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ABSTRACT
A novel series of triazoloquinazolinone derivatives were designed, synthesised, and evaluated for their in
vitro biological activities against the SHP2 protein. Moreover, some compounds were evaluated against
A375 cells. The results revealed that target compounds possessed moderate to excellent inhibitory activity
against SHP2 protein, whereas compounds 12f, 12l, 12j, 17e, and 17f have strong antiproliferative activity
on A375 cells. The compound 12l showed remarkable cytotoxicity against A375 cells and a strong inhibi-
tory effect against SHP2 protein when compared with SHP244. The structure-activity relationships (SARs)
indicated that electron-donating groups (EDGs) on phenyl rings are beneficial for improving the antitumor
activity; compounds with a hydroxyl substituent at the 2-position of phenyl ring exhibited superior activ-
ities than compounds with a substituent at the 4-position. In addition, compound 12l displayed improved
physicochemical properties as well as metabolic stability compared to SHP244. Our efforts identified 12l
as a promising SHP2 protein inhibitor, warranting its further investigation.
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1. Introduction

Malignant tumours pose a serious threat to human health.
However, traditional chemotherapeutic agents are extremely lim-
ited in clinical application, given their poor selectivity and
immense potential for side effects. Therefore, it is critical to iden-
tify and develop novel targeted anti-tumour drugs based on
unique mechanisms of action, new targets, higher selectivity, and
fewer toxic side effects1–7.

The regulation of protein reversible phosphorylation is the
most extensive and universal regulatory process during cell signal
transduction, modulated by protein kinases and phosphatases.
Moreover, mechanisms underlying reversible phosphorylation
deregulation can result in several diseases, including inflammation
and tumors8–10. Among them, protein tyrosine kinases (PTKs) and
protein tyrosine phosphatases (PTPs) are involved in the regula-
tion of tyrosine phosphorylation and dephosphorylation, it was
once considered to play a positive and negative regulation of
tumour cell proliferation11–14. SHP2 is an important member of
the PTPs family and is encoded by the protein tyrosine phosphat-
ase non-receptor type 11 (PTPN11) gene. X-ray crystallographic
studies have revealed that SHP2 is self-inhibited in an inactive
state. However, when it was stimulated by growth factors, cyto-
kines, or inflammatory factors, it will be activated and participates
in diverse signal transduction cascades, leading to the occurrence
of a variety of diseases including tumors15–17. Reportedly, activa-
tion of SHP2 mutations can be closely associated with the onset

of Noonan syndrome, leopard spot syndrome, immature myelo-
monocytic leukaemia, melanoma, and solid cancer, et al18–20.
Accordingly, SHP2 could be used as an important target for anti-
tumour drug therapy, and it is significant to control the activity of
SHP2 for tumour treatment.

Based on distinct sites of action, SHP2 small molecule inhibitors
can be divided into two categories: catalytic site inhibitors and
allosteric site inhibitors21. Allosteric site inhibitors have attracted
widespread attention owing to their superior selectivity and bio-
availability. Three potential small molecule binding sites have
been identified in the coordination pocket of SHP2 allosteric
inhibitors, including the reported "tunnel" allosteric site A, the pre-
dicted "latch-up" allosteric site B at the PTP domain interface on
both sides of N-SH2, and the "groove" allosteric site C on the
other side of the protein, respectively. Allosteric site B is the latest
allosteric site of SHP2, and few studies on its inhibitors at home
and abroad. Hence, it is crucial to develop the targeted inhibitors
of allosteric site B. Recently, the development of allosteric site
inhibitors, including SHP836(1), SHP099(2), SHP389(3), SHP244(4),
SHP844(5), and SHP504(6), has gained considerable momentum
(Figure 1). Compounds 4, 5, and 6 were geared towards targeted
inhibitors of allosteric site B11,12,22–25, and compound 4 was devel-
oped by Novartis Pharmaceuticals in 2018. Given that the struc-
ture could be modified with a large space and few reports
available on compound 4, it affords great potential for in-depth
research. As an extension of our previous research to develop
novel potent SHP2 inhibitors, we aimed to establish a novel
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scaffold for further exploration. X-ray crystal structure of com-
pound 4 in complexes with SHP2 demonstrated that the inter-
action between compound 4 and SHP2 protein occurred through
hydrogen bonding (N…H, O…H), p-stacking, and water-medi-
ated, etc12,26. These results confirmed its anti-tumour activity.
However, the highly conjugated tricyclic structure of compound 4
resulted in poor water solubility.

Based on the aforementioned facts, a novel series of SHP2
inhibitors were designed and synthesised. Polar functional groups
containing heteroatoms were introduced into the phenyl ring to
enhance hydrogen bonding between target compounds and the
amino acid residue LYS266 as well as to improve the water solu-
bility. In addition, we adjusted the positions of phenolic hydroxyl
groups and explored their effects on the inhibitory activity of
SHP2 protein. Finally, various substituents were introduced to the
terminal phenyl ring to determine the influence of electron dens-
ity on the anti-cancer activity (Figure 2). In the present study, we
synthesised these derivatives and evaluated their inhibitory activ-
ity against SHP2 protein kinase. Furthermore, some compounds
were evaluated antiproliferative activity in vitro against A375 cells.
Compound 12l was identified as a potent SHP2 inhibitor with
excellent in vitro efficacy, thus presenting a promising drug candi-
date for further evaluation.

2. Docking studies

Detailed docking analysis was performed to further elucidate the
binding mode of compounds. The three-dimensional protein crys-
tal structure of the SHP2 target protein (PDB ID: 6BMR) was down-
loaded from the RCSB PDB protein database (https://www.rcsb.
org/), and the protein was prepared as a receptor model using
SYBYL-X 2.0. In addition, the target compound was directly
mapped to SYBYL-X 2.0 as the corresponding ligand. The docking
simulation was performed using Surflex-Dock (SFXC). The binding
models were exemplified by the interaction of compounds 4 and
12d with the SHP2 protein. As shown in Figure 1, the nitrogen
atoms of triazole at 4 and 12d formed hydrogen-bonding interac-
tions with ARG265, GLN269, and the NH of the main chain.
Moreover, the models further suggested that the phenolic

hydroxyl groups at 4 and 12d formed H-bonds with GLN79,
LEU262, and ARG265, and the methoxy group was combined with
GLN79 through H-bonds mediated by a water molecule (H2O899).
Besides, the p-stacking interactions were formed between chloro-
phenyl and GLN269, quinazolinone benzene ring, and GLN79. In
the meantime, it is worth noting that the distance between the
para-position of the phenolic hydroxyl group of compound 4 (the
5-position of phenyl ring) and LYS266 was 3.333 Å, which is not
conducive for intermolecular hydrogen bond formation. However,
oxygen and nitrogen atoms of the morpholine ring in compound
12d formed three H-bond interactions with LYS266, indicating
that the distance between the target compounds and LYS266 was
shortened, thus promoting the formation of intermolecular hydro-
gen bonds Figure 3.

3. Experimental

3.1. Chemistry

The melting point of target compounds was determined using a
BUCHI Melting Point B-545 apparatus and was uncorrected. Mass
spectra were recorded on a Varian QFT-ESI and Bruker micro-
TOFQ-Q mass spectrometer (for HR-ESIMS). Using TMS as the
internal standard, 1H NMR and 13C NMR were collected on Bruker
Avance 400 spectrometer (400 and 100MHz, respectively) in CDCl3
and DMSO-d6. The reaction time and purity of products were
monitored by TLC on FLUKA silica gel aluminium cards (0.2mm
thickness) with an Ultraviolet indicator of 254 nm. Unless other-
wise indicated, all materials were obtained from commercially
available sources and used without further purification.

3.2. General procedures

3.2.1. 2-Amino-N-(2-chlorobenzyl)benzamide (8)
A mixture of isatinic anhydride (20.00 g, 122.60mmol), o-chloro-
benzylamine (17.36 g, 122.60mmol), and ethyl acetate (200ml)
was heated to 40 �C for 2 h. After the completion of the reaction
detected by TLC, the reaction solution was obtained, dried, and
evaporated to afford compound 8 as a brown solid. The solid was

Figure 1. Structures of some targeted SHP2 inhibitors.
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washed with water, methanol, and n-hexane twice in sequence.
98.2% yield; 1H NMR (400MHz, CDCl3) d (ppm): 7.47–7.44 (m, 1H),
7.41–7.37 (m, 1H), 7.34 (d, J¼ 7.9 Hz, 1H), 7.26–7.18 (m, 3H),
6.69–6.63 (m, 2H), 6.50 (s, 1H), 5.53 (s, 2H), 4.69 (d, J¼ 6.0 Hz, 2H);
HRMS (ESI-MS) m/z: 261.0786 [MþH]þ.

3.2.2. 3–(2-Chlorobenzyl)-2-thioxo-2,3-dihydroquinazolin-4(1H)-one (9)
To a solution of compound 8 (30.00 g, 115.07mmol) in ethanol
(150ml) was added potassium hydroxide (14.20 g, 253.15mmol)
aqueous solution and carbon disulphide (87.61 g, 1150.70mmol),
The reaction mixture was heated with stirring for 6 h at 55 �C. the
reaction solution was cooled to room temperature when the reac-
tion was completed, whereby a white precipitate was formed. The

precipitant was filtered, washed with water and acetone, dried to
afford the compound 9 as a white solid, 90.7% yield; 1H NMR
(400MHz, DMSO-d6) d (ppm): 13.16 (s, 1H), 7.97 (d, J¼ 7.5 Hz, 1H),
7.80 (t, J¼ 7.6 Hz, 1H), 7.48 (dd, J¼ 10.8, 8.5 Hz, 2H), 7.38 (t,
J¼ 7.6 Hz, 1H), 7.28 (t, J¼ 7.1 Hz, 1H), 7.22 (t, J¼ 7.4 Hz, 1H), 6.97
(d, J¼ 7.4 Hz, 1H), 5.67 (s, 2H); HRMS (ESI-MS) m/z:
303.0349 [MþH]þ.

3.2.3. (E)-3–(2-chlorobenzyl)-2-hydrazono-2,3-dihydroquinazolin-
4(1H)-one (10)
To a solution of an intermediate 9 (30.00 g, 99.08mmol) in isopro-
panol (150ml) was added 80% hydrazine hydrate (93.00 g,
1486.23mmol) and heated at reflux for 16 h. After cooling, a large

Figure 2. Structure of target compounds.

Figure 3. The docking results of compounds 4 (A) and 12d (B) with SHP2 protein. Compound 4 was shown in coloured sticks (gray: carbon atom, blue: nitrogen
atom, red: oxygen atom, green: Chlorine atom, light blue: hydrogen atom). Compound 12d was shown in coloured sticks (gray: carbon atom, blue: nitrogen atom, red:
oxygen atom, light blue: a hydrogen atom, green: Chlorine atom). The H-bond interaction was shown in a light blue dotted line.
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amount of white solid was precipitated. The solid was filtered,
washed with water and methyl tert-butyl ether three times. then
dried to afford the corresponding compound 10 for 25.62 g,
86.0% yield; 1H NMR (400MHz, DMSO-d6) d (ppm): 7.89 (d,
J¼ 7.2 Hz, 1H), 7.62 (s, 1H), 7.49 (d, J¼ 7.7 Hz, 1H), 7.38 (d,
J¼ 8.2 Hz, 1H), 7.28 (t, J¼ 7.2 Hz, 1H), 7.22 (t, J¼ 7.4 Hz, 1H), 7.10
(s, 1H), 6.79 (s, 1H), 5.22 (s, 2H), 4.43 (s, 1H); HRMS (ESI-MS) m/z:
301.0847 [MþH]þ.

3.2.4. General procedure for preparation of triazoloquinazolinones
(11, 13)
Compound 10 (10.00 g, 33.25mmol), corresponding aryl formalde-
hyde (5.06 g, 33.25mmol) and glacial acetic acid (0.50ml) were
successively added to a solution of isopropanol (200ml). After stir-
ring at 83 �C for 0.5 h. After cooling, the ferric chloride hexahy-
drate (44.94 g, 166.25mmol) was added under stirring and the
reaction mixture was heated for 1 h at 83 �C. Then the reaction
mixture was poured into water (800ml) when it cool to room
temperature. After stirring for 0.5 h, a large amount of brown-gray
solid was precipitated. The precipitant was filtered, washed with
water, acetone and methyl tert-butyl ether twice and dried to
afford the corresponding compound 11, 13.

3.2.5. 4–(2-Chlorobenzyl)-1–(2-hydroxy-3-methoxyphenyl)-[1,2,4]tri-
azolo[4,3-a] quinazolin-5(4H)-one (11)
Off-white solid; yield: 86.2%; 1H NMR (400MHz, DMSO-d6) d (ppm):
9.52 (s, 1H), 8.27 (d, J¼ 7.7 Hz, 1H), 7.74 (t, J¼ 7.7 Hz, 1H), 7.56 (t,
J¼ 7.9 Hz, 2H), 7.34 (t, J¼ 7.5 Hz, 1H), 7.30–7.24 (m, 2H), 7.20 (d,
J¼ 8.4 Hz, 2H), 7.08–7.00 (m, 2H), 5.49 (s, 2H), 3.91 (s, 3H); HRMS
(ESI-MS) m/z: 433.1058 [MþH]þ.

3.2.6. 4–(2-Chlorobenzyl)-1–(4-hydroxy-3-methoxyphenyl)-[1,2,4]tri-
azolo[4,3-a] quinazolin-5(4H)- one (13)
White solid; yield: 98.7%; 1H NMR (400MHz, DMSO-d6) d (ppm):
9.76 (s, 1H), 8.26 (d, J¼ 7.1 Hz, 1H), 7.74 (t, J¼ 7.9 Hz, 1H),
7.58–7.53 (m, 2H), 7.34 (t, J¼ 6.0 Hz, 1H), 7.28–7.21 (m, 4H), 7.11
(d, J¼ 8.0 Hz, 1H), 7.02 (d, J¼ 8.1 Hz, 1H), 5.47 (s, 2H), 3.77 (s, 3H);
HRMS (ESI-MS) m/z: 433.1056 [MþH]þ.

3.2.7. General procedure for the preparation of triazoloquinazoli-
none derivatives (12a–12m, 14a–14m)
A mixture of compounds 11, 13（1.00 g, 2.31mmol), glacial acetic
acid (20ml) and the mixture of a freshly prepared 40% aqueous
solution of dimethylamine (1.04 g, 9.24mmol) and a 37% aqueous
solution of formaldehyde (0.75 g, 9.24mmol) was refluxed for 6 h.
The solvent was concentrated under vacuum and the residue was
poured into stirring ice-water (100ml), basified with sodium
hydroxide solution to pH 8–9, the precipitate was filtered off, and
the filtrate was extracted with dichloromethane (90ml). The
organic phases were combined and were washed with water
(30ml), dried over anhydrous Na2SO4, concentrated under reduced
pressure to afford brown solid, it was washed twice with methyl
tert-butyl ether and dried to obtain corresponding triazoloquina-
zolinones 12a–12m and 14a–14m.

3.2.8. 4–(2-Chlorobenzyl)-1-f5-[(dimethylamino)methyl]-2-hydroxy-3-
methoxyphenylg -[1,2,4] triazolo[4,3-a]quinazolin-5(4H)-one (12a)
Light brown solid; yield: 75.2%; m.p.:140 – 143 �C; 1H NMR
(400MHz, DMSO-d6) d (ppm): 9.43 (s, 1H), 8.27 (d, J¼ 7.6 Hz, 1H),
7.76–7.71 (m, 1H), 7.56 (dd, J¼ 7.4, 4.4 Hz, 2H), 7.37–7.32 (m, 1H),
7.30–7.11 (m, 4H), 6.94 (s, 1H), 5.50 (d, J¼ 16.3Hz, 2H), 3.90 (s,
3H), 3.38 (s, 2H), 2.17 (s, 6H); 13C NMR (100MHz, DMSO-d6) d
(ppm): 158.80, 155.29, 150.28, 148.69, 148.50, 148.31, 147.15,
144.79, 135.34, 134.56, 133.48, 132.21, 129.81, 129.49, 129.38,
127.84, 127.11, 124.25, 123.27, 117.27, 115.99, 63.40, 56.56, 45.32,
44.32; HRMS (ESI-MS) m/z: 490.1635 [MþH]þ.

3.2.9. 4–(2-Chlorobenzyl)-1-f5-[(diethylamino)methyl]-2-hydroxy-3-
methoxyphenylg-[1,2,4] triazolo[4,3-a]quinazolin-5(4H)-one (12 b)
Off-white solid; yield: 57.5%; m.p.:117–120 �C; 1H NMR (400MHz,
DMSO-d6) d (ppm): 9.37 (s, 1H), 8.27 (d, J¼ 9.3 Hz, 1H), 7.73 (t,
J¼ 7.9 Hz, 1H), 7.59–7.54 (m, 2H), 7.37–7.32 (m, 1H), 7.26 (t,
J¼ 7.9 Hz, 1H), 7.21 (t, J¼ 9.1 Hz, 3H), 6.99 (s, 1H), 5.49 (d,
J¼ 13.7 Hz, 2H), 3.90 (s, 3H), 3.54 (s, 2H), 2.48 (d, J¼ 7.5 Hz, 4H),
0.98 (t, J¼ 7.1 Hz, 6H); HRMS (ESI-MS) m/z: 518.1951 [MþH]þ.

3.2.10. 4–(2-Chlorobenzyl)-1-[2-hydroxy-3-methoxy-5-(pyrrolidin-1-
ylmethyl)phenyl]-[1,2,4] triazolo[4,3-a]quinazolin-5(4H)-one (12c)
White solid; yield: 64.7%; m.p.:192–194 �C; 1H NMR (400MHz,
DMSO-d6) d (ppm): 9.35 (s, 1H), 8.27 (d, J¼ 8.1 Hz, 1H), 7.73 (t,
J¼ 8.0 Hz, 1H), 7.56 (t, J¼ 7.7 Hz, 2H), 7.34 (t, J¼ 7.8 Hz, 1H), 7.26
(t, J¼ 7.0 Hz, 1H), 7.23–7.17 (m, 3H), 6.98 (s, 1H), 5.50 (d,
J¼ 12.7 Hz, 2H), 3.90 (s, 3H), 3.57 (s, 2H), 2.46 (s, 4H), 1.69 (s, 4H);
HRMS (ESI-MS) m/z: 516.1792 [MþH]þ.

3.2.11. 4–(2-Chlorobenzyl)-1-[2-hydroxy-3-methoxy-5-(morpholino-
methyl)phenyl]-[1,2,4]triazolo [4,3-a]quinazolin-5(4H)-one (12d)
White solid; yield: 74.8%; m.p.:190–193 �C; 1H NMR (400MHz,
DMSO-d6) d (ppm): 9.44 (s, 1H), 8.26 (d, J¼ 9.3 Hz, 1H), 7.73 (t,
J¼ 7.9 Hz, 1H), 7.58–7.53 (m, 2H), 7.34 (t, J¼ 7.6 Hz, 1H), 7.26 (t,
J¼ 7.5 Hz, 1H), 7.22–7.17 (m, 3H), 6.98 (s, 1H), 5.49 (d, J¼ 14.0 Hz,
2H), 3.90 (s, 3H), 3.61–3.55 (m, 4H), 3.47 (s, 2H), 2.39 (s, 4H); 13C
NMR (100MHz, DMSO-d6) d (ppm): 158.77, 151.31, 150.77, 148.78,
148.35, 146.08, 145.22, 135.35, 134.50, 133.50, 132.20, 129.80,
129.38, 127.83, 127.14, 123.39, 122.20, 121.20, 117.28, 116.10,
115.73, 66.68, 62.40, 56.60, 53.56, 53.21; HRMS (ESI-MS) m/z:
532.1745 [MþH]þ.

3.2.12. 4–(2-Chlorobenzyl)-1-[2-hydroxy-3-methoxy-5-(thiomorpho-
linomethyl)phenyl] -[1,2,4]triazolo[4,3-a]quinazolin-5(4H)-one (12e)
Beige solid; yield: 69.3%; m.p.:128–131 �C; 1H NMR (400MHz,
DMSO-d6) d (ppm): 9.43 (s, 1H), 8.26 (d, J¼ 8.9 Hz, 1H), 7.73 (t,
J¼ 8.7 Hz, 1H), 7.56 (t, J¼ 7.4 Hz, 2H), 7.34 (t, J¼ 7.6 Hz, 1H), 7.26
(t, J¼ 7.7 Hz, 1H), 7.23–7.15 (m, 3H), 6.97 (s, 1H), 5.49 (d,
J¼ 13.9 Hz, 2H), 3.90 (s, 3H), 3.51 (s, 2H), 2.71–2.63 (m, 4H),
2.63–2.56 (m, 4H); HRMS (ESI-MS) m/z: 548.1515 [MþH]þ.

3.2.13. 4–(2-Chlorobenzyl)-1-[2-hydroxy-3-methoxy-5-(piperidin-1-
ylmethyl)phenyl]-[1,2,4] triazolo[4,3-a]quinazolin-5(4H)-one (12f)
White solid; yield: 82.8%; m.p.:169–171 �C; 1H NMR (400MHz,
DMSO-d6) d (ppm): 9.43 (s, 1H), 8.27 (d, J¼ 7.4 Hz, 1H), 7.73 (t,
J¼ 7.1 Hz, 1H), 7.55 (d, J¼ 6.9 Hz, 2H), 7.34 (t, J¼ 6.9 Hz, 1H),
7.29� 7.17 (m, 4H), 6.96 (s, 1H), 5.50 (d, J¼ 10.6Hz, 2H), 3.90 (s,
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3H), 3.43 (s, 2H), 2.35 (s, 4H), 1.49 (s, 4H), 1.39 (s, 2H); 13C NMR
(100MHz, DMSO-d6) d (ppm): 158.78, 154.84, 148.73, 148.30,
146.12, 145.05, 135.31, 134.51, 133.46, 132.19, 130.69, 129.80,
129.53, 129.37, 127.83, 127.13, 123.16, 117.29, 116.03, 115.71,
115.47, 62.74, 56.58, 54.28, 44.32, 26.04, 24.51; HRMS (ESI-MS) m/z:
530.1948 [MþH]þ.

3.2.14. 4–(2-Chlorobenzyl)-1-f2-hydroxy-3-methoxy-5-[(4-methylpi-
peridin-1-yl)methyl] phenylg- [1,2,4]triazolo[4,3-a]quinazolin-5(4H)-
one (12 g)
Brown solid; yield: 72.2%; m.p.:125–128 �C; 1H NMR (400MHz,
DMSO-d6) d (ppm): 9.42 (s, 1H), 8.26 (s, 1H), 7.73 (s, 1H), 7.56 (s,
2H), 7.34 (s, 1H), 7.21 (dd, J¼ 17.0, 11.4 Hz, 4H), 6.95 (s, 1H), 5.49
(d, J¼ 8.5 Hz, 2H), 3.89 (s, 3H), 3.43 (s, 2H), 2.81 (s, 2H), 1.91 (t,
J¼ 11.3Hz, 2H), 1.56 (d, J¼ 10.1 Hz, 2H), 1.31 (s, 1H), 1.12 (s, 2H),
0.88 (s, 3H); 13C NMR (100MHz, DMSO-d6) d (ppm): 158.78, 154.16,
148.73, 148.32, 148.02, 146.12, 145.06, 135.31, 134.52, 133.46,
132.20, 130.80, 129.81, 129.53, 129.37, 127.83, 127.13, 123.13,
117.30, 116.04, 115.68, 56.60, 53.68, 50.58, 44.25, 34.47, 30.79,
22.23; HRMS (ESI-MS) m/z: 544.2103 [MþH]þ.

3.2.15. 4–(2-Chlorobenzyl)-1-f2-hydroxy-5-[(4-hydroxypiperidin-1-yl)
methyl]-3-methoxyphenylg- [1,2,4] triazolo[4,3-a]quinazolin-5(4H)-
one (12h)
Light yellow solid; yield: 57.9%; m.p.:141–143 �C; 1H NMR
(400MHz, DMSO-d6) d (ppm): 9.40 (s, 1H), 8.27 (d, J¼ 7.9 Hz, 1H),
7.73 (t, J¼ 8.3 Hz, 1H), 7.57 (t, J¼ 7.2 Hz, 2H), 7.35 (t, J¼ 8.0 Hz,
1H), 7.29–7.17 (m, 4H), 6.95 (s, 1H), 5.49 (d, J¼ 13.0Hz, 2H), 4.55
(d, J¼ 3.9 Hz, 1H), 3.90 (s, 3H), 3.44 (s, 2H), 2.74–2.67 (m, 2H), 2.05
(t, J¼ 10.3 Hz, 2H), 1.75–1.67 (m, 2H), 1.43–1.33 (m, 2H); HRMS
(ESI-MS) m/z: 546.1895 [MþH]þ.

3.2.16. 1-f3-[4–(2-Chlorobenzyl)-5-oxo-4,5-dihydro-[1,2,4]triazolo[4,3-
a] quinazolin-1-yl]-4- hydroxy-5- methoxybenzylgpiperidine-4-carbox-
ylic acid (12i)
Off-white solid; yield: 80.5%; m.p.:187–190 �C; 1H NMR (400MHz,
DMSO-d6) d (ppm): 9.47 (s, 1H), 8.26 (d, J¼ 7.8 Hz, 1H), 7.73 (t,
J¼ 7.6 Hz, 1H), 7.56 (t, J¼ 6.9 Hz, 2H), 7.34 (t, J¼ 7.2 Hz, 1H),
7.28–7.17 (m, 4H), 6.96 (s, 1H), 5.49 (d, J¼ 13.6 Hz, 2H), 3.90 (s,
3H), 3.45 (s, 2H), 2.79 (d, J¼ 9.1 Hz, 2H), 2.18 (t, J¼ 10.9 Hz, 1H),
1.99 (t, J¼ 10.8 Hz, 2H), 1.77 (d, J¼ 11.5 Hz, 2H), 1.54 (s, 2H); HRMS
(ESI-MS) m/z: 574.1842 [MþH]þ.

3.2.17. 4–(2-Chlorobenzyl)-1-f2-hydroxy-3-methoxy-5-[(4-methylpi-
perazin-1-yl)methyl] phenylg- [1,2,4]triazolo[4,3-a]quinazolin-
5(4H)-one (12j)
Beige solid; yield: 65.9%; m.p.:215–218 �C; 1H NMR (400MHz,
DMSO-d6) d (ppm): 9.44 (s, 1H), 8.27 (d, J¼ 7.0 Hz, 1H), 7.73 (t,
J¼ 7.3 Hz, 1H), 7.55 (d, J¼ 7.0 Hz, 2H), 7.39–7.31 (m, 1H), 7.30–7.13
(m, 4H), 6.97 (s, 1H), 5.50 (d, J¼ 12.5 Hz, 2H), 3.90 (s, 3H), 3.46 (s,
2H), 2.39 (s, 4H), 2.33 (s, 4H), 2.14 (s, 3H); 13C NMR (100MHz,
DMSO-d6) d (ppm): 158.79, 154.76, 148.75, 148.34, 146.11, 145.15,
135.34, 134.52, 133.47, 132.21, 130.36, 129.82, 129.54, 129.39,
127.85, 123.25, 120.43, 117.30, 116.10, 115.74, 115.52, 58.59, 56.59,
55.22, 52.95, 46.17, 44.34; HRMS (ESI-MS) m/z: 545.2054 [MþH]þ.

3.2.18. Tert-Butyl 4-f3-[4–(2-chlorobenzyl)-5-oxo-4,5-dihydro-
[1,2,4] triazolo[4,3-a] quinazolin-1-yl]-4-hydroxy-5-methoxyben-
zylgpiperazine-1-carboxylate (12k)
White solid; yield: 61.0%; m.p.:130–133 �C; 1H NMR (400MHz,
DMSO-d6) d (ppm): 9.45 (s, 1H), 8.27 (d, J¼ 7.8 Hz, 1H), 7.74 (t,
J¼ 7.9 Hz, 1H), 7.57 (t, J¼ 7.6 Hz, 2H), 7.34 (t, J¼ 7.0 Hz, 1H), 7.26
(t, J¼ 7.5 Hz, 1H), 7.20 (t, J¼ 7.4 Hz, 3H), 6.98 (s, 1H), 5.50 (d,
J¼ 14.0 Hz, 2H), 3.91 (s, 3H), 3.50 (s, 2H), 3.32 (s, 4H), 2.38–2.32 (m,
4H), 1.39 (s, 9H); 13C NMR (100MHz, DMSO-d6) d (ppm): 159.39,
158.81, 148.72, 148.39, 145.27, 144.07, 139.35, 137.10, 135.42,
134.51, 133.47, 132.24, 129.91, 129.83, 129.40, 127.85, 127.79,
126.76, 126.49, 123.53, 117.29, 116.74, 79.19, 56.60, 52.73, 49.90,
44.34, 43.66, 28.53; HRMS (ESI-MS) m/z: 631.2422 [MþH]þ.

3.2.19. 4–(2-Chlorobenzyl)-1-[5-(piperazin-1-ylmethyl)-2-hydroxy-3-
methoxyphenyl]-[1,2,4] triazolo[4,3-a]quinazoline-5(4H)-one hydro-
chloride (12 l)
Off-white solid; yiled: 82.2%; m.p.:223–226 �C; 1H NMR (400MHz,
D2O) d (ppm): 8.10 (d, J¼ 7.6 Hz, 1H), 7.53–7.48 (m, 1H), 7.45–7.38
(m, 2H), 7.35 (s, 1H), 7.17 (q, J¼ 8.7 Hz, 3H), 7.05 (t, J¼ 7.5 Hz, 1H),
6.99 (d, J¼ 7.6 Hz, 1H), 5.37 (s, 2H), 4.32 (s, 2H), 3.89 (s, 3H), 3.48
(s, 8H); 13C NMR (100MHz, DMSO-d6) d (ppm): 158.74, 153.90,
148.84, 148.51, 145.61, 135.68, 134.33, 133.59, 133.41, 132.22,
129.84, 129.54, 129.40, 127.84, 127.79, 127.26, 125.21, 120.63,
117.22, 116.34, 115.98, 63.36, 56.76, 56.03, 44.70, 44.36; HRMS (ESI-
MS) m/z: 531.1902 [MþH]þ.

3.2.20. 4–(2-Chlorobenzyl)-1–(2-hydroxy-5-f[4–(2-hydroxyethyl)pi-
perazin-1-yl] methylg-3- methoxyphenyl)-[1,2,4]triazolo[4,3-a]qui-
nazolin-5(4H)-one (12m)
Light yellow solid; yield: 54.1%; m.p.:134–137 �C; 1H NMR
(400MHz, CDCl3) d (ppm): 8.41 (d, J¼ 7.9 Hz, 1H), 7.55 (t,
J¼ 8.3 Hz, 1H), 7.48 (t, J¼ 7.4 Hz, 1H), 7.42 (d, J¼ 7.8 Hz, 1H), 7.36
(d, J¼ 8.3 Hz, 1H), 7.19 (dt, J¼ 14.9, 4.8 Hz, 3H), 7.13 (d, J¼ 2.9 Hz,
2H), 5.74 (s, 2H), 3.98 (s, 3H), 3.61 (t, J¼ 5.3 Hz, 2H), 3.51 (s, 2H),
2.65–2.41 (m, 10H); HRMS (ESI-MS) m/z: 575.2162 [MþH]þ.

3.2.21. 4–(2-Chlorobenzyl)-1-f3-[(dimethylamino)methyl]-4-hydroxy-5-
methoxyphenylg -[1,2,4] triazolo[4,3-a]quinazolin-5(4H)-one (14a)
White solid; yield: 80.5%; m.p.:117–120 �C; 1H NMR (400MHz,
DMSO-d6) d (ppm): 8.26 (d, J¼ 7.9 Hz, 1H), 7.72 (t, J¼ 8.6 Hz, 1H),
7.55 (dt, J¼ 7.2, 3.4 Hz, 2H), 7.36–7.32 (m, 1H), 7.26–7.17 (m, 4H),
7.04 (s, 1H), 5.47 (s, 2H), 3.78 (s, 3H), 3.66 (s, 2H), 2.28 (s, 6H); 13C
NMR (100MHz, DMSO-d6) d (ppm): 158.84, 153.57, 149.09, 148.85,
148.64, 148.22, 134.98, 134.63, 133.40, 132.17, 129.77, 129.71,
129.36, 127.83, 127.76, 127.07, 124.39, 123.15, 118.36, 117.66,
116.23, 60.22, 56.40, 53.69, 44.74; HRMS (ESI-MS) m/z:
490.1632 [MþH]þ.

3.2.22. 4–(2-Chlorobenzyl)-1-f3-[(diethylamino)methyl]-4-hydroxy-
5-methoxyphenylg-[1,2,4] triazolo[4,3-a]quinazolin-5(4H)-
one (14 b)
Brown solid; yield: 74.2%; m.p.:100–103 �C; 1H NMR (400MHz,
DMSO-d6) d (ppm): 8.27 (s, 1H), 7.71 (s, 1H), 7.55 (s, 2H), 7.36–7.14
(m, 5H), 7.03 (s, 1H), 5.47 (s, 2H), 3.83 (s, 2H), 3.76 (s, 3H), 2.60 (s,
4H), 1.04 (s, 6H); HRMS (ESI-MS) m/z: 518.1946 [MþH]þ.
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3.2.23. 4–(2-Chlorobenzyl)-1-[4-hydroxy-3-methoxy-5-(pyrrolidin-1-
ylmethyl)phenyl]-[1,2,4] triazolo[4,3-a]quinazolin-5(4H)-one (14c）
Brown solid; yield: 79.8%; m.p.:118–120 �C; 1H NMR (400MHz,
DMSO-d6) d (ppm): 8.26 (d, J¼ 9.3 Hz, 1H), 7.72 (t, J¼ 8.7 Hz, 1H),
7.58–7.53 (m, 2H), 7.36–7.31 (m, 1H), 7.27–7.20 (m, 3H), 7.16 (s,
1H), 7.06 (s, 1H), 5.47 (s, 2H), 3.82 (s, 2H), 3.77 (s, 3H), 2.58 (s, 4H),
1.76 (s, 4H); HRMS (ESI-MS) m/z: 516.1792 [MþH]þ.

3.2.24. 4–(2-Chlorobenzyl)-1-[4-hydroxy-3-methoxy-5-(morpholino-
methyl)phenyl]-[1,2,4]triazolo [4,3-a]quinazolin-5(4H)-one (14d)
Beige solid; yield: 82.1%; m.p.:206–208 �C; 1H NMR (400MHz,
DMSO-d6) d (ppm): 8.27 (d, J¼ 7.6 Hz, 1H), 7.71 (t, J¼ 7.7 Hz, 1H),
7.59–7.52 (m, 2H), 7.34 (t, J¼ 6.7 Hz, 1H), 7.22 (dd, J¼ 13.6, 4.8 Hz,
4H), 7.11 (s, 1H), 5.48 (s, 2H), 3.80 (s, 3H), 3.68 (s, 2H), 3.60 (s, 4H),
2.48 (s, 4H); 13C NMR (100MHz, DMSO-d6) d (ppm): 158.87, 153.61,
148.85, 148.69, 148.36, 148.25, 135.00, 134.63, 133.42, 132.19,
129.78, 129.37, 128.32, 127.88, 127.77, 127.05, 123.98, 123.67,
118.65, 117.69, 116.28, 66.62, 58.30, 56.48, 53.25, 44.22; HRMS (ESI-
MS) m/z: 532.1741 [MþH]þ.

3.2.25. 4–(2-Chlorobenzyl)-1-[4-hydroxy-3-methoxy-5-(thiomorpho-
linomethyl)phenyl] -[1,2,4]triazolo[4,3-a]quinazolin-5(4H)-one (14e)
Light brown solid; yield: 63.8%; m.p.:230–232 �C; 1H NMR
(400MHz, DMSO-d6) d (ppm): 8.26 (d, J¼ 7.3 Hz, 1H), 7.72 (t,
J¼ 7.2 Hz, 1H), 7.55 (d, J¼ 6.8 Hz, 2H), 7.33 (d, J¼ 6.4 Hz, 1H),
7.28–7.17 (m, 4H), 7.09 (s, 1H), 5.47 (s, 2H), 3.79 (s, 3H), 3.70 (s,
2H), 2.74 (s, 4H), 2.62 (s, 4H); HRMS (ESI-MS) m/z:
548.1510 [MþH]þ.

3.2.26. 4–(2-Chlorobenzyl)-1-[4-hydroxy-3-methoxy-5-(piperidin-1-
ylmethyl)phenyl]-[1,2,4] triazolo[4,3-a]quinazolin-5(4H)-one (14f)
Off-white solid; yield: 63.9%; m.p.:115–117 �C; 1H NMR (400MHz,
DMSO-d6) d (ppm): 8.26 (d, J¼ 6.5 Hz, 1H), 7.72 (t, J¼ 7.9 Hz, 1H),
7.59–7.53 (m, 2H), 7.34 (t, J¼ 7.2 Hz, 1H), 7.24 (q, J¼ 8.0 Hz, 3H),
7.16 (s, 1H), 7.02 (s, 1H), 5.47 (s, 2H), 3.76 (s, 3H), 3.71 (s, 2H), 2.49
(s, 4H), 1.59–1.50 (m, 4H), 1.47–1.40 (m, 2H); HRMS (ESI-MS) m/z:
530.1947 [MþH]þ.

3.2.27. 4–(2-Chlorobenzyl)-1-f4-hydroxy-3-methoxy-5-[(4-methylpi-
peridin-1-yl)methyl] phenylg-[1,2,4]triazolo[4,3-a]quinazolin-5(4H)-
one (14 g)
White solid; yield: 77.8%; m.p.:120–122 �C; 1H NMR (400MHz,
DMSO-d6) d (ppm): 8.26 (d, J¼ 8.7 Hz, 1H), 7.72 (t, J¼ 7.9 Hz, 1H),
7.58–7.53 (m, 2H), 7.34 (t, J¼ 8.4 Hz, 1H), 7.24 (q, J¼ 8.2 Hz, 3H),
7.16 (s, 1H), 7.02 (s, 1H), 5.47 (s, 2H), 3.76 (s, 3H), 3.72 (s, 2H), 2.92
(d, J¼ 10.8 Hz, 2H), 2.09 (t, J¼ 11.5 Hz, 2H), 1.65 (d, J¼ 13.6 Hz,
2H), 1.46–1.35 (m, 1H), 1.20–1.09 (m, 2H), 0.91 (d, J¼ 6.4 Hz, 3H);
HRMS (ESI-MS) m/z: 544.2101 [MþH]þ.

3.2.28. 4–(2-Chlorobenzyl)-1-f4-hydroxy-3-[(4-hydroxypiperidin-1-
yl) methyl]-5-methoxyphenylg-[1,2,4]triazolo[4,3-a]quinazolin-
5(4H)-one (14 h)
White solid; yield: 69.8%; m.p.:134–136 �C; 1H NMR (400MHz,
DMSO-d6) d (ppm): 8.27 (d, J¼ 9.3 Hz, 1H), 7.72 (t, J¼ 7.9 Hz, 1H),
7.59–7.53 (m, 2H), 7.37–7.32 (m, 1H), 7.25 (q, J¼ 7.9 Hz, 3H), 7.17
(s, 1H), 7.04 (s, 1H), 5.48 (s, 2H), 3.78 (s, 3H), 3.72 (s, 2H), 3.58–3.51
(m, 1H), 2.85–2.74 (m, 2H), 2.25 (t, J¼ 9.6 Hz, 2H), 1.81–1.72 (m,

2H), 1.43 (q, J¼ 10.5, 8.9 Hz, 2H); HRMS (ESI-MS) m/z:
546.1896 [MþH]þ.

3.2.29. 1-f5-[4–(2-Chlorobenzyl)-5-oxo-4,5-dihydro-[1,2,4]tria-
zolo[4,3-a]quinazolin-1-yl]-2- hydroxy-3-methoxybenzylgpiperidine-
4-carboxylic acid (14i)
Off-white solid; yield: 73.7%; m.p.:183–185 �C; 1H NMR (400MHz,
DMSO-d6) d (ppm): 8.28–8.24 (m, 1H), 7.72 (t, J¼ 7.9 Hz, 1H), 7.56
(dd, J¼ 7.6, 4.8 Hz, 2H), 7.34 (t, J¼ 7.1 Hz, 1H), 7.24 (q, J¼ 9.0,
8.4 Hz, 3H), 7.17 (s, 1H), 7.04 (s, 1H), 5.47 (s, 2H), 3.77 (s, 3H), 3.70
(s, 2H), 2.88 (d, J¼ 9.8 Hz, 2H), 2.23 (t, J¼ 11.2 Hz, 1H), 2.16 (t,
J¼ 11.4 Hz, 2H), 1.87–1.79 (m, 2H), 1.56 (q, J¼ 12.2Hz, 2H); HRMS
(ESI-MS) m/z: 574.1845 [MþH]þ.

3.2.30. 4–(2-Chlorobenzyl)-1-f4-hydroxy-3-methoxy-5-[(4-methylpi-
perazin-1-yl)methyl] phenylg-[1,2,4]triazolo[4,3-a]quinazolin-5(4H)-
one (14j)
Light brown solid; yield: 75.4%; m.p.:123–125 �C; 1H NMR
(400MHz, CDCl3) d (ppm): 8.42 (d, J¼ 7.1 Hz, 1H), 7.51 (p,
J¼ 7.2 Hz, 2H), 7.42 (d, J¼ 7.7 Hz, 1H), 7.32 (d, J¼ 8.0 Hz, 1H),
7.23–7.19 (m, 1H), 7.16 (d, J¼ 6.5 Hz, 2H), 7.05 (s, 1H), 6.95 (s, 1H),
5.72 (s, 2H), 3.88 (s, 3H), 3.82 (s, 2H), 2.62 (s, 8H), 2.33 (s, 3H); 13C
NMR (100MHz, DMSO-d6) d (ppm): 158.84, 148.83, 148.75, 148.67,
148.19, 134.99, 134.61, 133.40, 132.17, 129.77, 129.70, 129.36,
127.85, 127.75, 127.06, 123.90, 123.33, 118.53, 117.66, 116.26,
112.89, 58.53, 56.41, 55.05, 52.57, 46.05, 44.22; HRMS (ESI-MS) m/z:
545.2056 [MþH]þ.

3.2.31. Tert-Butyl4-f5-[4–(2-chlorobenzyl)-5-oxo-4,5-dihydro-[1,2,4]tri-
azolo[4,3-a] quinazolin-1-yl]-2-hydroxy-3-methoxybenzylgpiperazine-
1-carboxylate (14k)
Light brown solid; yield: 67.8%; m.p.:127–130 �C; 1H NMR
(400MHz, DMSO-d6) d (ppm): 8.27 (d, J¼ 8.9 Hz, 1H), 7.72 (t,
J¼ 7.9 Hz, 1H), 7.56 (t, J¼ 7.3 Hz, 2H), 7.34 (t, J¼ 8.5 Hz, 1H),
7.28–7.19 (m, 4H), 7.10 (s, 1H), 5.47 (s, 2H), 3.80 (s, 3H), 3.67 (s,
2H), 3.43–3.34 (m, 4H), 2.46–2.39 (m, 4H), 1.39 (s, 9H); 13C NMR
(100MHz, DMSO-d6) d (ppm): 159.01, 158.86, 154.22, 148.83,
148.68, 148.22, 148.18, 135.00, 134.62, 133.40, 132.17, 129.77,
129.72, 129.37, 127.85, 127.76, 124.19, 123.74, 123.47, 118.65,
117.69, 116.32, 79.33, 57.63, 56.44, 52.60, 44.20, 43.26, 28.52;
HRMS (ESI-MS) m/z: 631.2422 [MþH]þ.

3.2.32. 4–(2-Chlorobenzyl)-1-[3-(piperazin-1-ylmethyl)-4-hydroxy-5-
methoxyphenyl]-[1,2,4]triazolo[4,3-a]quinazoline-5(4H)-one hydro-
chloride (14 l)
Light brown solid; yield: 71.1%; m.p.:214–216 �C; 1H NMR
(400MHz, D2O) d (ppm): 8.12 (d, J¼ 9.4 Hz, 1H), 7.51–7.43 (m, 2H),
7.40 (d, J¼ 8.0 Hz, 1H), 7.25 (s, 1H), 7.23–7.13 (m, 3H), 7.08 (t,
J¼ 8.0 Hz, 1H), 6.98 (d, J¼ 7.0 Hz, 1H), 5.36 (s, 2H), 4.40 (s, 2H),
3.78 (s, 3H), 3.50 (s, 8H); HRMS (ESI-MS) m/z: 531.1897 [MþH]þ.

3.2.33. 4–(2-Chlorobenzyl)-1–(4-hydroxy-3-f[4–(2-hydroxyethyl)pi-
perazin-1-yl]methylg -5- methoxyphenyl)-[1,2,4]triazolo[4,3-a]qui-
nazolin-5(4H)-one (14m)
Light yellow solid; yield: 82.7%; m.p.:117–120 �C; 1H NMR
(400MHz, CDCl3) d (ppm): 8.43 (d, J¼ 9.1 Hz, 1H), 7.51 (p,
J¼ 7.4 Hz, 2H), 7.43 (d, J¼ 7.8 Hz, 1H), 7.32 (d, J¼ 8.3 Hz, 1H),
7.24–7.19 (m, 1H), 7.16 (d, J¼ 6.5 Hz, 2H), 7.05 (s, 1H), 6.95 (s, 1H),
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5.73 (s, 2H), 3.88 (s, 3H), 3.83 (s, 2H), 3.64 (t, J¼ 5.3 Hz, 2H),
2.89–2.42 (m, 10H); 13C NMR (100MHz, DMSO-d6) d (ppm): 158.85,
154.42, 148.83, 148.78, 148.67, 148.19, 135.02, 134.62, 133.40,
132.16, 129.77, 129.71, 129.36, 127.84, 127.77, 127.06, 123.84,
123.31, 118.50, 117.66, 116.27, 61.60, 60.57, 58.99, 56.40, 53.51,
52.68, 44.23; HRMS (ESI-MS) m/z: 575.2161 [MþH]þ.

3.2.34. General procedure for preparation of the intermediate
compounds 16a–16j
2-Bromo-4-fluorobenzaldehyde (15) (9.8mmol), corresponding sec-
ondary amine (11.82mmol), and potassium carbonate
(14.78mmol) were successively added to a solution of DMF
(20ml). After stirring at 85 �C for 1 h. The reaction solution was
poured into water (50ml), whereby a precipitate was formed. The
precipitant was filtered, washed with water and N-hexane twice,
and dried to afford the corresponding compound 16a–16j.

3.2.35. 2-Bromo-4-morpholinobenzaldehyde (16a)
White solid; yield: 82.2%; 1H NMR (400MHz, DMSO-d6) d 9.94 (d,
J¼ 0.7 Hz, 1H), 7.69 (d, J¼ 8.9 Hz, 1H), 7.16 (d, J¼ 2.5 Hz, 1H), 7.04
(dd, J¼ 8.9, 2.5 Hz, 1H), 3.74–3.66 (m, 4H), 3.41–3.33 (m, 4H).

3.2.36. 2-Bromo-4–(4-methylpiperidin-1-yl)benzaldehyde (16 b)
Yellow solid; yield: 74.0%; 1H NMR (400MHz, CDCl3) d 10.01 (s, 1H)
8.01 (s, 1H), 7.76 (d, J¼ 8.9 Hz, 1H), 6.95 (d, J¼ 2.6 Hz, 1H), 6.79
(ddd, J¼ 9.0, 2.6, 0.8 Hz, 1H), 3.93–3.82 (m, 2H), 2.98–2.84 (m, 2H),
2.88–2.75 (m, 2H), (s, 1H), 1.80–1.65 (m, 2H), 1.69–1.59 (m, 1H),
1.31–1.16 (m, 2H), 0.97 (d, J¼ 6.5 Hz, 3H)

3.2.37. 2-Bromo-4-(pyrrolidin-1-yl)benzaldehyde (16c)
White solid; yield: 78.3%; 1H NMR (400MHz, CDCl3) d 10.09 (s, 1H)
7.81 (d, J¼ 8.8 Hz, 1H), 6.70 (d, J¼ 2.4 Hz, 1H), 6.52 (ddd, J¼ 8.8,
2.4, 0.8 Hz, 1H), 3.44–3.34 (m, 4H), 2.14–2.02 (m, 4H)

3.2.38. 2-Bromo-4–(4-hydroxypiperidin-1-yl)benzaldehyde (16d)
White solid; yield: 81.1%; 1H NMR (400MHz, CDCl3) d 10.09 (d,
J¼ 0.8 Hz, 1H), 7.80 (d, J¼ 8.9 Hz, 1H), 7.00 (d, J¼ 2.6 Hz, 1H),
6.87–6.79 (m, 1H), 3.99 (dt, J¼ 8.3, 4.2 Hz, 1H), 3.76 (ddd, J¼ 13.2,
6.9, 4.3 Hz, 2H), 3.21 (ddd, J¼ 13.0, 9.1, 3.4 Hz, 2H), 2.07–1.94 (m,
2H), 1.66 (ddd, J¼ 12.9, 8.5, 4.0 Hz, 2H).

3.2.39. 2-Bromo-4-(dipropylamino)benzaldehyde (16e）
White solid; yield: 85.0%; 1H NMR (400MHz, CDCl3) d 10.04 (s, 1H),
7.76 (d, J¼ 8.9 Hz, 1H), 6.73 (d, J¼ 2.5 Hz, 1H), 6.57 (ddd, J¼ 9.0,
2.6, 0.8 Hz, 1H), 3.34–3.25 (m, 4H), 1.64 (h, J¼ 7.4 Hz, 4H), 0.96 (t,
J¼ 7.4 Hz, 6H).

3.2.40. 2-Bromo-4-(diethylamino)benzaldehyde (16f)
White solid; yield: 72.0%; 1H NMR (400MHz, CDCl3) d 10.05 (s, 1H)
7.78 (d, J¼ 8.9 Hz, 1H), 6.76 (d, J¼ 2.5 Hz, 1H), 6.61 (dd, J¼ 9.0,
2.5 Hz, 1H), 3.42 (q, J¼ 7.1 Hz, 4H), 1.22 (t, J¼ 7.1 Hz, 6H).

3.2.41. 2-Bromo-4-thiomorpholinobenzaldehyde (16 g)
White solid; yield: 80.0%; 1H NMR (400MHz, CDCl3) d 10.13 (s, 1H),
7.83 (d, J¼ 8.9 Hz, 1H), 7.00 (d, J¼ 2.4 Hz, 1H), 6.84 (dd, J¼ 8.9,
2.5 Hz, 1H), 3.89–3.81 (m, 4H), 3.39–3.31 (m, 4H).

3.2.42. 2-Bromo-4-(dibutylamino)benzaldehyde (16 h)
White solid; yield: 69.2%; 1H NMR (400MHz, CDCl3) d 10.05 (s, 1H)
7.77 (d, J¼ 9.0 Hz, 1H), 6.73 (d, J¼ 2.6 Hz, 1H), 6.57 (ddd, J¼ 9.0,
2.6, 0.8 Hz, 1H), 3.36–3.28 (m, 4H), 1.65–1.53 (m, 4H), 1.37 (h,
J¼ 7.3 Hz, 4H), 0.98 (t, J¼ 7.3 Hz, 6H).

3.2.43. 2-Bromo-4-(dimethylamino)benzaldehyde (16i)
White solid; yield: 73.3%; 1H NMR (400MHz, CDCl3) d 10.09 (s, 1H)
7.80 (d, J¼ 8.9 Hz, 1H), 6.79 (d, J¼ 2.5 Hz, 1H), 6.63 (dd, J¼ 9.0,
2.5 Hz, 1H), 3.08 (s, 6H).

3.2.44. 2-Bromo-4–(2-methylpiperidin-1-yl)benzaldehyde (16j)
White solid; yield: 77.1%; 1H NMR (400MHz, CDCl3) d 10.04 (s, 1H),
7.78 (d, J¼ 8.9 Hz, 2H), 6.96 (d, J¼ 2.5 Hz, 2H), 6.79 (d, J¼ 9.0, 2.6,
0.8 Hz, 2H), 3.87 (d, 2H), 2.92 (t, J¼ 7.4 Hz, 2H), 1.75 (d, 2H), 1.65 (s,
1H), 1.30–1.23 (m, 2H), 0.96 (t, J¼ 7.4 Hz, 3H).

3.2.45. General procedure for preparation of the targeting com-
pounds 17a–17j
To the solution of 10 (1.00 g, 3.33mmol) in isopropanol (20ml)
was added intermediate 16a–16j (0.90 g, 3.33mmol) and glacial
acetic acid (0.02 g, 0.33mmol), the resulting reaction mixture was
heated to 50 �C for 20min. After cooling, the ferric chloride hexa-
hydrate (4.49 g, 16.63mmol) was added under stirring and the
reaction mixture was heated for 30min at 90 �C. After the reaction
is complete, it was quenched by adding water, solid was precipi-
tated. The solid was filtered, washed with water, ethyl acetate and
acetone twice, and dried to afford the targeting com-
pound 17a–17j.

3.2.46. 1–(2-Bromo-4-morpholinophenyl)-4–(2-chlorobenzyl)-[1,2,4]tri-
azolo[4,3-a]quinazolin-5(4H) -one (17a)
Off-white solid; yield: 75.7%; m.p.:238–240 �C; 1H NMR (400MHz,
DMSO-d6) d 8.29 (dd, J¼ 7.8, 1.6 Hz, 1H), 7.81–7.71 (m, 1H),
7.64–7.47 (m, 3H), 7.42–7.14 (m, 5H), 7.02 (d, J¼ 8.4 Hz, 1H), 5.50
(q, J¼ 16.4Hz, 2H), 3.77 (t, J¼ 4.8 Hz, 4H), 3.32 (t, J¼ 4.8 Hz, 4H);
13C NMR (100MHz, DMSO-d6) d (ppm): 158.71, 153.99, 148.60,
147.37, 136.18, 135.63, 134.25, 133.43, 133.39, 132.24, 129.84,
129.42, 127.87, 127.84, 127.37, 125.42, 121.66, 118.70, 118.00,
117.36, 114.05, 66.31, 47.51, 44.33; ESI-MS, m/z: 552.06 [MþH]þ.

3.2.47. 1-[2-Bromo-4–(4-methylpiperidin-1-yl)phenyl]-4–(2-chloro-
benzyl)-[1,2,4]triazolo[4,3-a] quinazolin-5(4H)-one (17 b)
Purple solid; yield: 83.3%; m.p.:257–259 �C; 1H NMR (400MHz,
DMSO-d6) d 8.29 (d, J¼ 7.8 Hz, 1H), 7.79 (t, J¼ 8.0 Hz, 1H), 7.58
(dd, J¼ 16.4, 7.9 Hz, 2H), 7.45 (d, J¼ 8.6 Hz, 1H), 7.39–7.12 (m, 5H),
7.06 (d, J¼ 8.4 Hz, 1H), 5.59–5.41 (m, 2H), 3.94 (d, J¼ 12.9 Hz, 2H),
2.87 (t, J¼ 12.3Hz, 2H), 1.73 (d, J¼ 12.8 Hz, 2H), 1.22 (q, J¼ 12.8,
12.4 Hz, 2H), 0.97 (d, J¼ 6.5 Hz, 3H); ESI-MS, m/z: 564.10 [MþH]þ.

3.2.48. 1-[2-Bromo-4-(pyrrolidin-1-yl)phenyl]-4–(2-chlorobenzyl)-[1,2,4]
triazolo[4,3-a]quinazolin- 5(4H)-one (17c)
Dark green solid; yield: 62.0%; m.p.:229–232 �C; 1H NMR (400MHz,
DMSO-d6) d 8.28 (d, J¼ 7.5 Hz, 1H), 7.78 (t, J¼ 7.8 Hz, 1H),
7.64–7.48 (m, 2H), 7.43 (d, J¼ 8.3 Hz, 1H), 7.34 (t, J¼ 7.3 Hz, 1H),
7.22 (dd, J¼ 19.4, 7.4 Hz, 2H), 7.08 (d, J¼ 8.2 Hz, 1H), 6.96 (s, 1H),
6.75 (d, J¼ 8.4 Hz, 1H), 5.50 (q, J¼ 16.3Hz, 2H), 3.37 (d, J¼ 5.8 Hz,
4H), 2.01 (d, J¼ 5.7 Hz, 4H); 13C NMR (100MHz, DMSO-d6) d (ppm):
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158.73, 153.54, 150.45, 148.50, 147.86, 135.58, 135.31, 134.36,
133.41, 133.32, 132.23, 129.83, 129.41, 127.84, 127.30, 125.97,
125.25, 117.34, 115.28, 114.89, 111.65, 47.85, 44.36, 25.46; ESI-MS,
m/z:: 536.07 [MþH]þ.

3.2.49. 1-[2-Bromo-4–(4-hydroxypiperidin-1-yl)phenyl]-4–(2-chloro-
benzyl)-[1,2,4] triazolo[4,3-a]quinazolin-5(4H)-one (17d)
Beige solid; yield: 72.2%; m.p.:214–217 �C; 1H NMR (400MHz,
DMSO-d6) d 8.28 (d, J¼ 7.9 Hz, 1H), 7.74 (t, J¼ 7.9 Hz, 1H),
7.63–7.50 (m, 2H), 7.45 (d, J¼ 8.6 Hz, 1H), 7.34 (d, J¼ 7.5 Hz, 2H),
7.26 (d, J¼ 8.0 Hz, 1H), 7.15 (t, J¼ 7.5 Hz, 2H), 7.04 (d, J¼ 8.5 Hz,
1H), 5.49 (q, J¼ 16.3 Hz, 2H), 3.74 (d, J¼ 12.3 Hz, 3H), 3.07 (t,
J¼ 11.4Hz, 2H), 1.87–1.81 (m, 2H), 1.47 (s, 2H); 13C NMR (100MHz,
DMSO-d6) d (ppm): 158.72, 153.54, 148.93, 148.56, 147.52, 135.60,
134.28, 133.43, 133.40, 132.24, 130.35, 129.83, 129.41, 127.87,
127.84, 127.34, 125.45, 117.97, 117.36, 115.28, 114.18, 66.08, 45.37,
44.31, 33.85; ESI-MS, m/z: 566.08 [MþH]þ.

3.2.50. 1-[2-Bromo-4-(dipropylamino)phenyl]-4–(2-chlorobenzyl)-
[1,2,4]triazolo[4,3-a]quinazolin-5 (4H)-one (17e)
Pink solid; yield: 47.3%; m.p.:183–186 �C; 1H NMR (400MHz, DMSO-
d6) d 8.27 (d, J¼ 7.2 Hz, 1H), 7.75 (s, 1H), 7.61–7.50 (m, 2H),
7.42–7.31 (m, 2H), 7.25 (s, 1H), 7.16 (s, 1H), 7.09 (d, J¼ 7.9 Hz, 1H),
7.00 (s, 1H), 6.85 (s, 1H), 5.51 (t, J¼ 16.1 Hz, 2H), 3.33 (s, 4H), 1.59
(s, 4H), 0.92 (s, 6H); 13C NMR (100MHz, DMSO-d6) d (ppm): 158.74,
151.19, 148.50, 147.79, 136.55, 135.58, 134.36, 133.42, 132.24,
129.84, 129.41, 128.38, 127.85, 127.30, 126.93, 126.23, 125.50,
117.35, 115.30, 114.76, 111.37, 52.21, 44.30, 20.28, 11.58; ESI-MS,
m/z: 566.11 [MþH]þ.

3.2.51. 1-[2-Bromo-4-(diethylamino)phenyl]-4–(2-chlorobenzyl)-
[1,2,4]triazolo[4,3-a] quinazolin-5 (4H)-one (17f)
White solid; yield: 41.9%; m.p.:229–232 �C; 1H NMR (400MHz,
DMSO-d6) d 8.32–8.25 (m, 1H), 7.80 (s, 1H), 7.57 (s, 2H), 7.41 (s,
1H), 7.35 (s, 1H), 7.26 (s, 2H), 7.13 (s, 2H), 7.06 (s, 1H), 6.89 (s, 1H),
5.51 (d, J¼ 18.2 Hz, 2H), 3.46 (s, 4H), 1.17 (s, 6H); 13C NMR
(100MHz, DMSO-d6) d (ppm): 158.85, 150.80, 148.60, 147.89,
147.14, 135.69, 134.46, 133.75, 133.61, 133.53, 132.34, 129.90,
129.51, 128.12, 127.96, 127.39, 125.68, 117.45, 115.42, 114.92,
114.76, 44.39, 42.70, 12.77; ESI-MS, m/z: 538.08 [MþH]þ.

3.2.52. 1–(2-Bromo-4-thiomorpholinophenyl)-4–(2-chlorobenzyl)-
[1,2,4]triazolo[4,3-a] quinazolin-5 (4H)-one (17 g)
White solid; yield: 35.8%; m.p.:248–250 �C; 1H NMR (400MHz,
DMSO-d6) d 8.29 (d, J¼ 7.9 Hz, 1H), 7.79 (s, 1H), 7.57 (d,
J¼ 12.8Hz, 2H), 7.47 (s, 1H), 7.37 (d, J¼ 18.1 Hz, 2H), 7.24 (d,
J¼ 17.6Hz, 2H), 7.16 (s, 1H), 7.07 (s, 1H), 5.55 (d, J¼ 15.7Hz, 1H),
5.46 (d, J¼ 16.4 Hz, 1H), 3.834 (m, 4H), 2.70 (s, 4H); ESI-MS, m/z:
658.04 [MþH]þ.

3.2.53. 1-[2-Bromo-4-(dibutylamino)phenyl]-4–(2-chlorobenzyl)-
[1,2,4]triazolo[4,3-a] quinazolin-5 (4H)-one (17 h)
White solid; yield: 59.6%; m.p.:176–179 �C; 1H NMR (400MHz,
DMSO-d6) d 8.29 (s, 1H), 7.79 (s, 1H), 7.57 (s, 2H), 7.35 (s, 1H), 7.22
(s, 3H), 7.03 (s, 1H), 6.86 (s, 1H), 5.50 (s, 2H), 1.57 (s, 4H), 1.37 (s,
6H), 0.96 (s, 8H); 13C NMR (100MHz, DMSO-d6) d (ppm): 158.74,
151.11, 148.49, 148.31, 147.77, 135.82, 135.56, 134.34, 133.41,
132.23, 129.83, 129.80, 129.40, 127.85, 127.30, 125.79, 125.49,

117.34, 115.28, 114.72, 111.34, 50.26, 44.30, 29.21, 20.08, 14.28;
ESI-MS, m/z: 594.14 [MþH]þ.

3.2.54. 1-[2-Bromo-4-(dimethylamino)phenyl]-4–(2-chlorobenzyl)-
[1,2,4]triazolo[4,3-a]quinazolin- 5(4H)-one (17i)
White solid; yield: 43.6%; m.p.:246–249 �C; 1H NMR (400MHz,
DMSO-d6) d 8.29 (d, J¼ 7.9 Hz, 1H), 7.78 (s, 1H), 7.58 (dd, J¼ 15.3,
7.7 Hz, 2H), 7.45 (d, J¼ 8.7 Hz, 1H), 7.35 (t, J¼ 7.7 Hz, 1H), 7.31–7.17
(m, 2H), 7.15–7.02 (m, 2H), 6.92 (d, J¼ 7.9 Hz, 1H), 5.55 (d,
J¼ 16.4 Hz, 1H), 5.46 (d, J¼ 16.4 Hz, 1H), 3.06 (s, 6H); 13C NMR
(100MHz, DMSO-d6) d (ppm): 158.73, 153.12, 148.53, 147.73,
146.50, 135.58, 135.08, 134.34, 133.41, 133.24, 133.16, 132.24,
129.84, 129.41, 127.85, 127.31, 125.33, 117.35, 115.61, 115.29,
111.72, 41.13, 39.19; ESI-MS, m/z: 510.05 [MþH]þ.

3.2.55. 1-[2-Bromo-4–(2-methylpiperidin-1-yl)phenyl]-4–(2-chloro-
benzyl)-[1,2,4] triazolo[4,3-a] quinazolin-5(4H)-one (17j)
White solid; yield: 76.2%; m.p.:245–248 �C; 1H NMR (400MHz,
DMSO-d6) d 8.29 (d, J¼ 7.8 Hz, 1H), 7.79 (s, 1H), 7.64–7.53 (m, 2H),
7.45 (d, J¼ 8.7 Hz, 1H), 7.35 (s, 1H), 7.32–7.19 (m, 3H), 7.15–7.04
(m, 2H), 5.50 (q, J¼ 16.5 Hz, 2H), 4.35 (s, 1H), 3.67–3.62 (d, 1H) 2.96
(s, 1H), 1.78 (s, 2H), 1.60 (d, J¼ 15.5 Hz, 4H), 1.12 (d, J¼ 6.5 Hz, 3H);
13C NMR (100MHz, DMSO-d6) d (ppm): 158.73, 153.43, 148.54,
147.58, 146.70, 135.60, 134.30, 133.57, 133.40, 132.23, 129.83,
129.41, 127.85, 127.34, 127.09, 125.54, 124.81, 117.35, 116.87,
115.28, 113.91, 49.10, 44.31, 41.56, 30.61, 25.63, 18.42, 13.52; ESI-
MS, m/z: 564.10 [MþH]þ.

3.3. Pharmacology

3.3.1. In vitro enzyme inhibition assay
The enzyme level activity of target compounds was evaluated
using self-isolated and purified SHP2 as the target protein, and
SHP244 was employed as a positive control. The concentration of
the target compound was 10 mM. Briefly, target compounds (5 mL)
and SHP244 (5 mL) were transferred to the test plate, with 2 repli-
cate wells for each group; then, 0.5 nM SHP2 protein (5 mL) was
added and incubated for 10min. Next, 0.5mM 2P-IRS-1 peptides
(5 mL) was added, and the reaction was carried out for 30min.
Finally, 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) was
added, and the reactions were performed for 30min at 25 �C, the
reactions were stopped by adding 5 mL of diluted 160 mM bpV.
The plate was read using Envision (Perkin Elmer) at 340 nm and
450 nm. For each experiment, the average of two replicate wells
was considered the result. The inhibition rate (%) was calculated
using the following equation:

%Inhibition

¼ ðODvalueofnormalhole� ODvalueofdosingholeÞ
=ODvalueofnormalhole� 100

3.3.2. MTT assay in vitro
Many studies have shown that SHP2 levels are frequently elevated
in melanoma. Inhibition of SHP2 activity, could effectively block
SHP2-mediated activation of ERK1/2 and AKT, and reduce viability,
migration, and colony formation of melanoma cells, thereby sup-
pressing the growth of tumour cells4,27,28. Therefore, human mel-
anoma cells (A375) were selected to assess the anti-proliferative
activity in vitro of compounds 12f, 12l, 12j, 17e, and 17f by
employing the standard MTT assay in vitro. SHP244 was used as a
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positive control and incubated for 72 h. Based on experimental
data, the drug concentration that can inhibit the growth of
tumour cells by half, i.e. the IC50 value, was calculated using Prism
software (GraphPad Software, Inc., La Jolla, CA, USA).

3.3.3. Metabolic stability of liver microsomes assay of compound
12l in vitro
The metabolic stability of liver microsomes was evaluated for tar-
get product 12l using SHP244 as the positive control. Standard
stock solution (100mM) of test compounds were prepared in
dimethyl sulfoxide (DMSO) and acetonitrile (ACN). The compounds
(1 mM) were preincubated with microsomes (human microsome:
HLM, Corning, lot No. 38296; Rat microsome: RLM, Xenotech, Lot
No. 1910100) (0.5mg/mL) for 10min at 37 �C in phosphate buffer
(pH 7.4). The incubation system was then activated by initiation
factors (NADPH, Chem-Impex International, Cat. No. 00616, 1 nM).
After incubation for different time points (0, 5, 15, 30, 45, and
60min) at 37 �C, cold (4 �C) acetonitrile (containing 200 ng/mL tol-
butamide and 200 ng/mL labetalol) was added to quench the
reaction. All sampling plates were shaken for 10min and then
centrifuged at 4000 rpm for 20min at 4 �C. The supernatants were
diluted three times with HPLC water and analysed using LC-MS/
MS29,30.

T1=2 ðminÞ : half � life

CL ðlL=min=mgÞ : intrinsicclearance
¼ 0:693=T1=2=microsomeproteinpermLðmgÞ:

3.3.4. In vitro kinetic solubility assessment of compound 12l
The test compounds (SHP244 and 12l, 10mM in DMSO; 10mL)
were added to the lower chambers of Whatman Miniuniprep vials
(GE Healthcare Whatman, Cat. No. UN203NPUORG). Followed by
the addition of 490 mL of phosphate buffer (50mM, pH 7.4) and
0.1 N HCl solution, respectively. The resulting mixture was oscil-
lated on a Barnstead shaker for 24 h at room temperature at a
speed of 800 rpm. Finally, the mixture was centrifuged for 20min
(4000 rpm) and injected into the HPLC system for analysis.

4. Results and discussion

4.1. Chemistry

The synthetic routes of target compounds 12a–12m, 14a–14m,
and 17a–17j are summarised in Scheme 1. First, the nucleophilic
substitution of isatoic anhydride and 2-chlorobenzylamine in the
presence of ethyl acetate at 40 �C afforded intermediate 831, fol-
lowed by the introduction of the disulphide bond by carbon disul-
phide and potassium hydroxide to obtain 932–35. Reflux in
isopropanol, the nucleophilic addition of compound 9 with 80%
NH2NH2�H2O to obtain 1036,37. Subsequently, a mixture of 10, aryl
formaldehyde, glacial acetic acid, and isopropanol was heated to
83 �C for 30min, followed by cooling to room temperature, and
the addition of ferric chloride hexahydrate under stirring; then,
the mixture was allowed to react at 83 �C for 1.5 h to obtain 11 or
1338,39, which reacted with aldehyde and appropriate secondary
amines undergoing Mannich-type condensation reaction to afford
target compounds 12a–12m and 14a–14m, respectively.
Subsequently, the substitution of compound 15 with the corre-
sponding secondary amine in the presence of potassium carbon-
ate and N,N-dimethylformamide (DMF) afforded 16a–16j. Finally,
target compounds 17a–17j were successfully obtained via the

condensation reaction of intermediate 10 with the corresponding
16a–16j in the presence of glacial acetic acid, ferric chloride hexa-
hydrate, and isopropanol at 90 �C for 30min, respectively40,41.

4.2. Biological activity

4.2.1. In vitro enzymatic assay
All synthesised triazoloquinazolinone derivatives were evaluated
for their inhibitory activity towards the SHP2 protein enzyme.
SHP244 was used as a positive control. The results are expressed
as inhibition values and summarised in Table 1. Values represent
the average of at least three independent experiments.

As shown in Table 1, all tested compounds displayed inhibitory
activities against SHP2 protein enzymatic activity. Compared with
SHP244, most 12a–12m compounds demonstrated similar or
higher sensitivity to SHP2, thus indicating that the introduction of
different secondary amines on the terminal phenyl ring main-
tained the inhibitory activity. The enzymatic assays revealed that
the position of the hydroxyl had a greater impact on activity,
which suggested that compounds with the hydroxyl substituent
at the 2-position of the phenyl ring exhibited a higher potency
than those with the hydroxyl substituent at the 4-position of the
phenyl ring. For example, compounds 12a (33.79% inhibition),
12e (30.80% inhibition), 12j (26.20% inhibition), and 12l (31.84%
inhibition) exhibited better inhibitory activity against the SHP2
protein at 10mM than compounds 14a (28.13% inhibition), 14e
(25.60% inhibition), 14j (13.48% inhibition), and 14l
(19.78% inhibition).

A preliminary assessment of structure-activity relationships
(SARs) suggested that different biological properties could be
observed when various groups were introduced into the phenyl
ring. The introduction of electron-donating groups (EDGs) exhib-
ited a positive effect on inhibitory activity. However, compounds
with electron-withdrawing groups (EWGs) on the phenyl ring
reduced the inhibitory activity. For example, target compounds
12a–12m (3-methoxy) and 14a–14m (3-methoxy) exhibited a bet-
ter effect at 10 mM than compounds 17a–17j (2-Bromo), indicating
that an appropriate electron density on the phenyl ring is prob-
ably crucial to enhance the inhibitory activity. Further analysis
revealed that compounds with different NR1R2 groups exhibit
different SHP2 inhibitory efficacies; compounds of 12a
(R1¼R2¼(CH3)2, 33.79% inhibition), 12d (R1¼R2¼morpholinyl,
27.56% inhibition), and 12l (R1¼R2¼piperazine-1-yl hydrochloride,
31.84% inhibition) exhibited higher inhibitory activity than 12f
(R1¼R2¼piperidinyl, 19.19% inhibition), 12g (R1¼R2¼4-methylpi-
peridin-1-yl, 17.08% inhibition), and 12i (R1¼R2¼4-carboxypiperi-
din-1-yl, 18.90% inhibition) at 10 mM. Moreover, as shown in Table
1, the most promising compound 12l showed a robust inhibitory
effect against SHP2 protein at 10 mM (31.84% inhibition).

However, compared with SHP244, the activity of target com-
pounds was not significantly enhanced, indicating that shortening
the distance between the target compound and LYS266 to facili-
tate the formation of hydrogen bonds is not ideal for improving
the inhibitory effect of the compound against SHP2 protein.
Therefore, in future investigations, modifying the alternate side
chain (chlorophenyl part) on the existing structure could be con-
sidered to increase its p-stacking interaction and improve the
inhibition efficiency.

In conclusion, given the kinase inhibitory activity of these tar-
get compounds, we obtained the following SARs: (a) compounds
with a hydroxyl substituent at the 2-position of the phenyl ring
presented higher SHP2 protein inhibitory activity than those with
a substituent at the 4-position; (b) the presence of EDGs such as
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methoxy groups, exhibited a positive effect on the inhibitory
activity; (c) different secondary amine groups (NR1R2 group) have
a certain effect on the inhibitory activity of SHP2 protein kinase.

4.2.2. In vitro cytotoxicity
The cytotoxicity of target compounds was evaluated against the
cancer cell line A375 using the MTT assay and SHP244 as the
positive control. The results are summarised in Table 2. We
selected five compounds based on their SHP2 inhibitory potential
(Table 1) to further explore the antitumor activity, evaluating their
efficacy against the cancer cell line A375 (melanoma cells). The
results were expressed as IC50 values. As shown in Table 2, all
selected compounds displayed significant cytotoxicity against

A375 when compared with SHP244. Among them, compounds
12l, 12j, 17e revealed excellent activity, presenting IC50 values of
14.67 mM, 9.66 mM, 14.7mM, respectively. These data indicated
again that compound 12l warrants further evaluation as an SHP2
protein inhibitor. Moreover, the piperazine group-containing sec-
ondary amine, which was selected to shorten the distance
between the target compound and LYS266, conferred the high-
est efficacy.

4.2.3. Metabolic stability of liver microsomes and kinetic solubility
assay for compound 12l in vitro
We next assessed the aqueous solubility of the obtained target
compounds. Accordingly, the metabolic stability of liver
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Scheme 1. Synthetic route of target compounds
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microsomes and kinetic solubility of the most potent compound
12l was determined. As shown in Table 3, compound 12l exhib-
ited considerable stability, presenting a clearance rate of 18.3 and
<9.6mL/min/mg in human and rat liver microsomes, respectively.
Simultaneously, the t1/2 of 12l on human and rat liver microsomes
was 75.8 and >145min, which is considerably greater than the
t1/2 of SHP244 on human and rat liver microsomes (14.2 and
12.2min, respectively). In addition, the kinetic solubility of 12l was
significantly improved when compared with that of SHP244 under
PB (pH 7.4) and 0.1 N HCl. These results indicated that the hepatic
stability and aqueous solubility of compound 12l were enhanced
by introducing a polar functional group.

Table 1. The enzyme inhibitory activities of target compounds on SHP2 protein
at 10 lM.

Compd. NR1R2
% Inhibitiona

10 lM

12a, 14a 33.79, 28.13

12b, 14b 25.78, 28.32

12c, 14c 24.39, 27.34

12d, 14d 27.56, 19.72

12e, 14e 30.80, 25.60

12f, 14f 19.19, 10.81

12g, 14g 17.08, 16.78

12h, 14h 21.98, 23.33

12i, 14i 18.90, 18.08

12j, 14j 26.20, 13.48

12k, 14k 23.36, 19.97

12l, 14l 31.84, 19.78

12m, 14m 25.70, 22.37

17a 17.58

17b 10.02

17c 24.15

17d 24.13

17e 16.07

(continued)

Table 1. Continued.

Compd. NR1R2
% Inhibitiona

10lM

17f 11.26

17g 9.26

17h 12.13

17i 13.29

17j 10.05

SHP244b 19.67
aData presented is the mean ± SD value of three independent determinations.
bUsed as a positive control.

Table 2. In vitro cytotoxic activities of the target compounds 12f, 12l, 12j, 17e,
17f, and SHP244 against the A375.

Compd. IC50 (lM)
a

12f 93.7
12l 14.67
12j 9.66
17e 14.7
17f 61.4
SHP244b >100
aIC50 values shown are the mean of duplicate measurements.
bUsed as a positive control.

Table 3. In vitro metabolic stability of liver microsomes and kinetic solubility for
compounds 12f and SHP244.

Compd. Species

Liver microsome stability

T1/2(min)
CL

(lL/min/mg)
Remaining
(T¼ 60min)

12l HLM 75.8 18.3 57.0%
RLM >145 <9.6 88.7%

SHP244a HLM 14.2 97.9 4.7%
RLM 12.2 114.0 2.9%

Kinetic solubility (lM)
12l PB (pH 7.4) 169

0.1 N HCl 191
SHP244a PB (pH 7.4) 12.6

0.1 N HCl <1.6
aUsed as a positive control.
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5. Conclusions

In summary, a series of novel triazoloquinazolinone derivatives
were designed, synthesised, and evaluated for their biological
activity. In addition, the metabolic stability of liver microsomes
and kinetic solubility of compound 12l were examined. Based on
our preliminary investigation, the most promising compound 12l
showed a potent inhibitory effect against SHP2 protein at 10mM
(31.84% inhibition) when compared with SHP244. Furthermore,
12l demonstrated superior antitumor activities, presenting an IC50
value of 14.67 mM against A375 cells. The SARs revealed that com-
pounds with hydroxyl substituents at 2-position of the phenyl ring
exhibited greater activity than compounds with a substituent at
the 4-positions. In addition, the presence of EDG such as methoxy
groups exhibited a positive effect on inhibitory activity. Moreover,
the piperazine group-containing secondary amine, selected to
shorten the distance between the target compounds and LYS266
afforded the highest efficacy. Finally, the results of hepatic stability
and kinetic solubility revealed that the aqueous solubility of com-
pound 12l was significantly enhanced by introducing the polar
functional group. In conclusion, compound 12l warrants further
assessment as a potential anticancer agent for the treatment of
human cancers.
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