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Investigation of the interfacial instability in a
non-Boussinesq density stratified flow using
linear stability theory
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Abstract: The main goal of this study is investigating the interfacial instability in the
shear density stratified flow in non-Boussinesq regime using linear stability theory. In
the current study, the pseudospectral collocation method employed Chebyshev poly-
nomials is applied to solve two coupled eigenvalue equations. Using the linear stability
analysis in the temporal framework, the effects of various parameters on the flow
instability have been studied. Obtained results in the present paper are showing that
increasing the bed slope, the flow becomes more unstable; also at R = 1, Kelvin–
Helmholtz and Holmboe waves appear. Furthermore, Holmboe waves were not
observed only at θ = 0. This study shows that at R ≠ 1, in addition to observing Kelvin–
Helmholtz and Holmboe waves with higher growth rates, by increasing the bed slope,
the growth rate and the number of Kelvin–Helmholtz modes increase. With an
improved understanding of the instability mechanisms and features with including the
non-Boussinesq effects, one can confirm some of the previous experimental results
and offer new indications to observations that have not been fully explained. In
designing laboratory experiments to observe Holmboe waves and estimating their
wavelengths and phase speeds the results of present paper are also could be useful.
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Keywords: Interfacial instability; linear stability analysis; stratified shear flows; non-
Boussinesq

1. Introduction
Stratified flows are important in the study of the atmosphere and oceans. Gravity or density
currents are the most frequent among the atmosphere and ocean streams which are a subset
of stratified flows. These flows are caused by the force of gravity and its effect on the density
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difference of the flow relative to the surrounding fluid or the environment. The density difference
could be due to temperature differences (such as lakes or atmosphere), salt concentration (such as
the estuary of the rivers, the sea or ocean), particles (like turbidity currents) or other materials.
Gravity currents can move below, above or through the surrounding fluid. The density difference
between the two fluids are the main cause of this kind of flows (Middleton, 1993).

Interfacial instabilities affect the behavior of stratified flows. An improved understanding of the
interfacial instabilities in stratified shear flows can aid to forecast exchange flow rates and vertical
mixing rates. The importance of this forecasting is because of its control on the vertical transfer of
salt, heat, nutrients, pollutants and momentum in stratified flows. A noteworthy quantity of mixing
in the interior ocean and atmosphere is produced by the formation of shear instabilities in density
stratified flows (Nourmohammadi, Afshin, & Firoozabadi, 2011). It is probable to predict instabil-
ities using linear stability analysis. The results of such tool provide a theoretical estimation of initial
instability frequency or wavelength, the instability growth rate, knowledge that is serious for
understanding and controlling shear flows (Khavasi & Firoozabadi, 2018, 2019).

The shearing between the layers causes interfacial instability in stratified shear flows. However, the
density difference in the flow plays also a significant role on determination of the type of instability. It
has been found that two types of instability can usually occur in these flows; the most frequently
observed and investigated is Kelvin–Helmholtz instability which has major role onmixing of the fluids.
This instability is characterized by its overturning billowing patterns, cats-eye structure and its cap-
ability tomix effectually. The chance of occurring Kelvin–Helmholtz instability is when the stratification
is not strong and the thickness of density transition layer between two layers of different densities is
comparable to the shear layer thickness. This mode of instability travels at approximately average
velocity between the two layers. Another mode of instability known as Holmboe. This mode seems
when the stratification is strong and the density transition layer ismuch thinner than that of the shear
layer. It has been shown in theoretical and numerical works that this mode of instability consists of
two traveling waves in opposite directions and the same growth rate (the imaginary part of wave
speed). Both theoretical and experimental investigations have been found that the speed of Holmboe
waves’ grows with Richardson number (Khavasi & Firoozabadi, 2019).

In contrast with Kelvin–Helmholtz mode, Holmboe modes are not stabilized again as stratifica-
tion increases. One of the main features of Holmboe instability is cusping waves fairly similar to
surface water waves in which mixed fluid builds up at the cusp of Holmboe wave. Finally, mixed
fluid is expelled as a wisp into the upper (lower) layer. Unlike Kelvin–Helmholtz instability, Holmboe
instability does not cause complete overturning of the density interface. It was found that
Holmboe instabilities grow more slowly than Kelvin–Helmholtz instabilities, the total amount of
mixing may be comparable, though. (Holmboe, 1962; Khavasi & Firoozabadi, 2019).

Instability at the interface of shear flows has been studied by many researchers, including Hazel
(Hazel, 1972), Smyth and Winter (Smyth & Winters, 2003), Alexakis (Alexakis, 2009), Rahmani
(Rahmani, Lawrence & Seymour 2011), Khavasi et al. (Khavasi & Firoozabadi, 2018, 2019) numerically
and experimentally, and also, Haigh and Lawrence (Haigh & Lawrence, 1999), Ortiz et al. (Ortiz,
Chomaz, & Loiseleux, 2002), Alexakis (Alexakis, 2005) and Barros and Choi (Barros & Choi, 2014)
analytically studied the effect of various parameters on characteristics of Kelvin–Helmholtz or
Holmboe instabilities. These researchers studied the effect of changing Richardson number or chan-
ging the ratio of shear layer thickness to density layer thickness, the effect of presence of boundaries,
slope effect, mechanism of instability, and different appearedmodes of instabilities and instabilities in
different geometries.

Khavasi et al. (Khavasi, Firoozabadi, & Afshin, 2013) proved that viscosity stabilizes the flow
where its effect is not the same in different wavelengths. Lin et al. (Lin, Xia, & Bao, 2014) studied
hydrodynamic instability of nanofluids in a channel by means of linear stability analysis. They
found that the existence of particles makes the flow more stable, however, they cannot completely
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make the current stable. Senatore et al. (Senatore, Davis, & Jacobs, 2015) investigated the effect of
non-uniformity in bulk particle mass loading on the linear development of a particle-laden shear
layer by means of a stochastic Eulerian-Eulerian model. They showed that non-uniform loading of
small-inertia particles (Stokes number < 0.2) may destabilize the inviscid mixing layer develop-
ment. Amini et al. (Amini, Khavasi, & Asadizanjani, 2016) used linear stability method to study the
effect of particle on density current. Their two-way coupled approach showed that the increasing
number of particles makes the current more stable. Barmak et al. (Barmak, Gelfgat, Ullmann, &
Brauner, 2017) examined the applicability of the Squire’s transformation for stability analysis of
stratified two-phase flow in horizontal and inclined channels. They proved that 2D perturbations
are the critical ones also for the case of inclined channel. Oladosu et al. (Oladosu, Hasnain, Brown,
Frigaard, & Alba, 2019) studied experimentally density-stable displacement flow of immiscible
fluids in inclined pipes. They found that compared to the previously studied miscible limit observe
behavior at the interface between the two fluids where the displaced fluid stays “pinned” to the
lower wall of the pipe upon pumping the displacing one.

In the mentioned researches, Boussinesq approximation is applied. Barros and Choi (Barros &
Choi, 2011) investigated the stability of shear density stratified flow by means of linear stability in
non-Boussinesq regime. They used linear profiles for density and velocity to analytically solve the
eigenvalue equations.

In some cases of real flows the density difference is such that Boussinesq assumption is not
valid furthermore, so, it could be useful to investigate the flow behavior and its instability in non-
Boussinesq regime. In this study, the interfacial instability in the non-Boussinesq stratified density
current was evaluated using linear stability theory. Non-Boussinesq stability of density currents
have not been studied yet by use of linear stability theory applying Chebyshev polynomials.

2. Materials and methods
The aim of the present study was to obtain the instability characteristics, such as unstable waves
appeared in various Richardson numbers, on the inclined substrate in the non-Boussinesq stratified
density flow. To study the behavior of the flow, growth rate and phase speed in terms of the
effective parameters in the flow such as Richardson number, R ( ¼ δv

�
δρ where δv is the velocity

and δρ is the density layer thickness) and bed slope have been studied. Also, the flow behavior at
high Richardson numbers (Richardson of 0 to 5, in the previous papers of the authors; for example
(Khavasi & Firoozabadi, 2018, 2019; Khavasi et al., 2013); it has been seen that some new modes of
instability can be found in higher values of Richardson number) will be examined and the effect of
slope will be studied as well.

Figure 1 shows a schematic of the studying flow. This two-dimensional flow is assumed to
include continuous layers and without diffusion.

Figure 1. Schematic of the pro-
blem under study with velocity
profiles U (y) and the base
concentration of ρ (y) of a two-
layer flow. δρ is the density
layer thickness and δV is the
shear layer thickness. g is
gravitational acceleration and
θ is the bed slope.
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According to the linear stability theory in the process of obtaining the equations, the multi-
plication of two perturbations and terms with derivatives higher than the second order of pertur-
bations are neglected. In addition, it is assumed that the base flow is parallel, i.e. the velocity
perpendicular to the surface, V, equals zero, and velocity components as well as the concentration
of the base flow are only functions of the direction perpendicular to the flow and do not change in
the transverse direction.

In this study, the Boussinesq assumption has been ignored and the following normal modes
have been used for the stream function of velocity and density fluctuations terms:

ψ x; y; tð Þ ¼ < φ yð Þeik x�ctð Þ
h i

ρ x; y; tð Þ ¼ < φ yð Þeik x�ctð Þ
h i (1)

Where < represents the real part. ψ is the stream function, ϕ is the complex amplitude of the
stream function for a normal mode with real wavenumber k. c is the complex phase speed and

also i ¼
ffiffiffiffiffiffiffi
�1

p
. x and y directions are defined in Figure 1.

As a result, in order to investigate the instability of the stratified flow, the final non-dimensional
equations become as Equations 2 and 3:

u� cð Þ φyy � α2φ
� �h i

� uyyφþ ϕy

ρ0
u� cð Þφy � φuy

h i
¼ J

ρ0
ϕ cos θþ ϕy

iα
sin θ

� �
þ

1
iα Re

φyyyy � 2α2φyy þ α4φ
h i (2)

u� cð Þφ ¼ ρyϕ (3)

where all parameters are dimensionless and J is the Richardson number which will play an important
role in analyzing the results. u(y) and ρ(y), are the non-dimensional background flow velocity and density
profiles and will be defined in the following section. α= αr+iαi where αr and αi are the (non-dimensional)
wavenumber and the spatial amplification rate, respectively. Also, ω= ωr+iωi where ωr and ωi are the
(non-dimensional) frequency and the temporal amplification rate of the perturbation, respectively.
y subscript is the differentiation with respect to normal direction. In the above equations c= ω/α=cr+ici
is the complex wave speed and J ¼ σgδv

�
V2 is the bulk (local) Richardson number (where σ is a typical

density measure). φ and ϕ represent the complex amplitude of the density and stream function
disturbances. The following boundary conditions are imposed

ϕð�1Þ ¼φð�1Þ ¼ϕ0ð�1Þ ¼φ0ð�1Þ ¼ 0

These equations can be solved by both numerical and analytical methods. In this study, these
equations are discretized with pseudo-spectral collocation using Chebyshev polynomials ignoring
the Boussinesq assumption (Khavasi et al., 2013).

For unlimited environments, Rational Chebyshev functions are used, which can be written as
follows:

TBn ŷið Þ ¼ Tn yið Þ (4)

where TBand Tare rational and (normal) Chebyshev polynomials. And the change of variables:

yi
^ ¼βyi

. ffiffiffiffiffiffiffi
1�

p
y2i yi 2 ; �1;1ð Þ ; yi

^ 2 �1;1½ � (5)

is used, where β is the weight function. Forβ<1, the maximum density occurs in the origin. Also, the
velocity and gradient concentration is maximum at the origin, where there is the smallest gridding,
so β<1 is a good choice for the problem of study. At 0:2<β<0:3, the most accurate responses with
the lowest cost of computing are obtained (Khavasi et al., 2013), which in the present study, the
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same solution has been coded and used applying non-Boussinesq conditions, to solve the
equations.

3. Results, discussion, and analysis
The main novelty of this study is using linear stability theory employing the pseudospectral
collocation method with Chebyshev polynomials in temporal framework to inspect the hydrody-
namic instability characteristics of the shear density stratified flow in non-Boussinesq regime. In
this study, the effect of various parameters such as slope, wave number and the ratio of thickness
of the shear layer to density layer concentration (R) on the interfacial instability in the stratified
flow, will be discussed by solving Equations (2 and 3). To solve instability equations in linear
instability method, the velocity profiles and concentration of the base flow should be determined.
The hyperbolic tangent profiles are of conventional profiles to choose for velocity and concentra-
tion of the base flow. All the profiles have been achieved based on experimental data and curves
crossing these results, and with regard to ease of application of hyperbolic tangent profiles (as well
as the possibility of comparison with previous researches), these profiles will be used for velocity (u
(y)) and concentration (ρ (y)) of the base flow.
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Figure 2. Changes of (a) growth
rate and (b) phase speed for
αr ¼ 0:3 and θ ¼ 0.
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u yð Þ ¼ tanh yð Þ ρ yð Þ ¼ tanh Ryð Þ

In which tanh is hyperbolic tangent. It should be noted that linear stability theory in temporal
framework has some limitations that make its results somehow different from reality: the main is
the assumption of linearization (eliminating higher-order terms in obtaining the instability equa-
tions) and the other limiting assumption is using normal modes which is not exactly the same as
the real perturbations. Using temporal framework is also not exactly realistic, because, it assumes
the growth of perturbations just in time.

3.1. The effect of slope on the stratified flow instability
To investigate the effect of slope, the equation governing the flow instability is obtained from the
Equations (2 and 3) assuming 1

Re ! 0 (to eliminate the effect of viscosity and just investigate the
slope influence).
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Figure 3. Changes of (a) growth
rate and (b) phase speed (the
legend is same as part a) for
αr ¼ 0:3 and θ ¼ 0:2. Solid line is
the first mode (Kelvin–
Helmholtz) and dotted line is
the second mode (Holmboe) of
instability.
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Changes in the growth rate and the phase speed at αr ¼ 0.3 and αr ¼ 0.5 in terms of the J, at
slopes 0 and 0.2, are shown, respectively, in Figures (2–5). In the figures, the horizontal axis
indicates the Richardson number and vertical axis has been represented in two sections of
phase speed (c*r= αrcr) and growth rate (ωi). Also, the solid lines of the graph is indicating the
first mode and the dashed lines show the second mode.

In Figure 2, it can be seen that the flow becomes stable at J = 0.08.

In Figure 3, first, the appeared Kelvin–Helmholtz waves become stable at J = 0.1 and then,
Holmboe waves appear at J = 0.4. By increasing J, at about J = 0.4, the second mode of Kelvin–
Helmholtz waves appears.
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Figure 4. Changes of (a) growth
rate and (b) phase speed for
αr ¼ 0:5 and θ ¼ 0.
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Figure 4 shows that the flow becomes stable at J = 0.07. In this case, only Kelvin–Helmholtz
waves appears, and Holmboe waves cannot be seen.

In Figure 5, first, the appeared Kelvin – Helmholtz waves gets stable and then, at J = 0.6 the
Holmboe waves appear and grow at higher Richardson numbers.

It can be concluded that in the non-Boussinesq conditions, at R = 1 and θ = 0, the Holmboe
waves does not appear. The figures also show that in a determined Richardson number, by
increasing the slope, the growth rate will be higher. Also, at each slope, the growth rate decreases
with increasing J, i.e. the flow is going to be stable, but the Kelvin–Helmholtz waves may appear
again after becoming stable.

Figure 5 shows that the second mode of Kelvin–Helmholtz also can appear. From this figure, it is
clear that by increasing the slope, the growth rate of unstable range increases. Using the physics
governing the shear flows, the effect of slope on the flow’s instability can be explained as follows:
since the slope, reduces the buoyancy force component (g’cosθ) which stabilizes the flow, and
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Figure 5. Changes of (a) growth
rate and (b) phase speed for αr ¼
0:5 and θ ¼ 0:2.
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increases the component accelerating the flow (g’sinθ), eventually results in increasing the flow’s
instability.

3.2. Changes of R at different slopes
In the previous section, the effect of slope was studied at R = 1. Since the ratio of velocity thickness
to density layer thickness are not equal in general and in reality (i.e., usually R ≠ 1), so it is better to
check the case R ≠ 1 at different slopes. In Figures 6 and 7, the graphs of the growth rate are
shown for αr ¼ 0:5 and θ ¼ 0:2.

Figure 6 shows that at R = 3, the flow becomes stable in αr ¼ 0:3 at J ≅ 0.38 and αr ¼ 0:5 at J ≅
0.6. In this case, similar to the R = 1 case only Kelvin–Helmholtz waves appear.
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Figure 6. Temporal growth rate
in terms of Richardson number
for R = 3 and Ө = 0.
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Figure (7(a)) shows that the appeared Kelvin–Helmholtz wave tends to become stable, but changes
its behavior at J ≅ 0.3 and suddenly its growth rate increases dramatically. In the second mode, the
Kelvin–Helmholtz waves are merged and changed at J ≅ 1.6, and Holmboe wave appears. In Figure (7
(b)) primarily, the first and second modes of kelvin–Helmholtz reach to each other at J ≅ 0.5 and
the secondmode stabilizes, and re-appears at J ≅ 1.6. Also in the first mode, first the Kelvin–Helmholtz
wave appears and then, the Holmboe wave appears at J ≅ 3.2.

These figures show that by increasing the slope, as mentioned in the previous section, the
growth rate increases and the stability areas for non-zero slope are different from the areas
with a slope of zero.

It should be noted that with increasing wave number, on the same conditions, the stability
increases. Reducing the chances of the Holmboe mode presence and increasing the chances of the
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Figure 3.
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presence of the Kelvin–Helmholtz mode in the same αr, J and R, by increasing the slope can be
explained as follows: the Holmboe mode occurs in conditions where the Richardson number is
high, and the Kelvin–Helmholtz mode is created when the Richardson number is small, this means
that if the ratio of buoyancy force to inertia force is remarkable, the Holmboe mode appears, and if
the ratio of inertial force to buoyancy force be considerable, the Kelvin–Helmholtz mode emerges.

4. Conclusion
Using linear stability method and normal modes, first, the instability equations were obtained for
a double-layered flow with density layer and on an inclined bed. Using these equations, the flow
stability was evaluated in the temporal framework. To solve the equations, the pseudo-spectral
method with Chebyshev polynomials is used. The base velocity and concentration profiles were
selected as hyperbolic tangent. The results of the present paper shows that instability character-
istics of the stratified flow considering the non-Boussinesq regime is different from the cases with
Boussinesq approximation (Khavasi et al., 2013). The results of the present paper can be useful in
the prediction of the unstable modes in reality and designing experiments in which the Boussinesq
approximation is meaningless. It is also shown that different parameters can affect the stability
features of the stratified shear layers. The precise prediction of unstable waves can help the better
understanding of influential parameters on mixing and entrainment.

Parametric study in the temporal framework is showed that:

● At R = 1 by increasing the slope, the range of the flow instability and the growth rate of the unstable
mode increases. In terms of Boussinesq assumption, only Kelvin–Helmholtz waves appeared
(Holmboe Waves are not seen), but in this study, the Holmboe is not appeared only at θ = 0.

● In R ≠ 1 by increasing the slope, the growth rate of Kelvin–Helmholtz mode increases.
Meanwhile, the number of Kelvin–Helmholtz modes also increases.
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