0; _a; _b ¼ 1;2 � � � ; r are given. Let �K

a
_bð�kÞ be an arbitrary

sequence of gains. Define a sequence �T
0
_bð�kÞ with �T

0
_bð0Þ as �T

0
_bð�kÞ ¼ ∑r

_a¼1X _a;�k
�T
0
_að�k� 1Þ; �Ka

_að�kÞ
	 


for

_b ¼ 1;2 � � � ; r. (32)

Let P20
_bð
�kÞ be the sequence given by (31) where �K

a
_að�kÞ be the sequence in (32), arbitrarily. But in

(31), �K_að�kÞ are the gains of the IMM algorithm given by (27). Then, if P20
_bð0Þ � �T

0
_bð0Þ, it follows that

P20
_bð�kÞ � �T

0
_bð�kÞ for all �k � 0.

Theorem 2. If the system (1)–(2) is uniformly controllable and uniformly observable, then,for all
_b ¼ 1;2 � � � ; r, P2 _bð�kÞ � β2I, where 0< β2 <1; �k � N:

Proof. Let �E _að�kÞ ¼ I� �K
a
_að�kÞ�H _a

h i
�F _a and

�G _að�kÞ ¼ �E _að�kÞ�F
�1
_a

�Q
e
_að�kÞ þ �Q _a

h i
�F
��T
_a
�E _að�kÞT þ �K

a
_að�kÞ�R _a

�K
a
_að�kÞ

�T. From (30) and (32), we have

�T
0
_bð�kÞ :¼ ∑

r

_a¼1
�γ _a�kf�E _að�kÞ�T

0
_að�k� 1Þ�E _að�kÞ

�T þ �G _að�kÞg (33)

By iterations, we have (with a change in the subscript notations)

�T
0
_b�kþ1ð�kÞ ¼ ∑

r

_b�k¼1
� � � ∑

r

_b1¼1
�γ _b�kþ1 _b�kð�kÞ � � ��γ _b2 _b1ð1Þ½�E _b�kð�kÞ � � � �E _b1ð1Þ�T

0
_b1ð0Þ�E _b1ð1Þ

�T � � � �E _b�kð�kÞ
�T

þ∑
�k
s¼2

�E _a�kð�kÞ � � � �E _asðsÞ�G _as�1ðs� 1Þ�E _asðsÞ
�T � � � �E _a�kð�kÞ

�T þ �G _a�kð�kÞ�:

Using �Eð�kÞ�Eð�k� 1Þ � � � �Eð�k0Þ
�� �� � c0ς

�k��k0
0 , c0 >0;0 � �0 � 1 and considering
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�Fð�kÞ ¼ �F _b�k,
�Kð�kÞ ¼ �K _b�k, etc there exists gains �K

a
_b�kð�kÞ such that

�E _b�kð�kÞ�E _b�k�1ð�k� 1Þ � � � �E _b�k0ð�k0Þ
�� �� � c0ς

�k��k0, "�k � �k0>0; c0>0; ς0 <1. (34)

By taking 2–norm on (33), and utilizing ∑r
_a¼1�γ _b _að�kÞ ¼ 1;" _b ¼ 1;2; � � � ; �k ¼ 0;1 � � � and (34), we see

that �T
0
_b�kþ1ð�kÞ

��� ��� � ∑
�k
s¼1c1ς

s
0 < c2 <1 for all �k � 0. Hence �T

0
_bð�kÞ is uniformly bounded from above, i.e.,

�T
0
_bð�kÞ � c2I. From Lemma 3, it follows that P20

_bð
�kÞ � �T

0
_bð�kÞ � c2I. Then, from (29) and (9) we see that

P2 _bð�kÞ is uniformly bounded from above.

Algorithm 1 Finding Lower bound and Upper bound for P2 _bð�kÞ

1: procedure CONSTRUCTION OF LOWERBOUND AND UPPERBOUND

Input: _̆̂ _b0ð�k� 1Þ,P2 _b0ð�k� 1Þ; �F; �H; �Q; �R
Output: _̆̂ ð�kÞ; P2ðkÞ; lw;up

lw lower bound, up Upper bound, _̆̂ _bð�kÞ  Updated state vector,
�K _bð�kÞ  Filter Gain, P2 _bð�kj�k� 1Þ  Predicted state covariance, P2 _bð�kÞ  Updated state
covariance.

2: for _b ¼ 1 to Monte carlo simulations do

3: for �k ¼ 1 to end of samples do

4: if �k ¼ 1 then

Start Filter initialisation

Initialise values for initial state vector

Initialise values for state covariance matrix

5: else

6: if �k>3 then

Each filter do prediction,updation
_̆̂
_bð�kÞ  �F _b

_̆̂
_b0ð�k� 1Þ þ �K _bð�kÞυ _bð�kÞ

�K _bð�kÞ P2 _bð�kj�k� 1Þ�CT
^

_b
�S
�1
_b ð�kÞ

P2 _bð�kj�k� 1Þ  �F _bP
2
_b0ð�k� 1Þ�FT

^

_b þ �Q _b

P2 _bð�kÞ  P2 _b
�1ð�kj�k� 1Þ þ �H

T
^

_b
�R
�1
_b
�H _b

" #�1

lw Υ _b�k ∑r
_b�k�1¼1�γ _b�k _b�k�1ð�k� 1Þ _b�k�1ð�k� 1Þ

� �
up ∑r

_a¼1�γ _a;�kf�E _að�kÞ�T
0
_að�k� 1Þ�E _að�kÞ

�T þ �G _að�kÞ

check for lw � P2 _bð�kÞ and up � P2 _bð�kÞ
7: end if

8: end if

9: end for

10: end for

return lw and up

11: end procedure

3. Tracking in three dimensional space
Let us assume that the measurement range, azimuth, and elevation are in spherical coordinates
<;Ψ; #ð Þ.The following equations are used to transform the measurements to Cartesian coordinates

xmð�kÞ ¼ <mð�kÞ cosΨmð�kÞ cos#mð�kÞ;
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ymð�kÞ ¼ <mð�kÞ cosΨmð�kÞ sin#mð�kÞ;

zmð�kÞ ¼ <mð�kÞ sinΨmð�kÞ:

Due to these transformations, the elements of measurement noise covariance in the Cartesian
coordinates become correlated. The elements in noise covariance matrix can be updated using the
following relations

r11 ¼ ς2r cos
2 Ψ2

mð�kÞ þ <2
mð�kÞ 	 ς2Ψ sinΨ2

mð�kÞ cos#2
mð�kÞ þ ς2# cosΨ

2
mð�kÞ sin#2

mð�kÞ
h i

;

r22 ¼ ς2r cosΨ
2
mð�kÞ sin#2

mð�kÞ þ <2
mð�kÞ 	 ς2Ψ sinΨ2

mð�kÞ sin#2
mð�kÞ þ ς2# cosΨ

2
mð�kÞ cos#2

mð�kÞ
h i

;

r33 ¼ ς2r sin#
2
mð�kÞ þ <2

mð�kÞς2Ψ cosΨ2
mð�kÞ;

r12 ¼ r21 ¼
1
2

ς2r cos#
2
mð�kÞ sin 2#mð�kÞ þ <2

mð�kÞ ς2Ψ sinΨ2
mð�kÞ sin 2#mð�kÞ

h in o
;

r13 ¼ r31 ¼
1
2

ς2r sin 2Ψmð�kÞ cos#mð�kÞ � <2
mð�kÞς2Ψ sin 2Ψmð�kÞ cos#mð�kÞ

� 

;

r23 ¼ r32 ¼
1
2

ς2r sin 2Ψmð�kÞ sin#mð�kÞ � <2
mð�kÞς2Ψ sin 2Ψmð�kÞ sin#mð�kÞ

� 

where ς2r ; ς

2
# and ς2Ψ denote the variances of the measurements noise in r; # and Ψ dimensions,

respectively.

3.1. Acceleration model
Let us define the acceleration model as

Xacð�kþ 1Þ ¼ F acXacð�kÞ þ ωacð�kÞ;

Zacð�kþ 1Þ ¼ HacXacð�kÞ þ υacð�kþ 1Þ:

Also Hac ¼
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

2
4

3
5 is the measurement matrix, where Zac ¼

Mx My Mz
� �T and Mx;My and Mz are measurements of position in x,y, and z dimension

(Mehrotra & Mahapatra, 1997).

The state transition and noise covariance matrices for the acceleration model are

F ac ¼

ϕac 0 0
0 ϕac 0
0 0 ϕac

2
664

3
775 and Qac ¼ 2ασ2ac

ςac 0 0
0 ςac 0
0 0 ςac

2
664

3
775

where

ϕac ¼
1 T T 2 0
0 1 T 0
0 0 1 0
0 0 0 0

2
664

3
775 ςac ¼

T 5=5 T 4=4 T 3=3 0
T 4=4 T 3=3 T 2=2 0
T 3=3 T 2=2 T 0
0 0 0 0

2
664

3
775:
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3.1.1. Derivation of Hac

Calculation of the Jacobian measurement matrix Hac is obtained by

Hac ¼ J H
^

ij

	 

¼ @Zac i

@˘j
j˘¼Xð�kþ1Þ

¼

@Z1
@x

@Z1
@ _x

@Z1
@€x

@Z1
@y

@Z1
@ _y

@Z1
@ _y

@Z1
@z

@Z1
@ _z

@Z1
@€z

@Z2
@x

@Z2
@ _x

@Z2
@€x

@Z2
@y

@Z2
@ _y

@Z2
@ _y

@Z2
@z

@Z2
@ _z

@Z2
@€z

@Z3
@x

@Z3
@ _x

@Z3
@€x

@Z3
@y

@Z3
@ _y

@Z3
@ _y

@Z3
@z

@Z3
@ _z

@Z3
@€z

2
6664

3
7775

where i ¼ 1;2 � � � is the length of the measurement vector Zac and j ¼ 1;2 � � � length of the state
vector Xac

3.2. Jerk model
Let us define the jerk model as

X je ð�kþ 1Þ ¼ F jeX jeð�kÞ þ ωjeð�kÞ

and

Zje ð�kþ 1Þ ¼ HjeX je ð�kÞÞ þ υjeð�kþ 1Þ:

where u1je ;u2je ; � � �are the driving measurement noise for the jerk model.

Also, from the above model Hje ¼
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0

2
4

3
5 is the measurement

matrix and Z je ¼ Mx My Mz
� �T where Mx;My and Mz are measurements of position in x,y, and z

dimension (Mehrotra & Mahapatra, 1997).

For the jerk model, we illustrate F je as the state transition matrix and Qje as noise covariance
matrix such as

F je ¼

ϕje 0 0
0 ϕje 0
0 0 ϕje

2
664

3
775 and Qje ¼ 2ασ2je

ςje 0 0
0 ςje 0
0 0 ςje

2
664

3
775

where

ϕje ¼

1 T T 2=2 T 3=6
0 1 T T 2=2
0 0 1 T
0 0 0 1

2
66664

3
77775 ςje ¼

T 7=252 T 6=72 T 5=30 T 4=24
T 6=72 T 5=20 T 4=8 T 3=6
T 5=30 T 4=8 T 3=3 T 2=2
T 4=24 T 3=6 T 2=2 T

2
66664

3
77775:

4. Wind turbine
One of the major components in any wind turbines is the gearbox as shown in the Figure 1.
The fault signals of the gearbox are commonly non-stationary and extremely polluted with
noise. To validate the gearbox fault diagnosis approach, vibration signals collected from a
real wind turbine gearbox are analyzed. The experimental vibration data are collected from
the defective gearbox of wind turbine under test. This enables in the determination of the key
factor for the defective gear box and to develop the monitoring strategies. Accelerometers
mounted on 12 locations exterior of the gearbox, generator, and main bearing collected the
vibration acceleration with 40 kHz sampling rate. The 3–D coordinate system describes the
direction of the drivetrain vibration acceleration and is observed by accelerometers. Figure 2
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illustrates the vibration acceleration coordinate system. The point of intersection of plane
and the planet-carrier rotation dividing the torque arm cylinder midway along their length is
the origin of the coordinate system. The x axis describes the acceleration of the system along
the main shaft axis and the downwind side, with the y–axis reflecting the direction of
vibration acceleration, horizontally perpendicular to the x–axis. The x,y and z–axis are ortho-
gonal to each other. Although the vibration acceleration of the system is depicted by a 3-D
coordinate system, the mounted accelerometers can only sense a maximum of two accel-
eration directions. Investigation of the failed components and determination of the root
causes of failure are performed by the time and frequency-domain analysis of the vibration
acceleration data. Conversion of the vibration, the high-frequency jerk data (40kHz), into
much lower frequency data 1

15Hz
� �

is achieved by the computation of the value of mean
jerk at 15s intervals along with the standard deviation and the maximum value of the jerk

data. The chosen sampling frequency of 1
15Hz, reduces the data size for ease in time-domain

analysis.

Figure 1. Structure of gearbox.

Figure 2. Coordinate system of
of vibration acceleration.
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5. Data simulation, results, and discussion

5.1. Case 1
The maneuvering target motion trajectory has been simulated using CA, CJ models for a period
of 250s with sampling time T as 1sec. The motion of the target begins at 0;0;100ð Þ with a
constant velocity of 100 m/s and 10 m/s along the x-and y-axes. A step jerk of 0.009m/s3 is
applied along the x-axis at 50s and −0.009m/s3 is applied along z–axis at 125s, resulting in a 1.
cubic position 2 parabola velocity, and 3.ramp acceleration variation. The following variances
are added to the range, azimuth, and elevation of the random noises to generate noise
measurement data.

Range ðςrÞ2 : 2:14e� 1m2:

Azimuthðς#Þ2 : 2e� 1� rad2:

ElevationðςΨÞ2 : 2e� 1� rad2.

Both models have a correlation factor α that is chosen as 0.006 to maintain a degree of
analytical similarity.Correlation of the target acceleration model is a requirement for acceleration
model, while the jerk model has the target jerk correlated. The acceleration model has its process

noise variance Qac ¼ 2ασ2ac ; with σac ¼ 1:8m=s2 where as for the jerk model, process noise variance

Qje ¼ 2ασ2je , with σje ¼ 0:009m=s3 are used. The simulated trajectory of position,velocity,accelera-

tion and jerk along x,y,z axes is shown in Figure 3. The average of 75 Monte Carlo simulations was
utilized to analyze the performances of both the models. Figure 4 depicts the estimated and true

trajectories. Figure 5(a) shows upper and lower bounds of covariance P2 _bð�kÞ for average from 75

Monte Carlo simulations. Here, lower bounds of the error covariance are relatively equal to
covariance which are admissible than their theoretical bounds. Similarly, Figure 5(b) shows the
position of x,y and z states covariance plotted with their upper and lower bounds (average from 75
Monte Carlo simulations). From Figure 5(a), it shows that the error covariance lies within upper and
lower bound limits, which imply that the algorithm used for tracking is stable. The magnitudes of
the bounds are relatively unpretentious with the abetment of Equation (21).
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Figure 3. Trajectory of x,y and z
axis.
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5.2. Case 2
The jerk data are measured by the sensors AN9, which is located in high speed shaft downwind
bearing radial with acceleration direction in the positive direction of the Z axis with the period of
10-min test. The initial state starts at jerk (0, 0, 3.55) which is measured by AN9 from Figure 3 in (Li
& Jilkov, 2010). All through the test experiment, there is a progressive increase in the change of
vibration. Generation of noisy measurement data is done by the addition of random noises with
the following variances to the range, azimuth, and elevation given by

Range ðςrÞ2 : 2:25e� 1m2;

Azimuth ðς#Þ2 : 2e� 4� rad2;
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0 50 100 150 200 250
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3000
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Figure 4. Estimated and true
trajectory of x,y and z axis
states.
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Elevation ðςΨÞ2 : 2e� 4� rad2.

As in the prior case, correlation factor α is chosen as 0.006 for the models. Process noise variance

of Qac ¼ 2ασ2ac ; σac ¼ 1:5m=s2 is used for acceleration model while the jerk model, a process noise

variance of Qje ¼ 2ασ2je ; σje ¼ 0:0015m=s3 is used. Figure 6 depicts the estimated and true trajec-

tories. Figure 7(a) shows upper and lower bounds of covariance P2 _bð�kÞ for average from 75 Monte

Carlo simulations. Here, lower bounds of the error covariance are relatively equal to covariance
which are admissible than their theoretical bounds. Similarly, Figure 7(b) shows the position of the
x,y, and z states covariance plotted with their upper and lower bounds (average from 75 Monte
Carlo simulations). The bound magnitudes are relatively unpretentious with the abetment of
Equations (21) and (33).

Figure 6. Estimated and true of
x,y and z axis states.

Figure 7. (a) Comparison of
Upper and Lower bounds of the
state error covariance 4.
(b) Comparison of Upper and
Lower bounds of x,y,z axes
position
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6. Summary and conclusions
A two-model IMM Kalman filter algorithm with constant acceleration and constant jerk is carried out
in tracking maneuvering target in aircraft. The boundedness of Riccati equation is analyzed by
determining the upper and lower bounds of state error covariance, which helps to decide the
stability of the algorithm. The performance of the IMMKF algorithm is also evaluated for tracking
the vibration obtained from the wind turbine gearbox. This helps us to diagnose the fault in the
gearbox of wind turbine. Finding the upper bound and lower bound of the state error covariance is
more effective in identifying the fault diagnosis. The proposed work can be extended by investigating
various applications using extended or unscented Kalman filter. In addition, the algorithm can be
modified for tracking of multiple objects through the properties of Riccati difference equation.
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