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ABSTRACT

Marine annelids are a globally distributed and species-rich group, performing important ecological roles
in macrobenthic communities. Yet, the availability of molecular resources to study these organisms is
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scarcer, comparatively with other phyla. Here, we present the first complete mitogenome of the

Atlantic ragworm Hediste diversicolor (OF Muller, 1776). The mitogenome (15,904 bp long) contains 13
protein-coding genes, 22 transfer RNA, and two ribosomal RNA genes, all encoded in the same strand.
Gene arrangement and composition are identical to those observed in two available congeneric spe-
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cies, Hediste diadroma and Hediste japonica. The phylogenetic analysis using both maximum-likelihood
and Bayesian inference methods reveal a well-supported monophyly of genus Hediste and the already
reported paraphyletic relationships within the subfamilies Nereidinae and Gymnonereidinae. Our results
highlight the relevance of increasing the molecular sampling within this diverse group of marine fauna.

Annelids (~20,000 species) are one of the most diverse group
of metazoans, representing one of the three major metameric
segmented animal taxa, distributed throughout marine,
brackish, freshwater, and terrestrial ecosystems (Struck et al.
2011; Weigert and Bleidorn 2016). Comprehending the
evolutionary history underscoring their complex body plan is
fundamental for understanding Bilateria evolution (Tessmar-
Raible and Arendt 2003; Raible et al. 2005; Rivera and
Weisblat 2009; Struck et al. 2011). Marine annelids are distrib-
uted from deep sea to intertidal zones, playing a dominating
role in macrobenthic communities (Nygren 2014; Kim et al.
2015). Moreover, they represent valuable resources for fishing
as well as valuable food items in aquaculture (Pombo et al.
2020), also providing a nutritionally correct balance of poly-
unsaturated fatty acids (PUFAs) to crustaceans and finfish
(Cardinaletti et al. 2009), a probable consequence of their
endogenous capacity to de novo synthesize PUFAs (Kabeya
et al. 2020).

Cryptic speciation events are common within marine
annelids (Nygren 2014). Consequently, molecular tools repre-
sent a fundamental approach to study annelid systematics,
with mitogenomes showing to be particularly useful to infer
phylogenies (see examples Struck et al. 2011; Liu et al. 2012;
Nygren 2014; Weigert et al. 2016; Weigert and Bleidorn 2016;
Alves et al. 2020). Despite this, some annelid groups, such as

the marine ragworms of family Nereididae (Blainville, 1818),
are still poorly represented by complete mitochondrial
genomes (Alves et al. 2020). As of April of 2021, only 23
Nereididae mitochondrial genomes were available on NCBI
(i.e. 2.8% of the species described). The importance of the
application of molecular data to study this family has been
recently evidenced in two studies that revealed the paraphy-
letic status of two traditionally recognized morphological
subfamilies (Nereidinae and Gymnonereidinae) (Liu et al.
2012; Alves et al. 2020). Furthermore, the use of complete
mitogenomes highlighted the existence of two distinct gene
orders within Nereididae, which also disagrees with the mor-
phologically described subfamilies (Alves et al. 2020). All
these highlight the importance of reevaluating morphological
taxonomic assessments and increasing the availability of
molecular markers for these organisms.

The genus Hediste (Malmgren, 1867) comprises five widely
distributed Nereididae species, generally found in shallow
brackish waters of the North Atlantic, East Asia, and North
Pacific coastlines (Sato and Nakashima 2003; Kim et al. 2016;
Park et al. 2020). Two of the five species have their complete
mitogenome sequenced, i.e. Hediste diadroma (Sato and
Nakashima 2003; Park et al. 2020) and Hediste japonica (Izuka,
1908) (Park et al. 2020). Producing new mitochondrial
genomes will help to fully explore the evolutionary history
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Figure 1. Bayesian inference phylogenetic tree based on 33 annelid sequences of 13 concatenated protein-coding genes. GenBank accession numbers are shown
ahead of species names. The * above the branches indicate both posterior probabilities and bootstrap support values above 95%.

and phylogenetic relationships within the genus, as well as
within the highly diverse Nereididae family. Here, we present
the first mitogenome of the Atlantic ragworm Hediste diversi-
color (OF Muller, 1776), a species widely distributed in both
sides of the temperate Atlantic (Geoffrey 2018).

An adult H. diversicolor specimen was collected by Andreas
Hagemann in Trondheim Fjord, in Leangbukta, Norway at
63.439151 N, 10.474605 E, where the species is known to occur
(e.g. Wang et al. 2019, 2020a, 2020b). A specimen was depos-
ited at the Interdisciplinary Center of Marine and
Environmental Research — CIIMAR (Prof. Filipe Castro, filipe.cas-
tro@ciimar.up.pt) under the voucher number 4HDIV3. Genomic
DNA extraction was performed using a tail segment and
whole-genome sequencing with lllumina 150bp paired-end
(PE) reads was performed by Novogene (Cambridge, UK). The
mitogenome was obtained using a 10% subsample of the
sequenced PE reads using GetOrganelle v1.7.1 (Jin et al. 2020).
Annotation was performed using MITOS2 (Bernt et al. 2013).
For the phylogenetic analyses, the sequenced H. diversicolor, all
available Nereididae (n=23), as well as 10 additional annelid
mitogenome sequences were used. Individual alignments of
the 13 protein-coding genes (PCG) were produced using
GUIDANCE (v.1.5) (Sela et al. 2015), trimmed with TrimAl v.1.2
(Capella-Gutiérrez et al. 2009), and concatenated with
FASconCAT-G  (https://github.com/PatrickKueck/FASconCAT-G)
resulting in 9630 bp. Phylogenetic inferences were conducted
using maximum-likelihood (ML) in IQ-TREE v.1.6.12 (Nguyen
et al. 2015) (with 10,000 ultrafast-bootstraps) and Bayesian
inference (Bl) in MrBayes v3.2.7 (Ronquist et al. 2012) (two inde-
pendent runs of 107 generations with a sampling frequency of
1000 trees). The best evolutionary models for each partition
were selected in PartitionFinder v2.2.1 (Lanfear et al. 2016) for
the MrBayes and by ModelFinder through IQ-TREE v.1.6.12
(Nguyen et al. 2015; Kalyaanamoorthy et al. 2017) for 1Q-Tree.

The circularized H. diversicolor mitogenome (MW377219)
has a total length of 15,904 bp, a GC content of 34.73% and

encodes 13 PCGs, 22 transfer RNA, and two ribosomal RNA
genes, all in the same strand. The length, gene composition,
and single strand positioning are expected within family
Nereididae. The gene arrangement is consistent with that
previously demonstrated in two others Hediste species (Kim
et al. 2016; Park et al. 2020).

Both ML and BI phylogenetic trees recovered the same top-
ology with high support for almost all nodes (Figure 1). The
three Hediste species were recovered as monophyletic and sis-
ter to a clade including two specimens of A. succinea with low
support for both Bl and ML analyses (Figure 1). This poorly sup-
ported node, as well as the paraphyly of the morphological
described subfamilies Nereidinae and Gymnonereidinae are in
accordance with a recent mito-phylogenetic study (Alves et al.
2020). Overall, the results obtained in the present study
reinforce the importance of increasing the molecular sample
representation within the family, as only then a comprehen-
sively informed taxonomic revision will be possible.
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