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ABSTRACT
As a result of growing food demands, the area of land used globally for agriculture has rapidly increased
over the last 300 years. Clearance of natural vegetation and conversion of land to agriculture is often
associated with terrestrial carbon loss, from both vegetation and soil stores. Changes in terrestrial
carbon storage has implications for food production, climate and water regulation. Quantifying these
changes is therefore vital to understand the risks to and resilience of these benefits. Land use in the
East of England has significantly changed during this period and is now predominantly used for
agriculture, specifically arable use. In order to map changes to terrestrial carbon storage in this region
since 1700, we apply a plant–soil system biogeochemistry model, N14CP. The model indicates carbon
storage in the East of England has decreased by 109 Mt (−35.7%) during the study period, and whilst
losses are observed in both soil and vegetation stores, vegetation losses as a result of forest clearance
dominate. These findings have implications for carbon sequestration strategies; the largest carbon
storage gains within the region are likely to be achieved through land-use transitions such as
afforestation, rather than soil sequestration through changing arable management practices.
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Due to population growth and increasing food demands, agricultural land has expanded rapidly
over the last 300 years, resulting in the depletion of terrestrial organic carbon stores. In addition
to the loss of carbon stored within biomass through the clearance of natural vegetation, agricul-
tural land management practices have been noted to reduce soil organic carbon (Deng et al.,
2016). Terrestrial carbon stores are linked to a range of ecosystem services, notably climate regu-
lation, food production and water regulation (Adhikari & Hartemink, 2016). Therefore, loss of
carbon from these stores has significant implications for society, including food security issues,
increased flood/drought risk and the exacerbation of climate change. The importance of sustain-
able soil and land management for reducing environmental degradation has been recognized
both internationally (IPCC, 2019) and within the UK; the 25-year environment plan states
England’s soils must be managed sustainably by 2030. International carbon sequestration
initiatives such as ‘4 per mille’ (Minasny et al., 2017) acknowledge the climate mitigation poten-
tial of soils.

The East of England region covers an area of 19,150 km2, with the majority of land used for
agriculture (currently approximately 79%), partly due to its low-lying fertile soils and flat land-
scapes. Since 1700, the region has seen a significant expansion of agriculture, with arable and
improved grassland increasing by approximately 520% and 220%, respectively. The region
therefore presents an interesting and important case to investigate how terrestrial carbon storage
has changed due to agricultural expansion.

In this study we use plant–soil system biogeochemical model to estimate these changes. Pre-
vious studies have noted the need to integrate carbon, nitrogen and phosphorus (C, N, P)
cycling within these models due to linkages and interdependencies between the cycling of
these elements (Achat et al., 2016). Here we apply a novel model of C-N-P cycling,
N14CP, that includes representation of both natural and agricultural land uses and associated
land management options (Janes-Bassett et al., 2020), hence enabling the impacts of land-
use transitions on terrestrial carbon storage to be quantified. The N14CP model was applied
across the East of England using a 5 × 5 km grid. Regional application is feasible due to the
lack of site-specific calibration and use of readily available input data (for full details of the data-
sets used, see Janes-Bassett et al., 2021). We apply the N14CP model from the period 1700–
2020, enabling the impacts of anthropogenic changes on terrestrial carbon storage since before
the Industrial Revolution to be estimated across the region. The model was compared against
regional data; Natmap carbon and Countryside Survey data (Cranfield University, 2020; Henrys
et al., 2012) with average simulated topsoil carbon deviating by −1.96% to −17.76% (see the
supplemental data online).

The model output indicates an overall loss of total C within the region of 109 Mt (−35.7%)
(Figure 1(d)). This is made up of losses to soil C (14 Mt, −14.7%) and biomass stores (95 Mt,
−66%). However, as shown in Figure 1, there is significant spatial variation across the region,
with some areas indicating small gains in soil and/or vegetation C stores largely due to the type
of land-use change that has occurred. For example, Figure 1(a) indicates areas of arable expan-
sion broadly correspond to losses in soil C (Figure 1(b)). This is to be expected due to the
removal of C (through harvesting), reduced inputs into the soil system and adoption of tillage
practices (increasing decomposition rates and C loss). The variation in magnitude of soil C
losses across areas of arable expansion is due to prior land use; in 1700, this area was made
up of a mix of rough grassland, heath, fen marsh and forest (6%, 20%, 49% and 25% respect-
ively). The model indicates land that was heath prior to conversion shows the greatest C loss
over the study period, averaging −18 t C ha−1 compared with −5 t C ha−1 for other land
uses. This is due to the greater initial soil C stored in land classed as heath prior to conversion
(78 t C ha−1 in heath compared with 42–53 t C ha−1 in other land uses).

A small area of forest expansion during the 1900s (a result of the UK Forestry Act) corre-
sponds with increasing soil C as a result of increased litter inputs into the soil organic matter
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pool. The increased vegetation C in these areas is partly due to increasing tree growth as these
forests reach maturity, but also due to effects of atmospheric deposition of N resulting in an
increase of net primary productivity in these systems, which in turn increases litterfall and
soil organic matter (Tipping et al., 2017). The largest losses in vegetation C storage observed
in Figure 1(c) correspond with an area of forest that was cleared for arable land use, which
equates to a C loss of 134 Mt.

The results indicate that since 1700, the East of England is dominated by carbon losses
directly resulting from agricultural expansion. Whilst the N14CP model highlights significant
losses from soil organic carbon pools, the majority of carbon loss is due to the removal of natural
vegetation. This result contrasts with the net terrestrial carbon gain observed across the UK as a
whole during this period (Janes-Bassett et al., 2021). Regional assessments such as this, backed
by local or hyper-local modelling and associated graphical presentation, are therefore crucial to

Figure 1. Change in terrestrial organic carbon storage from 1700 to 2020 in the East of England as
simulated by the N14CP model.
Note: (a) Land-use change; (b) topsoil carbon change (kt); (c) vegetation carbon change (kt); and (d)
total terrestrial organic carbon change (kt). Line graphs show the distribution of data for 1700 and
2020.
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understand the spatial variation of terrestrial carbon storage, magnitude and direction of change
to date, and potential for sequestration. Such information is key to inform effective implemen-
tation of UK policies such as the commitment to plant up to 30,000 ha of trees per year by 2025
and meeting 2050 net zero emissions targets. Our results highlight the need to consider regional
suitability within national-scale policy. Within the East of England our analysis indicates the
largest gains in terrestrial carbon storage are likely to be achieved through land-use transitions
such as afforestation.
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