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Abstract: Existing bio-inspired models are challenged with premature convergence
among others. In this paper, an adaptive social spider colony optimisationmodel based
on the foraging behaviour of social spider was proposed as an optimisation problem.
The algorithm mimics the prey capture behaviour of the social spider in which, the
spider senses the presence of the prey through vibrations transmitted along the web
thread. Spiders are the search agents while the web is the search space of the
optimisation problem. The natural or biological phenomenon of vibration wasmodeled
usingwave theorywhile optimisation theorywas considered in optimizing the objective
function of the optimisation problem. This objective function was considered to be the
frequency of vibration of the spiders and the prey as this is the function that enables
the spider differentiates the vibration of the prey from that of neighbouring spiders and
therefore forages maximally. To address the parameter tuning problem, the search
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patternwas controlled by the position of the prey for convergence. The proposedmodel
was tested for convergence using several benchmark functions with different charac-
teristics to evaluate its performance and results compared to an existing state of the
arts’ spider algorithm. Results showed that the proposed model performed better by
searching the optimum solution of the benchmark functions used to test the model.

Subjects: Algorithms & Complexity; Computing & IT Security; Computer Science; General

Keywords: bio-inspired; optimisation; social spider; self-evolving

1. Introduction
Bio-inspired solutions are innovations inspired by nature or biology. Considering early researchers like
Plato, Isaac Newton etc., whose findings were based on a natural phenomenon like air, water, fire,
rainbow and gravitational force, every innovation in life can be traced back to nature. According to
Benyus (2002), “bio-inspired solutions revolutionize how we invent, compute, heal ourselves, harness
energy, repair the environment and feed the world”. Bio-inspired innovators are driven by how nature
solves every problem encountered in life. Furthermore, Forbes (2000) defined a bio-inspired solution
as “the use of biology or biological process as means, inspiration, or enabler in developing new
computing technologies and new areas of computer science and equally the use of information
science concept and tools to explore biology from a different theoretical perspective”.

Swarm intelligence is one of such solutions. It imitates natural way to solve a problem. It is
a branch of artificial intelligence that deals with the cooperative behaviour of swarms of animals or
insects that interact in a multifaceted way between individuals with no supervision or central
controller. Such swarms include termites, bees, spiders whose colonies consist of the male, female,
soldiers and foragers as the case may be. Each colony member performs well-defined duties such
as reproduction, foraging, maintenance of the nest among others without a central controller. For
instance, ants forage by tracing the shortest path to food source through simple pheromone trail
and cooperatively builds and maintains the ant hill, honey bees perform marriage and forages
through attractive waggle dance, fireflies mate through light attraction while spiders forage and
mate through the exchange of vibration cues among others.

Bio-inspired optimisation solutions have some advantages such as scalability, fault tolerance,
adaptation, speed, modularity, autonomy, and parallelism which makes them perform better as
compared to the conventional solutions in many problem-solving approaches (Cuevas, Cienfuegos,
Zaldívar, & Pérez-Cisneros, 2013). However, according to Yang (2012a), these algorithms have
several limitations such as algorithm framework, optimal balance between exploration and exploi-
tation, best performance measures, implications of free lunches as to how to find the best
algorithm(s), automatic parameter tuning among others. Therefore, there is still room to improve
on them by researching more on nature so as to develop a self-evolving algorithm that can
automatically tune its behaviour to solve complex problems (Yang, 2014a).

Thus, this paper developed an optimisation model that mimics the foraging behaviour of the
social spider called the Adaptive Social Spider Colony Optimisation (ASSCO) model for global
optimisation with the view to provide a search pattern that is self-evolving with fast convergence
while maintaining the explorative and exploitative capabilities of the optimisation solution.

The remaining part of the paper is organised as follows: section two gives a brief review of
related works, section three describes the materials and methodology employed, section four gives
a detailed analysis of results obtained from simulation and section five is the conclusion and future
research areas opened up.
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2. Related works
The bio-inspired family of techniques, that studies and emulates the behaviour of social animals as
they collectively organize their nest, seek for the shortest paths to food sources from their nest for
optimal foraging, or move from one place to another as an organised group to solve complex tasks
are referred to as swarm intelligence. Such behaviour includes: waggle dances recruitment in bees,
which results in optimal foraging, simple pheromone trail by ant as a result of seeking the shortest
path to food source from the nest, flocking of birds and schooling of fish with collision avoidance,
abiotic and biotic pollination of flowers as means of reproduction and monitoring of the spider web
through information transmitted by vibration cues for foraging by social Spiders which is our focus.

While some spiders exhibit some form of aggressive behaviour towards one another as they
forage, others exhibit some form of social behaviour (Maxence, Carly, Allen, & Avile´S, 2010; Yip &
Eric, 2008). Therefore, in terms of foraging spiders are classified as solitary foragers, communal-
territorial foragers and communal non-territorial foragers. Solitary foragers spin non-overlapping
webs, they are aggressive, intolerant and cannibalistic during prey capture and feeding (Pekar,
Hruskova, & Lubin, 2005). While communal-territorial foragers build individual webs, but these
webs are connected together via web support thread (Greta & Rypstra, 1992), and communal non-
territorial spiders spin a common web, attack, feed on prey and maintain the web cooperatively
with little or no aggression to other group members (Craig, 1991).

Several bio-inspired models have been developed over the years, they include: those based on
collective behaviour of swarm such as the Particle Swarm Optimization (PSO) algorithm inspired by
the social behaviour of flocks of birds and school of fish in attempt to accomplish a task (Kennedy
& Eberhart, 1995), the Ant Algorithm (Colorni, Dorigo, & Maniezzo, 1991; Dorigo, Maniezzo, &
Alberto, 1996; Dorigo, Maniezzo, & Colorni, 1991; Marco & Alberto, 1996) and its variants (Sudip,
Mohammad, & Prabhat, 2016), inspired by the foraging behaviour of ants, in attempt to find the
shortest path from nest to food resulting in cooperative foraging, Bat Algorithm (BA) based on
echolocation of micro-bats (Yang, 2010), Grey wolf algorithm based on hunting behaviour of Grey
wolf (Mirjalili, Mirjalili, & Lewis, 2014), social spider algorithms based on the mating behaviour of
spiders (Cuevas & Cienfuegos, 2014; Cuevas et al., 2013) and the foraging behaviour of social
spiders (James & Victor, 2015), cuckoo search algorithm based on the parasitic behaviour of
cuckoo birds (Yang, 2014b), and the firefly algorithm based on light attraction produced to attract
mating partners by the opposite sex, potential prey and for protective warning against predators.
Others are based on the behaviour of honey bees such as marriage in honey bees (Abbass, 2001),
mating behaviour (Afshar, Haddad, Marino, & Adams, 2007) and foraging (Karaboga, 2005; Kumar
& Kumar, 2013) which inspired the development of bee algorithms. Furthermore, the flower
algorithm based on the study of abiotic (that is, a pollination that requires a pollinator such as
insect to transfer the pollen grain) and biotic pollination (a pollination that requires no pollinator,
but the pollen grains are carried by wind) of flowers was developed by (Yang, 2012b),

In recent times, these Algorithms with little modification have been employed to address some
real-life problems. For instance, the variants of Ant and Particle swarm Algorithms were used to
design a scheduler for shop job assignment (Ulrich & Gunther, 2016; Zhang, Qin, Meng, Wang, &
Zhu, 2016), also, the variants of Spider and firefly Algorithms were used to solve economic and
power dispatch problem (Elsayed, Hegazy, Bendary, & El-Bages, 2016; Sulaiman, Daniyal, &
Mustafa, 2012) clustering of dataset (Zhou, Zhou, Luo, & Abdel-Basset, 2017) and scheduling
assembly flow shop problem (Zhang & Xing, 2018) among others.

Meanwhile, most of these algorithms mimic unquantifiable parameters such as pheromone trail,
waggle dance among other and they are tuned with user-defined or unpredictable parameters
(Sangita, Samir, & Sheli, 2014) for convergence. In lieu of this, to achieve success in nature’s way of
mimicking computing process there is a need to be mindful of the way the computer works by
transmission of signals using time domain or frequency domain which are quantifiable
parameters.
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Therefore, the adaptive social spider colony optimisation model (ASSCO) developed in this paper
did not only employ a self-evolving search pattern it also used quantifiable parameters such as
frequency composition of the wave signal generated by the spiders and prey vibration to represent
the objective function. ASSCO was modelled using a sinusoidal wave theory alongside the optimi-
sation theory. It is well known that all waves can be expressed using several combinations of
sinusoids by performing Fourier analysis on them. Hence, this study can easily be employed to
develop real-life computing solutions.

Figure 1. Vibrations generated
by prey and spider at source
positions.
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3. Materials and method

3.1. Biological entity
In this paper, the biological concept mimicked is the foraging behaviour of social spiders as they
communicate through vibration cues for optimal foraging on the web. Therefore, the biological
entity is social spider. The social spiders considered in this work are cooperative web-building
spiders. These spiders communicate through vibration signal transmitted on the spider web either
to transmit information between individuals in the colony or to sense the presence of a prey on the
web. Spiders use several methods to capture prey, ranging from actively pursuing the prey to
cautiously following the prey, sitting-and-waiting to ambush and sometimes even prey attraction
and aggressive mimicry (Uetz, 1992). However, most of them depend on the vibration cue. Spiders
are known to differentiate between the vibration from prey and that of a neighbouring spider with
all sense of alertness no matter how small the impact of the vibration is. Therefore, Social spider
foraging is aimed at determining the position of prey through the vibration generated along the
web by the captured prey.

3.2. Theories employed
The theories employed are the optimisation and wave theories. The spiders communicate through
vibration signals transmitted along the web thread to accomplish this task. The spiders are the
search agents while the web is the search space of the optimisation problem. The Spiders’ ability to
differentiate between prey-produced vibrations from vibrations produced by other spiders with
high a sense of accuracy is believed in this work to be as a result of the frequency of vibration (i.e.
the amount of oscillation per unit time) of the web by the prey. As the trapped prey tries to escape,
it vibrates the web more frequently at a fixed position than the spider while moving on the web.
This is because the spiders are cautious while moving on the web so as to detect correctly when
prey is caught on the web. This accuracy of detection is represented in this work as the difference
in frequency composition of vibration (signal) of the prey to that of neighbouring spiders sensed by
the spiders on the web threads (links). These signals are described by a function V which is the
vibration cue as shown in Figure 1.

Figure 2. Model Test Functions.
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ASSCO differs majorly from existing spider algorithm as it modeled the vibration cue V using
a simplified wave transmission model with prey as a source of the wave, producing a signal that
propagates through the web to the spiders as the search agents. This signal is characterised by the
frequency composition of the wave. It also models a search pattern that is tuned by the position of
the prey to locate the global optimum of the optimisation benchmark functions. This was done by
positioning the prey at the optimum solutions of the benchmark functions and performing the
search with respect to the position of individual spiders as well as that of the prey on the web.

The aim of using the wave theory is for ease of application to the real-world problems as
computers also propagates signals and all wave signals as earlier stated can be represented by
combination of sinusoids through Fourier transform. Accordingly, the search pattern was designed
in this way so as to explore and exploit the search space. Exploration here refers to the ability of
the search agent to search as much as possible a very wide area of the search space by exploiting
(that is movement with respect to neighbouring spider’s position on the web) the positions of the
spiders and prey.

The proposed algorithm was tested for convergence using several standard unconstrained
optimisation benchmark functions with diverse properties in other to be unbiased in the results
obtained (Momin & Xin-She, 2013). Parameter sensitivity test was also carried out to select the
best parameter value for the test. Unimodal functions were used to test for exploitation and

Figure 3. Model Test Functions
Cont’d.

Figure 4. Model Test Functions
Cont’d.
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multimodal for exploration. A Wilcoxon rank sum test was also carried out on the results obtained
to ascertain their statistical significance.

The results obtained showed that ASSCO was able to locate the best solutions for both unimodal
and multimodal functions, which reveals a good exploration and exploitation capability of the
ASSCO model.

4. Model design

4.1. Design of the objective function
As an optimisation problem, the objective function needs to be defined. The objective function of
an optimisation problem consists of values that form the solution space of the optimisation
problem. In this work it represents the ability of the spider to perform the task of prey capture
maximally, therefore prey capture success is dependent on this function. In this research, the
frequency of vibration (that is, the number of oscillations per unit time) is the factor that differ-
entiates the spider’s vibration from that of the prey, it enables a spider to react to the prey in
a different way from a neighbouring spider on a web. Therefore, the frequency represented as f1;t is

proportional to the fitness value (solution quality) of the objective function to be optimised f xi;t
� �

.

Hence, the frequency of vibration is represented as follows:

f1;t ¼
f xi;t
� �� fmin

� �
ðfmax � fminÞ

� �
þ C (1)

Where:

f xi;t
� �

is the fitness value of the evaluated objective function with regards to the spider’s position
xi;t. Considering optimisation theory, the objective function is any of the standard benchmark
functions used to validate global optimisation problems presented in Figures 2, 3 and 4. The
variables fmax and fmin represents the maximum fitness and minimum fitness values of the entire
population obtained by evaluating the objective function with regards to the spider’s positions.
These frequencies are defined also considering optimisation as:

fmax ¼ max
j ¼ 1; 2; . . .n

f xj
� �� �

(2a)

and

fmin ¼ min
j ¼ 1; 2; . . .n

f xj
� �� �

(2b)

C is the proportionality constant defined as a small exponential decay function for the prey
because the frequency fades or decreases with time (that is, the frequency at which the prey
vibrates the web as soon as it is caught is at maximum and fades with time as it gets tired or gets
incapacitated by the spider), and for the spider, the value increases as it approaches the prey and
becomes equal to that of the prey (that is, the frequency of the spider increases as it approaches
the prey and at the point of the global position which is the position of the prey, it equals the
frequency of the prey. This is because at that point the spider in an attempt to incapacitate the
prey vibrates the web more than when it moves cautiously to get the prey).

4.2. Information sharing between the spider and the prey on the web
Information is propagated through the web via vibrations. Therefore, this work modelled the
information communication between the prey and the spider using wave theory. Vibration trans-
mit information about the source of vibration such as frequency and position to the receiver or
individual perceiving it. The vibration of the web by the prey and spiders was observed to be
periodic and at a point source, likened to a sinusoidal wave (signal). Therefore, this is represented

Otor et al., Cogent Engineering (2019), 6: 1588681
https://doi.org/10.1080/23311916.2019.1588681

Page 8 of 18



in this work as the displacement of a sinusoidal wave, another theory upon which this work is
based. Hence, the vibration at source positions at amplitude A by individuals (spiders and prey) on
the web Vk¼1;...;n; with n being the total number of individuals on the web is proportional to the
displacement of a sinusoidal wave. It is represented as:

Vk ¼ A � sinfk;tα; (3)

Where α is a constant representing the unit time in seconds and k 2 i;pf g, with i denoting the
spiders; p the prey and fk;t the frequency of vibration.

Furthermore, the individuals closer to the vibration source perceive a higher vibration than those
located far away based on distance (the closer the more the effect of vibration felt because of
attenuation). This means that the strength of vibration decreases with distance. To take care of the
attenuation, the distance Ri;j between the individual xi that perceive a vibration generated by an
individual xj is represented by the Euclidean distance between them as;

Ri;j ¼ xi � xj (4)

" xi; xj 2 R

In this research, we assumed that the vibration generated by spiders can be felt by neigh-
bouring spiders and that generated by the prey can be perceived by spiders only. This is to
take care of exploration and exploitation of the search space to avoid premature conver-
gence. Therefore, considering attenuation due to distance the vibration is further recalculated
as follows:

(i) Information communication (in form of vibration) between spiders on the web: The spider i
can perceive the vibration generated by the spider j as follows: the vibration Vi;j perceived by

spider i at position ðxiÞ from spider j transmitting information to spider i at position ðxjÞ
considering j as the individual closest to i and has a higher frequency Fbest than
i ðthat is fj > fiÞ with displacement Vj is given by:

Vi:j ¼ Vj:e
�R2i;j (5)

Where:

R2i;j is the Euclidean distance between spider i and j

(ii) Information communication (in form of vibrations) between the prey and spiders: The vibration
Vp;i perceived by the spiders i ¼ 1; 2; . . .n at positions xi21;2;...n with n being the spiders popula-

tion, as a result of information transmitted by the prey p, with the prey having the best frequency
Ftar in the entire population of spiders and preys with displacement Vp is given by:

Vp;i ¼ Vp:e
�R2p;i (6)

Where:

Rp:i is the Euclidean distance between the prey p and spider i

4.3. Movement of the spider towards the prey
Once the spider perceives the vibration from the prey, it moves towards the prey to attack the prey.
This movement is modelled considering how to do random walk in three ways to take care of
exploration and exploitation search as follows:
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(ii) The movement of the spiders with regards to vibration perceived by neighbouring spiders: The
spider also explores the search space by moving towards the nearest member Vi;j, with the
highest frequency Fbest in the entire spider population who therefore produce the highest
vibration among the population of spiders but less or equal to that of the prey Ftar as:

vi;j � xj � xi
� � � θ1 (7)

(ii) The movement of the spiders with regards to vibration perceived from the prey takes two
forms:

(a) The movement as the result of the closest spider to the prey which perceives the highest
vibration from the prey and therefore moves first towards the prey who is the fittest in the
entire population as:

vp;i � xp � xi
� � � θ1 (8)

(b) The spiders in the entire population also perform an exploitative change in position
towards the prey as a result of vibration vp;i perceived from the prey as:

vp;i � xj � xi
� � � θ1 (9)

This movement is further related based on the concept of random walk equation as the addition of
equations 7, 8, 9 and the initial position xi to generate the new position xiþ1 as follows:

xiþ1 ¼ xi þ vi;j � xj � xi
� � � θ1 þ vp;i � xj � xi

� � � θ1 þ vp;i � xp � xi
� � � θ1 (10)

where θ1 represents the angle of deflection of the prey from the spider calculated as
a rand 1;dð Þ � b with rand 1;dð Þ representing random number drawn from the set 1;d½ � (with d
representing the dimension of the search space) to control the randomness and step
size, a; b 2 0:1; 0:5f g

4.4. The optimisation solution search pattern
The position of the prey was fixed at the global optimum of the test functions to control the search
pattern. The search is represented in form of an algorithm. It consists of the following phases:

(i) The initialisation phase: at this phase, the population and positions of spiders were initialised
randomly and preys position was fixed at the optimum solution of the fitness function. Each
position of the spiders, a d-dimensional vector is the parameter values to be optimised and
they are distributed randomly between the lower x lð Þ bound and upper bound x uð Þ of the
optimisation fitness function represented by the following:

xi ¼ xi lð Þ þ rand 1;dð Þ � xi uð Þ � xi lð Þð Þ for i ¼ 1; 2; . . .n (11)

Where rand 1;dð Þ helps to distribute the positions randomly and d is the dimension of the search
space defined in the problem.

The objective function is also defined and its solution space consists of the upper and the lower
bound of the fitness function raise to the power of d. The initial fitness values (frequencies) are
then calculated and the value with the highest frequency among the spiders stored as Fbest (best
frequency) and that of the prey stored as Ftar (target frequency).

(ii) The iteration phase: in each iteration, all the spiders on the web are expected to change
positions from their initial positions to a new position and the fitness function is evaluated
at each iteration using equation 1. The vibration of every spider Si¼1;...n in the population is
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also evaluated using equation 3 to obtain the best vibration among the spiders with the

Input {population of spiders and prey, iteration number)

Output local_best_fitness, global_best_fitness, local_best_position, global_best_solution}

1. Initialize spiders, prey, spiderfitnessValues, preyfitnessValue, spiderFrequency and preyFrequency to zero

2. Generate the population of spiders S at random

for i = 1:totspidn

Si = lowerbound(i)+rand(upperbound(i)-lowerbound(i))

end for

3. Evaluate the fitness of spiders and prey positions using the fitness functions

While not maximum iteration

for i = 1:totspidn

sfit(i) = f xi;t
� �

end for

for i = 1:pn

pfit(i)= f ptð Þ

end for

4. Calculate the frequency of the spiders S
for i = 1:totspidn

fi;t ¼ f xi;tð Þ�fmin

fmax�fmin
þ C

end for

check the frequency and update Ftar and Fbest

5. Perform spider search
5.1 Calculate distance R between spider xiand xj , and prey P

for i = 1:totspidn

for j = 1:totspidn

Ri:j ¼ xi � xj

end for

end for

for k = 1:totspidn

Rk:p ¼ xk � p

end for

5.2 Prey generates vibration with respect to its frequency fp at time t as A�sin fp;tα
5.3 Spiders receive the vibration with spider position i being the closest to prey Vp;i ¼ Vp:e

�R2p;i

5.3 Spider generates vibration with respect to their frequencies fi at time tA�sin fi;tα
5.4 Neighbouring spiders receive this vibration with spider at position i closest to j, with i having a higher

frequency Fbest than j as Vi:j ¼ Vj:e
�R2i;j

5.5 Spider S performs random walk towards prey p as
xiþ1 ¼ xi þ vi;j � xj � xi

� �
: � θ1 þ vp;i � xj � xi

� �
: � θ1 þ vp;i � xp � xi

� �
: � θ1

end while
6. Stop if maximum iteration is reached and output best solution else goto step3
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Figure 5. Parameter test results
on f2, f11, f13 and f15.

Table 1. Simulation Settings for ASSCO and SSO Model

ASSCO SSO

Parameters Values Parameters Values

Number of Spiders 50 Number of spiders (NS) 50

Number of Prey 1 Female spiders (NF) 65–90% of NS

Maximum Iterations 2000 Male spiders (NM) NS-NF

Dimensions (d) 30 Dimensions (d) 30

Amplitude (A) 5,4 Maximum Iterations 2000

Unit time (α) 1 s PF 0.7

a 0.5

b 0.1
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position of the prey remaining constant as the prey does not change its position, it
vibrates at a fixed point (the global optimum). This tunes the search pattern towards
the global optimum. It proceeds as follows: The prey generate a vibration VP using
equation 3 which is received by all the spiders on the web according to their various
distances on the web as VP:i. The spiders upon receipt of the vibration move towards the
prey but not directly. They also generate vibration Vi using equation 3 in their various. The
vibrations generated by the spiders are received by neighbouring spiders as Vi:j. The spider

S upon receipt of the vibration from neighbouring spider updates it’s Fbest by selecting
the strongest vibration from the neighbouring spider closest to it if this vibration is higher
but not equal to VP:i. Else it maintains its Fbest. The spider then performs random walk
towards the strongest vibration perceived using equation 10. This loops until the max-
imum iteration is reached.

(iii) The stopping phase: This can be defined as the maximum iteration number reached. At
this stage, the algorithm outputs the best solution found at each iteration and the
global best solution found for the function. The algorithm is as presented in Code
Snippet 1.

Table 2. Minimisation Results of Validated Functions on ASSCO model vs. SSO model

Functions Best fitness values (ASSCO) Best fitness
values (SSO)

f1 4.9459e-56 4.7879e-04

f2 2.8197e-18 0.9825e+00

f3 0.0000e+00 6.0892e-10

f4 0.0000e+00 1.9207e-08

f5 0.0000e+00 1.1398e-10

f6 0.1800e+00 0.1800e+00

f7 0.0000e+00 33.4802e+00

f8 0.6681e+00 1.9666e+00

f9 3.6000e-03 1.4756e+00

f10 3.2000e-03 7.9234e+00

f11 1.9456e-24 0.8250e+00

f12 3.8337e-05 2.0804e-04

f13 4.4409e-16 1.1400e-02

f14 1.4998e-32 5.1040e-01

f15 4.1093e-07 0.2959e+00

f16 1.0000e+00 1.0000e+00

f17 0.0000e+00 9.0250e-12

f18 4.8325e-06 1.9000e-03

f19 −3.8708e+03 −3.8708e+03

f20 1.6400e-02 8.5100e-02

f21 2.3888e-295 2.7724e-11

f22 0.0000e+00 NAN

f23 −2.9996e+00 −2.2990e+00

f24 4.0000e-03 4.0634e-04

f25 1.6569e-10 1.8194e-10

Key: NAN = Not a Number.
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4.5. Model validation
The model was validated through simulation in MATLAB for convergence using the fitness func-
tions presented in Figures 5 and 6 to validate the exploration and exploitation capabilities of the
algorithm in an unbiased way. The functions which are 25 in number were compiled from (Cuevas

Figure 6. Minimisation curves
for ASSCO model vs. SSO model
tested on f2, f12, f10, f14, f11 and
f15.
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et al., 2013; Momin & Xin-She, 2013). Parameter sensitivity test was also carried out to investigate
the effect of the parameters on the performance of ASSCO.

Furthermore, a Wilcoxon’s rank sum test was carried out to ascertain the significance of results
obtained. The results obtained from the developed model was further validated against the results
of an existing Social Spider Optimisation (SSO) model by (Cuevas et al., 2013).

5. Results and discussions
Results obtained from the validation of the proposed model are presented as follows:

(i) Sensitivity Test:

The only parameter whose value was not taken from the model input data is the amplitude A of
the spider and the prey. The effect of A on the performance of ASSCO was investigated using
unimodal functions f2, f11 and multimodal functions f13, f15 defined in Figures 2, 3 and 4. In order
for A not to be too large the values were taken from the set A 2 1;2;3;4;5f g for both the spider
and prey. These values were investigated one at a time. While one was held constant the other
was changed for both prey and spider. The dimension was d ¼ 30 for all the functions, stopping
criteria was 2000 with population size of 50. It was observed that the combination of all other
values diverges the results of the test functions without converging except when the spiders
amplitude is held constant at 5 and that of the prey varies from 1 to 5. Therefore, the amplitude
of the prey was taken from A 2 1;2;3;4;5f g while that of the spider was held constant at A ¼ 5.

Table 3. P-values Obtained from Wilcoxon Rank Sum Test for ASSCO model vs. SSO model

Functions P-values (ASSCO vs. SSO)

f1 2.1837e-50

f2 0.0000e+00

f3 1.2931e-19

f4 1.5772e-13

f5 2.6692e-56

f6 3.5929e-07

f7 4.1001e-159

f8 0.0000e+00

f9 0.0000 + 00
f10 0.0000 + 00
f11 1.0736e-217
f12 6.0810e-01
f13 9.2218e-190
f14 0.0000e+00
f15 0.0000e+00
f16 5.3335e-73
f17 1.7661e-09
f18 6.9473e-15
f20 0.0000e+00
f21 1.4309e-11
f23 0.0000e+00
f24 9.9970e-01
f25 1.2723e-243
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The mean optimum values of the functions are plotted with dot and the second-order polynomial
regression curve is plotted with line as presented in Figure 5.

From Figure 5 it was observed from the fitness values obtained that ASSCO performs well for
both unimodal and multimodal function for the values used, however best results were obtained
when the amplitude of the preys vibration is at 4 and 5. This is believed to be as a result of the
vibration of the prey being approximately equal to that of the spider when the amplitudes are
approximately the same. Therefore, the values 5 and 4 were adopted at the amplitude of the
spider and prey respectively to test the model for convergence.

Code Snippet 1: The Adaptive Social Spider Colony Optimisation Algorithm

(2) Convergence test: The parameter settings in Table 1 and benchmark functions in Figures 2, 3
and 4, were used to test the model. Unimodal functions were used to test for exploitation
and multimodal for exploration. It was discovered that ASSCO model was able to locate
almost all the best solution of the functions in less than 200 iterations (that is shown when
the value on the iteration axis is equal to zero) than SSO model. The results also showed that
ASSCO was able to locate the best solutions for both unimodal and multimodal functions
than SSO which reveals a good exploration and exploitation capability of the ASSCO model.
Thus, ASSCO model has a better convergence, exploration and exploitation than the SSO
model. The mean results obtained are as presented in Table 2 and some of the graphs in
Figure 6.

(3) Wilcoxon Rank Sum Test Results: To confirm the significance of the results obtained in the
convergence test for ASSCO and SSO values, a Wilcoxon rank sum test, a non-parametric
statistical hypothesis test was also carried out on the values of the best solution obtained
from each function using a 5% significant level, a null hypothesis H0: X = Y . Where X = ASSCO
values and Y = SSO values and an alternate hypothesis which consider a significant difference
between the values of X and Y (H1 = Y > X). The P values obtained are as presented in Table 3.
The P values indicate that the results obtained from ASSCO are highly statistically significant
since they are less than 5% (that is less than the significant level set).

6. Conclusion
In this paper, a bio-inspired optimisation model inspired by the foraging behaviour of a social spider
was developed as global optimisation problem. This algorithm modelled this behaviour using optimi-
sation and wave theories to optimize the objective function and vibration transmitted between the
spiders and prey. The web served as the search space and the spiders the search agents of the
optimisation problem. In order to build a self-evolving search pattern, the position of the prey was
considered to be fixed at the global optimum of all the benchmark function to be optimised, while the
spider positions were distributed randomly between the upper and lower bound of the search space.
The spiders conduct themselves towards the prey guided by the vibrations of both the prey and
individual neighbouring spiders. To explore the space the spiders move with respect to one another’s
position while also exploiting the position of the prey to locate the global optimum solution of the
problem. This takes care of both exploration and exploitation and premature convergence. The
proposed model was tested using 25 benchmark functions with diverse characteristics so as to be
unbiased in the test for convergence and a Wilcoxon rank sum test was also conducted. Results
obtained were compared to existing Social Spider Optimisation (SSO) by [3]. Results showed that the
proposedmodel converged at less iteration than SSO whilemaintaining its explorative and exploitative
capabilities. It was also able to locate the global optimum of both unimodal and multimodal function
in fewer iterations.

6.1. Future recommendations
In future ASSCO search pattern can be improved by positioning preys not only at the global
minimum but at local minimum points of the objective function for better tuning and to locate
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all minimum points of the test functions. This can also enhance the application of ASSCO to
clustering considering these points as the cluster centroids. It can also be used to analyse signals
for signal processing in information transmission in a communication network.
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