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Tensor-structured decomposition improves systems
serology analysis
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Abstract

Systems serology provides a broad view of humoral immunity by
profiling both the antigen-binding and Fc properties of antibodies.
These studies contain structured biophysical profiling across
disease-relevant antigen targets, alongside additional measure-
ments made for single antigens or in an antigen-generic manner.
Identifying patterns in these measurements helps guide vaccine
and therapeutic antibody development, improve our understand-
ing of diseases, and discover conserved regulatory mechanisms.
Here, we report that coupled matrix–tensor factorization (CMTF)
can reduce these data into consistent patterns by recognizing the
intrinsic structure of these data. We use measurements from two
previous studies of HIV- and SARS-CoV-2-infected subjects as
examples. CMTF outperforms standard methods like principal
components analysis in the extent of data reduction while main-
taining equivalent prediction of immune functional responses and
disease status. Under CMTF, model interpretation improves
through effective data reduction, separation of the Fc and
antigen-binding effects, and recognition of consistent patterns
across individual measurements. Data reduction also helps make
prediction models more replicable. Therefore, we propose that
CMTF is an effective general strategy for data exploration in
systems serology.
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Introduction

Whether during a natural infection, therapeutic vaccination, or an

exogenously administered antibody therapy, antibody-mediated

protection is a central component of the immune system. The

unique property of antibodies is conceptually simple—they undergo

affinity enrichment toward specific antigens—but the mechanisms

of resulting protection are mediated through a network of interac-

tions (Lu et al, 2017). Therapies are often optimized based upon the

titer or neutralizing capacity of the antibodies they deliver.

However, many of the mechanisms for antibody-mediated protec-

tion occur through secondary interactions with the immune system

via an antibody’s fragment-crystallizable (Fc) region. Although

more challenging to quantify and identify as the mechanism of

protective immunity, these immune system responses, such as

antibody-dependent cellular cytotoxicity (ADCC) (Hessell et al,

2007; Bournazos et al, 2014), complement deposition (ADCD)

(Lofano et al, 2018), cellular phagocytosis (ADCP) (Osier et al,

2014), and respiratory burst (Joos et al, 2010), are known to be just

as or more important in many diseases.

A suite of recent technologies promises to broaden our view of

antibody-mediated protection as the microarray did for gene expres-

sion. Systems serology aims to broadly profile the humoral immune

response by jointly quantifying both the antigen-binding and Fc

biophysical properties of antibodies in parallel (Arnold & Chung,

2017; Chung & Alter, 2017). In these assays, antibodies are first

separated based on their binding to a panel of disease-relevant anti-

gens (Brown et al, 2012, 2017). Next, the binding of the immobi-

lized antibodies to a panel of immune receptors is quantified. Other

molecular properties of the disease-specific antibody fraction that

affect immune engagement, such as glycosylation, may be quanti-

fied in parallel in an antigen-specific or -generic manner (Brown

et al, 2012, 2017; Mahan et al, 2014). By accounting for the two

necessary events for effector response—antigen binding and

immune receptor engagement—these measurements have proven to

be highly predictive of effector cell-elicited responses and overall
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antibody-elicited immune protection (Chung et al, 2015; Alter et al,

2018; Zohar et al, 2020).

Although systems serology provides a major advancement in our

ability to analyze the antibody-elicited immune response, analysis

of these data is often challenging. Standard machine learning meth-

ods, such as regularized regression, principal components analysis

(PCA), and partial least squares regression (PLSR), have been effec-

tive in identifying highly predictive immune correlates of protection

(Choi et al, 2015; Alter et al, 2018). However, identifying specific

molecular changes or programs that give rise to protection is more

difficult. First, because many of the measurements are overlapping

in the molecules they quantify, or measure co-dependent processes,

much of the data are highly intercorrelated (Chung et al, 2015;

Pittala et al, 2019). Particularly when analyzing polyclonal antibody

responses such as those which arise in vaccination or natural infec-

tion, protection may arise through single or combinations of molec-

ular species and features within the antibody response, through

either individual or combinations of antigens (Ackerman et al, 2016,

2018). One successful approach in serology analysis has been to

collapse molecular features into summary statistics, such as Fc

breadth or polyfunctionality, although this requires predefined

descriptors of these quantities (Ackerman et al, 2016). Alternatively,

patterns of interest can be experimentally derived, such as with

blocking experiments, but this is labor-intensive and requires pre-

existing monoclonal antibodies to define each pattern (Georgiev

et al, 2013). Unsupervised approaches that explicitly integrate

patterns across both antigen and Fc properties will help mechanisti-

cally characterize immune protection.

While systems serology measurements include a variety of dif-

ferent assays to quantify humoral response, a common overall

structure exists to the data. Most of the measurements quantify

the extent to which an antibody bridges all pairs of target antigen

and receptor panels, across a set of individuals (Arnold & Chung,

2017). Binding to the target antigen involves the antigen-binding

fragment (Fab) of an antibody, whereas immune receptor interac-

tions occur through its Fc region. Thus, it is natural to split them

up as they entail different regulatory processes. Along with the

dimension of individuals, these measurements, therefore, can be

thought of as a three-dimensional dataset, where every number in

this “cube” of data represents a single measurement (Fig 1A and

B). Then, separately from these measurements, some properties of

the humoral response, such as antibody glycosylation, may be

assessed but without separation across different antigens (Acker-

man et al, 2013; Mahan et al, 2014). With data of three or more

dimensions, tensor decompositions, a family of unsupervised

dimensionality reduction methods for higher order tensors, provide

a generalization of matrix decomposition techniques (Kolda &

Bader, 2009). These methods are especially effective at data reduc-

tion when measurements have meaningful multidimensional

features, such as time-course measurements (Martino et al, 2020).

Like PCA, tensor decomposition methods, when appropriately

matched to the structure of data, help visualize its variation,

reduce noise, impute missing values, and reduce dimensionality

(Omberg et al, 2007).

As the structure of systems serology data is well-suited to tensor

decomposition, we take advantage of this to reap the aforemen-

tioned benefits. As examples, we analyze two separate studies

wherein systems serology measurements were shown to predict

both functional immune responses and disease status within HIV-

and SARS-CoV-2-infected subjects (Alter et al, 2018; Data ref.: Zohar

et al, 2020). We first adapt a tensor decomposition approach—
coupled matrix–tensor factorization (CMTF)—to reduce these

measurements into consistent patterns across subjects, immunologic

features, and antigen targets. Inspecting these factors reveals inter-

pretable patterns in the humoral response, and these patterns’ abun-

dance across subjects predicts subjects’ functional immune

responses and infection state. Importantly, CMTF greatly improves

the interpretability of these predictions compared with methods that

do not recognize the structure of these data. This approach, there-

fore, provides a very general data-driven strategy for improving

systems serology analysis.

Results

Systems serology measurements can be arranged in tensor form
for greater dimensionality reduction

We first sought to determine whether the structure of systems

serology measurements could inform better data reduction strate-

gies (Fig 1). As an array-based measurement, wherein the amount

of signal is dependent upon the quantity of both antigen and Fc

interactions, we surmised that upon arranging measurements

according to the antigen or Fc feature assessed, we might more

effectively identify patterns within the data (see detailed justifi-

cation in Methods). We started by restructuring the HIV infection

serology data (Alter et al, 2018). To integrate the antigen-specific

array and gp120-exclusive glycan measurements, we used a form

of tensor-based dimensionality reduction, coupled matrix–tensor
factorization (CMTF; Fig 1B and C). By concatenating both the

unfolded tensor and matrix during the alternating least squares

(ALS) solving for the subject dimension, we achieve the optimal

low-rank approximation for both datasets (Fig 1D, see Materials

and Methods). This structure is like canonical polyadic (CP)

decomposition on a single tensor, or PCA on a single matrix (Fig 1D).

The approximation aims to explain the maximal variance across

both datasets, in contrast to partial least squares regression in the

matrix or tensor form (tPLS), which would explain only the shared

variance (Fig 1D).

To determine the extent of data reduction possible, we examined

the reconstruction error upon decomposition with varying numbers

of components (Fig 2A). As the datasets were formatted into a

three-mode (i.e., axis) 181 × 22 × 39 tensor and a 181 × 25 matrix,

we start with a structure of 159,823 entries, of which 95,484 or

~ 60% were filled with measurements (Fig 1B). After factorization

with 6 components, we are left with four matrices of 181 × 6,

22 × 6, 39 × 6, and 25 × 6. Therefore, we reduce the dataset to

~ 1.7% of the size ([181 + 22 + 39 + 25] × 6 = 1,602 numbers),

while preserving 62% of its variation (Fig 2A). For comparison, Fc

array assays where these measurements came from with sufficient

dynamic range reproduce roughly 80% of the variance across repli-

cates (Brown et al, 2012). Therefore, we are capturing the majority

but not quite all true variation across subjects and measurements.

We compared this with the data reduction possible with PCA with

the data organized in a flattened matrix form. CMTF consistently led

to a similar variance explained with half the resulting factorization
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size compared with PCA (Fig 2B). For example, as indicated by the

arrow, CMTF led to a normalized unexplained variance of 0.45 at

~ 1,024 values within the factorization, whereas PCA required

~ 2,048 to do the same. The difference between PCA and CMTF

must arise from the latter’s ability to “reuse” antigen patterns across

receptors, or vice versa. For example, if a component includes an

increase in FcγRIII binding overall, PCA would still need to repre-

sent this increase in the loadings for every FcγRIII-antigen measure-

ment. Thus, PCA is not able to “group” interaction effects across the

two dimensions. The difference cannot arise through relaxing

orthogonality; CMTF is still “hyper-orthogonal” (i.e., full rank

across all tensor modes), and linearly dependent components would

only reduce the total variance explained (Kolda & Bader, 2009).

Overall, highly effective dimensionality reduction gave us

confidence that this structured factorization identifies patterns of

meaningful variation.

As CMTF aims to maximize the explained variances across both

datasets, their relative scale influences the balance of the decompo-

sition (Fig 2C). We standardized the data during preprocessing by

scaling the matrix so that it contains the same amount of variance

as the tensor. In this case, CMTF explains ~ 62% of the tensor and

~ 40% of the matrix variance (R2X). When the matrix is scaled to

relatively larger variance, CMTF can achieve ~ 72% matrix R2X, at

the expense of the tensor R2X dropping below 35%. Conversely, a

smaller matrix does not increase the tensor R2X over 65% but

causes the matrix R2X to decrease sharply. Our approach of equal

variance scaling tuned the factorization to the range where it was

responsive to both datasets.

A

B C D

Figure 1. Systems serology measurements have a consistent multimodal structure.

A General description of the data. Antibodies are first separated based on their binding to a panel of disease-relevant antigens. Next, the binding of those immobilized
antibodies to a panel of immune receptors is quantified. Other molecular properties of the disease-specific antibody fraction that affect immune engagement, such as
glycosylation, may be quantified in parallel in an antigen-specific or -generic manner. These measurements have been shown to predict both disease status (see
methods) and immune functional properties—ADCD, ADCC, antibody-dependent neutrophil phagocytosis (ADNP), and natural killer cell activation measured by IFNγ,
CD107a, and MIP1β expression.

B Overall structure of the data under the CMTF framework. Antigen-specific measurements can be arranged in a three-dimensional tensor wherein one dimension each
indicates subject, antigen, and receptor. In parallel, non-antigen-resolved measurements such as quantification of glycan composition can be arranged in a matrix
with each subject along one dimension, and each glycan feature along the other. Although the tensor and matrix differ in their dimensionality, they share a common
subject dimension.

C The data are reduced by identifying additively separable components represented by the outer product of vectors along each dimension. The subject dimension is
shared across both the tensor and matrix reconstruction.

D Venn diagram of the variance explained by each factorization method. Canonical polyadic (CP) decomposition can explain the variation present within the tensor on
its own (Omberg et al, 2007), analogous to principal component analysis (PCA) on the glycan matrix. Tensor partial least squares regression (tPLS) allows one to
explain the shared covariation between the matrix and tensor (Zhang & Li, 2017). In contrast, here, we wish to explain the total variation across both the tensor and
matrix (Choi et al, 2019). This is accomplished with CMTF (see Materials and Methods).
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Factorization accurately imputes missing values

By rearranging the measurements into a tensor form, our data struc-

ture created an entry for every combination of antigen, subject, and

Fc property. However, as not every quantity represented by these

entries was measured in the dataset, this tensor was left with empty

positions or missing values. To demonstrate that CMTF was robust

with missing values, we benchmarked its ability to impute them.

Missing data are not uncommon to biological research. In an

experiment, subject samples can be limited or only be available for

a small set of measurements, or a subset of measurements can be

prioritized by investigators based on prior knowledge. Incapable of

handling missing values, one may have to exclude incomplete

measurements. In the HIV serology data, gp120-specific glycan

measurements were available for only half of the subjects. Conse-

quently, models using the glycan measurements required a smaller

patient cohort, and when they were included, the prediction perfor-

mance reduced (Alter et al, 2018). Good imputation performance

can not only potentially eliminate such trade-off but also help infer

unknown information. Moreover, factorization accurately imputing

missing values further supports that this approach identifies biologi-

cally meaningful and consistent patterns.

To evaluate the imputation performance of factorization, we first

artificially introduced additional missing values by randomly remov-

ing entire receptor–antigen pairs across all subjects (see Materials

and Methods). We then performed CMTF which effectively filled

these in and calculated the Q2X of the inferred values compared

with the left-out data (Fig 3A). Factorization imputed these values

with similar accuracy to the variance explained within observed

measurements up to six components (Fig 2A), supporting that it can

identify meaningful patterns even in the presence of missing

measurements. As we were effectively leaving out entire columns of

data when arranged in a flattened matrix form, we could not

compare this performance with PCA. Using the average along the

receptor or antigen dimensions led to Q2X values very close to 0. As

a less stringent imputation task, we left out batches of individual

values and evaluated our ability to impute them. CMTF showed

similar or slightly better performance when imputing individual

values compared with PCA (Fig 3B). This provides additional

evidence that the patterns identified by factorization are a meaning-

ful representation of the data.

Tensor decomposition accurately predicts functional
measurements and subject classes

We next evaluated whether our reduced factors could predict the

functional responses of immune cells and subject classes. Functional

responses included antibody-dependent complement deposition

(ADCD); cellular cytotoxicity (ADCC); neutrophil phagocytosis

(ADNP); and the level of natural killer (NK) cell activation repre-

sented by the expression of IFNγ, CD107a, and MIP1β. Subject

classes included whether subjects were able to control their infec-

tion and whether they were viremic at the time of study collection.

To predict the functional responses, we applied elastic net to the

decomposed factors (see Materials and Methods), and their predic-

tion accuracies were defined as the Pearson correlation between

measured and predicted values (Fig 4A and C). To predict the

subject classes, we applied logistic regression (see Materials and

Methods), and accuracy was defined as the percent classified

correctly (Fig 4B and D). To evaluate prediction, we implemented a

10-fold cross-validation strategy. In brief, in each fold, we used 90%

of the subjects to learn the relationship between the data and the

given prediction and then evaluated these predictions on the

remaining 10%. The average performance of each approach was

evaluated with every subject eventually held out in one of the 10

folds.

To determine the optimal number of components, we first evalu-

ated the prediction accuracies of CMTF with 1–14 components

(Fig 4A and B). With more components, functional response predic-

tion accuracies improved marginally and mostly plateaued after 6

A B C

Figure 2. CMTF improves data reduction of systems serology measurements.

A Percent variance reconstructed (R2X) versus the number of components used in CMTF decomposition.
B CMTF reconstruction error compared with PCA over varying sizes of the resulting factorization. The unexplained variance is normalized to the starting variance. Note

the log scale on the x-axis. CMTF consistently led to a similar variance explained with half the resulting factorization size compared with PCA. For example, as
indicated by the arrow, to obtain a normalized unexplained variance of 0.45, PCA required ~ 2,048 values, and CMTF needed only ~ 1,024 values.

C The overall and matrix- or tensor-specific R2X with varied relative scaling.
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components. Subject class predictions saw a leap from 3 to 4

components, especially for controller–progressor classification, and

all class prediction accuracies plateaued after 6 components. We

therefore concluded that 6 components were generally sufficient for

good predictions.

For comparison, we reimplemented the elastic net-based

immune functionality and subject predictions previously applied

to these data (Fig 4C and D, orange crosses) (Alter et al, 2018).

We observed similar performance to that reported. Differences

from reported results could be explained by adjustments we

made to the cross-validation strategy to prevent over-fitting (see

methods). Broadly, we saw overall our method performed simi-

larly to the previous method in predicting immune functional

responses and subject classes (Fig 4C and D, blue circles).

Although lower at 6 components, our prediction accuracy

increased slightly for ADCD and ADNP at higher numbers of

components (Fig 4A). CMTF also had similar prediction accuracy

for subject classes with 6 components (Figs 4D and EV1). Impor-

tantly, in all cases, randomizing the subjects’ classes completely

removed the ability to make these predictions (Fig 4C and D,

green squares).

As both functions and subject classes were predicted with

linear models, we plotted the component weights for these regres-

sion results (Fig 4E and F). All the NK activation measurements

(IFNγ, CD107a, and MIP1β) were highly correlated (Pearson

correlation > 0.85) and unsurprisingly had very similar model

weights, but ADCD, ADCC, and ADNP differed more (Fig 4E). To

quantify the stability of these component–function and compo-

nent–class relationships, we performed bootstrapping by resam-

pling the subjects with replacement and included error bars

representing the standard deviation of the model weights (Fig 4E

and F). In every case, most of the model weights varied little

across samples. By contrast, bootstrapping the elastic net model

of ADCD based on the original measurements themselves, as an

example, led to entirely different model weights (Fig EV2). We

overall concluded that CMTF preserves sufficient information to

predict these important features. Data reduction enables one to

identify patterns that are associated with functional responses and

subject classes, and component associations are more robust

upon resampling.

Factor components represent consistent patterns in the HIV
humoral immune response

We plotted the results of our factorization in four factor plots to

inspect the composition of each component across each factor

dimension (Fig 5). After ALS, components were ordered by their

variance, with component 1 having the greatest variance and

component 6 having the least. Because the effect of a component

is the product of weights on three modes, the original tensor is

invariant to coordinated sign flipping or scaling. We enforced that

the receptor and antigen factors are positive on average by

cancelling out negative effects along two factor modes. Factor

components were also scaled to fall within the range of −1 to 1,

and their scaling factors were 29.3, 12.4, 7.4, 7.2, 14.0, and 3.9

respectively. We elected to not scale the glycan factors on a per-

component basis so that the relative scaling is evident in the plot

itself (Fig 5D). Every component must be distinct along at least

one factor matrix due to hyper-orthogonality, so no component

was redundant.

The resulting factor plots can be read in two ways. First, one can

trace the effect of a component across different dimensions by look-

ing at that component within each plot. For instance, component 4

represents a subset of unique variation in the data that is higher in

viremic controllers (Fig 5A), broadly covarying across FcγRs (Fig 5B),

and increases p24 or decreases gp120 antigen binding (Fig 5C). In an

< 0.0

A B

Figure 3. CMTF accurately imputes missing values.

A Percent variance predicted (Q2X) versus the number of components used for imputation of 15 randomly held-out receptor–antigen pairs. Error bars indicate standard
error of the mean from repeatedly held-out pairs (N = 20).

B Percent variance predicted (Q2X) versus the number of components used for 15 randomly held-out individual values. Error bars indicate standard error of the mean
from repeatedly held-out values (N = 10).
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alternative view of the factorization results, one can ask how compo-

nents are different in the variance they explain within a single factor

mode. For instance, components 2 and 4 are very similar in their

receptor interactions (Fig 5B) but unique in their antigen binding

specificity (Fig 5C). Finally, the product of subject (Fig 5A) and

glycan (Fig 5D) factors reconstructs the glycan measurements.

Components 1 and 2 explained the most variance and had broad

receptor (Fig 5B) and antigen (Fig 5C) weighting, indicating that

they represent overall titers in a general manner. Some difference

exists within both components in their antigen specificity—compo-

nent 1 is weighted toward surface antigens, whereas component 2 is

more uniform in its antigen weights (Fig 5C). Component 1 (along

with component 4) was also uniquely high in viremic controllers

compared with other groups (Fig 5A). Component 3 represents a

similar antigen specificity to component 2 (Fig 5C) and similar

receptor set, except for most of the lectin-binding proteins (MBL,

PNA, SNA, VVL) and C1q (Fig 5B). Component 4 displayed similar

receptor specificity to component 1 (Fig 5B) but with unique antigen

specificity that was positive for intracellular antigens and negative

for surface ones (Fig 5C). Component 5 was surface antigen-specific

(Fig 5C) and strongly specific for LCA, PNA, and VVL (Fig 5B).

Finally, component 6 was weighted toward genotype-specific FcγR
measurements over all others (Fig 5B), with broad antigen speci-

ficity (Fig 5C). As these were (i) the most sensitive measurements

as indicated by their generally higher fluorescence signal before

normalization and (ii) the component’s variation was greatest for

the subjects that were low on component 1 (Fig 5A), we took this to

indicate the component explained variation specific to low-titer

subjects.

We were surprised to find little unique variation in the glycan

matrix factor along each component (Fig 5D). The weights within

each component were proportional to the dynamic range of each

measurement (most for G2S2 and less for total G0 as an example;

r2 = 0.82). We took this to indicate that there is little variation

explained in the glycan data beyond an overall increase or decrease.

As independent evidence of this, a one-component PCA decomposi-

tion of just the glycan matrix could explain > 70% of the variation

in the glycan data, even after centering.

A B E

C D F

Figure 4. CMTF-reduced factors accurately predict functional measurements and subject classes.

A Accuracy (defined as the Pearson correlation coefficient) of functional response predictions with different numbers of components.
B Percent of subject classes predicted accurately with different numbers of components.
C Prediction accuracy for different functional response measurements using six components.
D Fraction predicted correctly for subject viral and controller status using six components.
E, F Model component weights for each function (E) and subject class (F) prediction.

Data information: The shaded area/error bars in (A–D) come from repeating a 10-fold cross-validation (with 10 differently shuffled folds) 10 times (N = 10), and the error
bars in (E, F) come from bootstrapping 20 times (N = 20). All error bars indicate the standard deviation from repeated resampling.

6 of 14 Molecular Systems Biology 17: e10243 | 2021 ª 2021 The Authors

Molecular Systems Biology Zhixin Cyrillus Tan et al



Tensor method extensively reduces and visualizes dynamic
responses to SARS-CoV-2 infection data

To demonstrate the general benefit of tensor methods in systems

serology data analysis, we applied them to a separate dataset on

acute SARS-CoV-2 infection (Data ref.: Zohar et al, 2020). In this

dataset, samples from SARS-CoV-2-negative and -infected subjects

were collected over the course of infection for about 4 weeks. Anti-

bodies were tested for their antigen and Fc receptor engagement.

We restructured the data into a three-mode tensor according to the

sample, antigen, and receptor measured. In doing so, we obtained a

tensor of size 438 × 6 × 11 (Fig 6A). In this form, the tensor

contains no missing values. After log-transforming and centering

the data on a per-antigen–receptor basis, two components could

explain 74% of the variance, with 0.3% the size of the original

dataset ([438 + 6 + 11] × 2 = 910 numbers; Fig 6B).

The resulting factors clearly separated into a clear acute (e.g.,

IgG3, IgM, and IgA) or long-term (IgG1-specific) response pattern

(Fig 6C; Collins & Jackson, 2013), with the abundance of each

program in each sample indicated by the sample factors (Fig 6E).

Both components 1 and 2 generally shared broad specificity across

antigens with slight differences (Fig 6D). As expected, component 1

also represented stronger association with FcγR and FcαR immune

receptors (Fig 6C; Bruhns et al, 2009).

We proceeded similarly to earlier analysis (Zohar et al, 2020)

and plotted each sample by the collection time after symptom onset,

separated by the outcome of infection (SARS-CoV-2-negative,

moderate disease, severe disease, and deceased; Fig 6F). A

sigmoidal curve was fit to each temporal profile as a summary of

the data. In contrast to the earlier analysis, we were able to plot

these along the two components summarizing all the data, instead

of the 66 individual measurements. Overall, samples showed a

Δ

g
p

12
0

g
p

14
0

A B C D

Figure 5. Factor components represent consistent patterns in the HIV humoral immune response.

A–D Decomposed components along subjects (A), receptors (B), antigens (C), and glycans (D). EC: elite controller, TP: treated progressor, UP: untreated progressor, VC:
viremic controller (see Methods). All plots are shown on a common color scale after scaling each factor component within the range −1 to 1. Antigen names
indicate both the protein (e.g., gp120, gp140, gp41, Nef, and Gag) and strain (e.g., Mai and BR29). Descriptions of each receptor name can be found in Table 1.

Table 1. Descriptions of the receptor detections found within the
tensor analysis

Receptor Description

FcgRI FcγRI (Brown et al, 2017)

FcgRIIa FcγRIIa (Brown et al, 2017)

FcgRIIa.H131 FcγRIIa.H131 (Brown et al, 2017)

FcgRIIa.R131 FcγRIIa.R131 (Brown et al, 2017)

FcgRIIb FcγRIIb (Brown et al, 2017)

FcgRIIIa FcγRIIIa (Brown et al, 2017)

FcgRIIIa.F158 FcγRIIIa.F158 (Brown et al, 2017)

FcgRIIIa.V158 FcγRIIIa.V158 (Brown et al, 2017)

FcgRIIIb FcγRIIIb (Brown et al, 2017)

FcgRIIIb.NA1 FcγRIIIb.NA1 (Brown et al, 2017)

FcgRIIIb.SH FcγRIIIb.SH (Brown et al, 2017)

IgG1 Mouse anti-human IgG1
(Brown et al, 2012)

IgG2 Mouse anti-human IgG2 (Brown et al, 2012)

IgG3 Mouse anti-human IgG3 (Brown et al, 2012)

IgG4 Mouse anti-human IgG4 (Brown et al, 2012)

LCA Lens culinaris agglutinin (Brown et al, 2017)

MBL Mannan binding lectin (Brown et al, 2017)

PNA Peanut agglutinin (Brown et al, 2017)

SNA Sambucus nigra lectin (Brown et al, 2017)

VVL Vicia villosa lectin (Brown et al, 2017)

C1q Human C1q (Brown et al, 2017)

IgG Mouse anti-human pan-IgG
(Brown et al, 2012)
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time-dependent increase in factor values (Fig 6F). Interestingly, a

subset of PCR-negative subjects showed positive weights specific to

component 2, indicating some IgG1-specific pre-existing immunity.

As previously observed, severe cases displayed a component 1

response that, on average, had a higher initial and final quantity

than either moderate or deceased cases (Fig 6F and G). A logistic

regression classifier using just week 1 data predicted severe versus

deceased outcome, with an AUC of 0.73 (Fig 6G and H), comparable

with a random forest classifier in previous analysis (Zohar et al,

2020; AUC 0.71). Factorization with more components than 2 did

not improve classification accuracy.

Discussion

We show here that tensor-structured data decomposition can

improve our view of systems serology measurements. Specifically,

this approach recognizes that antibody variation takes place across

the distinct and separable antigen binding and Fc/receptor dimen-

sions. Using this property, we identify that these measurements can

be reduced more efficiently (Fig 2), this reduction is robust to miss-

ing values (Fig 3), and properties of the immune system and infec-

tion can be accurately predicted (Fig 4). Most critically, this form of

dimensionality reduction provides a clearer interpretation of the

resulting models (Fig 5) as it accounts for the high degree of

intercorrelation across each dimension. Finally, reducing the data

into patterns enables robust associations between the biophysical

parameters of antibodies and functional responses or immunological

status (Figs 4 and EV2).

The resulting factors and their association with infection state

extend prior knowledge regarding changes in humoral immunity in

HIV. One of the clearest patterns is an association of progression

status with components 1 and 4, representing an antigen shift

between surface and intracellular antigens (Figs 4F, 5C and EV1B).

Abundance of p24 antigen and its antibody titer has been proposed

as an effective marker of HIV progression (Sch€upbach et al, 2000),

and predictive of death (Rubio Caballero et al, 2000), although it

correlates strongly with viral RNA and CD4+ counts (Sabin et al,

2001). As we observe with component 4, viremic controllers have

been characterized as having especially high p24-specific IgG1 and

IgG2 driving phagocytic responses (Tjiam et al, 2015). The negative

association with component 1 likely reflects a decrease in antibody

titers overall which has separately been found to predict progression

(Tsoukas & Bernard, 1994). Therefore, although features of p24

abundance or antibody titers may have an incomplete and complex

relationship with progression, a p24/gp120 ratio may be more

predictive (Fig EV3). Viremia status was predicted through an even

decrease in many of the components (Fig 4F), generally opposite

the component weights predicting functional responses (Fig 4E).

This broad difference matches perfectly with previous observations

Receptors (11)

Antigens (
6)

S
am

pl
es

 (4
38

)

A

C D E

B F G H

Figure 6. Application of tensor factorization to SARS-CoV-2 systems serology measurements.

A Schematic of the data tensor. Measurements were arranged according to samples, target antigen, and receptor detection.
B Percent variance reconstructed (R2X) versus the number of components.
C–E Decomposed factor components along samples (C), antigens (D), and receptors (E).
F Subject component weights plotted according to the sample time after symptom onset, together and separated into PCR-negative subjects along with moderate,

severe, and deceased cases.
G Boxplot of subject component weights for just samples within the first week after symptom onset, separated by subject group (negative N = 33, mild N = 7,

moderate N = 122, severe N = 196, deceased N = 74). Each point represents a distinct biological sample. The three bands in each box represent the first, second,
and third quartiles of the weights, from the bottom to the top, respectively; the whiskers extend up to 1.5 times the interquartile range beyond the box range; any
outliers beyond the whisker ends are plotted as single points.

H ROC curve of logistic regression classifier for predicting severe disease versus deceased outcome. Model is built using the two component weights of the subject
factors. The shaded area indicates the standard deviation from a 10-fold cross-validation.
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that viral control is associated with polyfunctionality, rather than a

specific molecular program (Ackerman et al, 2016). Predicting

viremia using the viral RNA quantities, rather than classifying

groups based on a threshold, could reveal more specific regulatory

changes because, for example, elite controllers were heterogeneous

as a group, and this variation may correlate with viral RNA amounts

(Fig 5A; Côrtes, 2015).

The functional predictions and their component contributions

matched expected patterns. All three NK activation measurements

(CD107a, IFNγ, and MIP1β) had very similar weights to be expected,

given their high correlation (Fig 4E). The only component with a

negative weight with respect to gp120/gp140, component 4, showed

a negative or negligible contribution to functional predictions

(Figs 4E and 5C). More specifically, ADCC was predicted by positive

association with all the components that included both FcγRIII and
surface (gp120/gp140) antigen binding (components 1, 2, 3, and 6;

Figs 4E and 5B and C). ADCD had only two consistently positive

component weights—1 and 5—which can be taken to reflect

probably overall titers and lectin pathway complement activation,

respectively, as component 5 had unusually strong weights for the

glycan-binding probes LCA, PNA, and VVL (Fig 5B) (Merle et al,

2015). In contrast, although sparse models can predict these func-

tions accurately (Alter et al, 2018), one cannot assign significance to

the individual model weights as they change upon resampling the

dataset (Fig EV2), a challenge when modeling highly correlated

measurements such as these (Candes & Tao, 2007; Efron, 2020;

preprint: Tansey et al, 2021). Establishing links between specific

molecular factors and functional responses could be further

improved by experimentally introducing less correlated variation

into the data, such as by measuring samples after enzymatic glyco-

sylation modifications or depletion of certain isotypes (Albert et al,

2008; Chung et al, 2014). This also highlights the need for multivari-

ate serological profiling as single-factor studies are likely to find

indirect associations.

Although the glycan measurements had insufficient variation to

link them to specific molecular programs beyond variation in

amounts overall, future refinements to these measurements or anal-

ysis may reveal more precise regulation (Lofano et al, 2018). Glycan

measurements across a panel of antigens might reveal more specific

regulation, particularly as glycans are known to be tuned in an

antigen-specific manner (Kaneko et al, 2006; Albert et al, 2008;

Larsen et al, 2020). Paired glycan and biophysical measurements in

acute infection may also reveal more drastic glycan variation, espe-

cially given links with outcomes such as between severe COVID-19

and IgG fucosylation (Larsen et al, 2020; Zohar et al, 2020). A tensor

partial least squares regression approach would also reveal variation

specifically associated with glycan changes by specifically focusing

on variation shared in both datasets (Zhang & Li, 2017).

A more recent study examining SARS-CoV-2 infection allowed us

to explore whether tensor-structured dimensionality reduction has

benefits that extend to the serology of other disease and in longitudi-

nal studies (Fig 6). Surprisingly, we found that just two patterns

within these data could explain 74% of the variance (Fig 6B).

Although we were able to replicate the difference in dynamics

between severe and deceased cases (Fig 6F–H), the sufficiency of

just two patterns argues for quantitative differences in these two

patterns, rather than detailed qualitative changes in the immune

response (Zohar et al, 2020). Perceived differences between

individual measurements could arise in part from these two compo-

nent patterns being combined in each measurement. As evidence of

this, the reported measurements that differed in dynamics between

severe and deceased subjects were almost exclusively those we

observed to be weighted on both components 1 and 2, but those

specific to component 1 showed no difference between outcomes

(Zohar et al, 2020; Fig 6E and F). It is also difficult to draw conclu-

sions on a measurement-by-measurement basis, even in large stud-

ies such as this, due to large subject-to-subject variability and strong

correlations between measurements (e.g., Fig EV2). On the other

hand, it is possible that immunologically significant patterns remain

in the unexplained variance that are drowned out by the most

drastic changes (Larsen et al, 2020). There is also a challenge in

separating pre-existing partial immunity from prior exposures or

cross-reactivity with other coronaviruses; some PCR-negative cases

showed positive weights on component 2, presumably indicative of

long-term humoral responses, possibly from cross-reactivity with

other coronaviruses (Fig 6F) (Ng et al, 2020). Longer term longitudi-

nal studies of acute infection would allow one to observe the transi-

tion from acute immune response to lasting protection and

potentially better resolve the dynamics of class switching alongside

its functional consequences (Collins & Jackson, 2013).

Other tensor arrangements of serology data will help reveal new

patterns within these data. Indeed, here, we have arranged data

both with subject, antigen, and receptor modes, in either a coupled

form (Fig 1) or a single tensor (Fig 6A). With longitudinal data in

which time points can be aligned, one could create a mode repre-

senting the contribution of time (Chitforoushzadeh et al, 2016;

Farhat et al, 2021). Although each antigen is treated similarly along

one dimension, antigenic mutants or strains could also be separated

into separate tensor modes before decomposition. This could lead to

further data reduction (e.g., both strains of p24 and gp41 antigens

share a similar signature; Fig 5C) and simplify comparisons between

strains. Differences in the weights would also essentially serve as an

unsupervised prediction for competition experiments to reveal dif-

ferences in the binding targets of polyclonal serum (Georgiev et al,

2013). As compared with traditional blocking or mutational experi-

ments, antigens in these measurements are multiplexed across iden-

tifiable beads (Angeletti et al, 2017; Sesterhenn et al, 2019).

Therefore, making measurements across a wider antigen panel

requires just small amounts of each antigen and can be scaled to

hundreds of antigens without increased sample requirements.

Finally, CMTF could be used to link other types of immune response

measurements besides glycan quantitation to serology, such as

cytokines and gene expression.

More effective dimensionality reduction in turn enables new

ways of viewing antibody-mediated protection. Thinking of these

measurements as akin to the microarray for gene expression data

suggests new possibilities in leveraging these data. One valuable

property of CMTF is that it separates the immune receptor and

antigen-binding patterns within the data. This will enable surveys

for common Fc response patterns across diseases and studies

because these different datasets would still share this axis. This

“transfer learning” could therefore help identify common patterns of

immune dysregulation. With more extensive profiling of the various

glycosylation and isotype Fc forms, it would be possible to fix

the receptor axis of the decomposition, in effect matching new

measurements to specific known immunologic patterns. These
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pattern-matching approaches would be much like gene set enrich-

ment analysis for expression data (Subramanian et al, 2005). The

binding interactions of antibodies, though producing combinatorial

complexity, are a simple set of antigen and receptor binding. Ulti-

mately, one should be able to apply multivalent binding models to

mechanistically model the interactions within serum (Perelson &

DeLisi, 1980; Robinett et al, 2018; preprint: Tan & Meyer, 2021).

This might allow separation of avidity versus affinity in binding and

integration with extensive prior characterization of Fc properties,

such as the biophysical properties of individual glycoforms and

isotypes (Bruhns et al, 2009; Dekkers et al, 2017). A mechanistic

view could also help guide more advanced multimodality therapeu-

tic interventions, like inhibitors or enhancers of antibody response

that cooperate with the cocktail of endogenous antibodies (Kaneko

et al, 2006; Pagan et al, 2018).

Ultimately, a comprehensive view of immunity needs advance-

ments in measurements that are complementary to systems serol-

ogy. Much like how systems serology has served to profile

antibody-mediated protection, profiling methods are helping to char-

acterize T-cell-mediated immunity (Birnbaum et al, 2014). These

technologies, alongside more traditional technologies to profile cyto-

kine response, gene expression, and other molecular features,

promise to provide a truly comprehensive view of immunity. Inte-

grating these data will require dimensionality reduction techniques

that recognize the structure of these data alone and in combination.

Factorization methods, especially those operating on tensor struc-

tures, will be a natural solution to this challenge, due to their scala-

bility, flexibility, and amenability to interpretation (Omberg et al,

2007).

Materials and Methods

Reagents and Tools table

Reagent/resource Reference or source Identifier or catalog number

Software

TensorLy Python Library http://tensorly.org/ v0.6.0

SciPy Python Library https://www.scipy.org/ v1.7.0

NumPy Python Library https://numpy.org/ v1.21.0

Pandas Python Library https://pandas.pydata.org/ v0.2.5

Seaborn Python Library https://seaborn.pydata.org/ v0.11.1

Python https://www.python.org v3.9.5

Methods and Protocols

Subject cohort, antibody purification, effector function assays,
and glycan analysis
All experimental measurements were collected from prior work

(Alter et al, 2018; Data ref.: Zohar et al, 2020). Measurements were

clipped to be at least 0.1 (HIV glycan), 1.0 (HIV biophysical), or

10.0 (SARS-CoV-2 biophysical); log-transformed; and then centered

on a per-measurement basis across subjects. The thresholds before

log-transformation were determined to be well below the level of

noise in the assays using the negative controls for each. Two anti-

gens, gp140.HXBc2 and HIV1.Gag, were identified to only have one

and two receptor measurements, respectively, making their factor

values unstable because almost all measurements were missing.

These were removed on import during the tensor-based analysis.

HIV subjects were classified into four categories: untreated progres-

sors, who failed to control viremia without combined antiretroviral

therapy (cART); treated progressors, who similarly failed to control

viremia without cART but were on it for the study measurements;

viremic controllers, who possessed a viral load between 50 and

2,000 RNA copies/ml without cART; and elite controllers, who had

< 50 copies/ml without cART. These were then grouped into two

classifications: controllers (EC and VC) versus progressors (UP and

TP); and viremic (UP and VC) versus nonviremic (TP and EC).

Coupled matrix–tensor factorization
We decomposed the systems serology measurements into a reduced

series of Kruskal-formatted factors. Tensor operations were

performed using Tensorly (Kossaifi et al, 2019). Most measurements

were made across specific antigens, and we structured them into a

three-mode tensor, X , whose modes represent subjects, receptors,

and antigens. Separately, gp120-associated antibody glycosylation

was measured for half of the HIV subjects. These measurements

were structured into a matrix, Y, representing the quantities for each

subject (Fig 1).

Shaping antigen-specific data into a three-mode tensor recognizes

that measurements of the same receptor or antigen should share

variation within each component. However, as not all receptor–anti-
gen pairs were measured, the constructed tensor contained missing

values from the perspective of this data structure. Throughout the

factorization algorithm, we used censored least squares solving,

with rows corresponding to missing values removed.

In preprocessing, we scaled the matrix so that it contained the

same amount of variance as the tensor. To perform CMTF, we

assumed the subject mode was shared between the tensor and the

matrix:

X≈ ∑
R

r¼1
ar ∘ br ∘ cr ¼ bX
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Y ≈ ∑
R

r¼1

ar ∘ dr ¼ Ŷ:

Here, “∘” represents the vector outer product and R is the total

number of components in the factorization. The original tensor is

approximated as a sum of R rank-one tensors constructed by the

vector outer product along each mode. The original matrix is repre-

sented by the sum of R rank-one matrices formed by the outer

product of row and column vectors. For the r-th component, ar, br,

and cr are vectors indicating variation along the subject, receptor,

and antigen dimensions, respectively, and dr is a vector indicating

variation along glycan forms within the glycan matrix.

Decomposition was initialized using singular value decomposi-

tion of the unfolded data along each mode, with missing values

imputed by a one-component PCA model and entirely missing

columns removed. We then optimized the decomposition using an

alternating least squares (ALS) scheme (Kolda & Bader, 2009) for up

to 2,000 iterations. In each ALS iteration, linear least squares solving

was performed on each mode separately (preprint: Acar et al, 2011;

Battaglino et al, 2018):

min
A

k X 1ð ÞY
� ��A C�Bð ÞTDT

h i
k2

min
B

kX 2ð Þ �B C�Að ÞT
h i

k2

min
C

kX 3ð Þ �C B�Að ÞT
h i

k2

min
D

kY�ADT k2

where X 1ð Þ, X 2ð Þ, and X 3ð Þ are the tensor unfoldings of X along

each mode, and “�” represents a Khatri–Rao product. The R2X

was checked on each even iteration, and decomposition was termi-

nated early if the change was found to be < 10−5.

Justification of multiplicative factor interactions
Kruskal-formatted tensors are structured such that each factor

component (receptors, antigens, subjects) should be multiplied

together to reconstruct the data. This structure is simply a higher

dimensional generalization of matrix decomposition techniques like

PCA or non-negative matrix factorization, in which scores and load-

ings matrices are multiplied together to reconstruct the data. An

expectation of these approximations is that variation within the

tensor occurs in a pattern that can be localized to each tensor slice,

which is justified by the nature of the measurements being consid-

ered. These measurements are made in an array format, wherein

plasma samples from subjects are incubated with individually iden-

tifiable beads covalently conjugated with antigens (Brown et al,

2012, 2017). The conjugated antigens isolate IgG fractions specific

to those targets. After washing, the beads are incubated with fluo-

rescently labelled detection reagents that bind to the isolated IgG

depending upon their properties. Thus, in essence, the assay is a

bead-based sandwich ELISA, in which IgG is the sandwiched target.

Given the format, the amount of fluorescence measured on a given

bead should be proportional to both (i) the amount of IgG isolated

on the bead and (ii) the fluorescence signal obtained per isolated

IgG (two of the tensor modes), supporting their multiplication. A

multiplicative relationship allows each factor to contribute posi-

tively, negatively, or not at all to the variation represented by a

component by a positive, negative, or zero weighting. A strong

validation of this structure in a tensor form is the large extent to

which the data can be reduced without loss of information. It also

fits with the biological expectation that antibody Fab variation influ-

ences the data along the antigenic slices, whereas Fc variation influ-

ences the data along the receptor ones.

Reconstruction fidelity
To calculate the fidelity of our factorization results, we calculated

the percent variance explained, R2X. First, the total variance was

calculated by summing the variance in both the antigen-specific

tensor and the glycan matrix, where included:

vtotal ¼kX k2þkY k2:

Variance was defined as the sum of each element squared, or the

square of the norm. Any missing values were ignored in the vari-

ance calculation throughout. Then, the remaining variance after

taking the difference between the original data and their reconstruc-

tion was calculated:

vr;antigen ¼kX � bXk2

vr;glycosylation ¼kY� Ŷk2:

Finally, the fraction of variance explained was calculated:

R2X¼ 1�vr;antigenþvr;glycosylation
vtotal

where indicated as Q2X instead, this quantity was calculated only

for values left out to assess the fidelity of imputation.

Logistic regression/elastic net
The data were centered and variance-normalized prior to model

assembly. Logistic regression and elastic net were performed using

LogisticRegressionCV and ElasticNetCV implemented

within scikit-learn (Pedregosa et al, 2011). Both methods used

10-fold cross-validation to select the regularization strength with

smallest cross-validation error and a fraction of L1 regularization

equal to 0.8 to match previous results (Alter et al, 2018). Logistic

regression used the SAGA solver (preprint: Defazio et al, 2014).

Cross-validation
We employed a 10-fold cross-validation strategy to evaluate each

prediction model. Subjects were randomly assigned to folds to prevent

the influence of subject ordering in the dataset. We found that sharing

the cross-validation fold structure between hyperparameter selection

and model benchmarking led to consistent overfitting. Therefore, we

used a nested scheme in which the folds were assigned differently for

hyperparameter selection and model performance quantification.

Principal components analysis
Principal components analysis was performed using the implemen-

tation within the Python package statsmodels and the SVD algo-

rithm. Missing values were handled by an expectation–
maximization approach wherein they were filled in repeatedly by

PCA. This filling step was performed up to 100 iterations or until

convergence as determined by a tolerance of 1 × 10−5.
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Missingness imputation
To evaluate the ability of factorization to impute missing data,

we introduced new missing values by removing (i) entire recep-

tor–antigen pairs or (ii) individual values from the antigen-

specific tensor as indicated and then quantifying the variance

explained on reconstruction (Q2X). More specifically, in the first

situation, fifteen randomly selected receptor–antigen pairs were

entirely removed (2,715 values) and marked as missing across all

subjects, leaving ~ 93,000 values for training. In the second, fif-

teen randomly selected individual values were removed, leaving

~ 96,000 training values. CMTF decomposition was performed in

each trial as described before, and the left-out data were

compared with the reconstructed values. There were 20 or 10

trials performed in each imputation situation, respectively. Vary-

ing numbers of components were used for decomposition, and a

Q2X was calculated for each. In the second case, we compared

CMTF with PCA-based imputation with the dataset flattened into

a matrix form.

Fitting sigmoidal curves
The sigmoidal curves in Fig 6F were fit to y¼A=½1þ
exp �k x�x0ð Þð Þ�þC using the Levenberg–Marquardt algorithm as

implemented within curve_fit in the Python package scipy. The

initial optimization point was set so that A was 0.6 of the y range; C

was the smallest y; x0 was the median x; and k was either 0.5 or

−0.5, depending on whether the mean of the first half of y’s was

larger or smaller than that of the latter half.

Data availability

The computer code produced in this study is available on GitHub

(https://doi.org/10.5281/zenodo.5184449).

Expanded View for this article is available online.
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