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The clustered regularly interspaced short palindromic repeat

(CRISPR)-associated protein (Cas) genome editing system

(CRISPR-Cas) is revolutionizing agriculture. In this system, a guide

sequence that matches to a particular genomic DNA is placed in

front of a synthetic RNA that consists of a scaffold sequence

necessary for Cas-binding to form a guide RNA (gRNA). gRNA/Cas

complex binds to the target DNA that contains a protospacer

adjacent motif (PAM) via base-paring and generates a double-

strand break (DSB) by Cas protein. Mutations will be created

when the DSB cannot be perfectly repaired. Among kinds of Cas

variants, Cas9 and Cas12a (also termed Cpf1) are the two major

nucleases with highest edit efficiency. NGG (N = A, T, G or C) for

SpCas9 from Streptococcus pyogenes, TTTN for Cpf1 from

Acidaminococcus or Lachnospiraceae, is necessary for recruiting

the nuclease to produce DSBs.

The efficiency of CRISPR-Cas is largely determined by the

sequence of gRNA and the chromatin status of target region.

Guide RNA devotes to direct the CRISPR-Cas to the target editing

(on-target) sites and Cas protein binds to open chromatin with

higher affinity thus resulting in higher efficiency. In addition,

nucleotide polymorphisms in guide sequence greatly affect

editing efficiency. To date, a number of CRISPR gRNA design

tools have been developed but hardly include other information

than base-paring. A gRNA design tool that quickly scans the

genome for on-targets and off-targets, and considers chromatin

accessibility and single nucleotide polymorphisms (SNPs) at target

region is highly demanded, especially for wheat with a gigantic

genome.

To address the above issues, we developed CRISPR-Cereal, a

web-based gRNA design tool integrates the information of gene

expression profile, chromatin status including chromatin open-

ness and histone modifications, and SNP variations of the putative

targets for three leading crops, wheat (Triticum aestivum), maize

(Zea mays) and rice (Orazy sativa) (Figure 1a,b). The genome of

wheat IWGSCv1.1 (Appels et al., 2018), O. sativa subsp. indica cv

Minghui63 (MHRS3) (Song et al., 2021), O. sativa subsp. japonica

cv Nipponbare (IRGSP-1.0) and the B73 maize genome AGPv4

(Jiao et al., 2017) are used as reference genomes. Notably, the

MHRS3 genome is the first gap-free genome in crops, which

allows gRNA design for ‘dark area’ like centromeric region

(Figure 1b). The gap-free genome MHRS3 unmasks more than

395 non-TE genes located in centromere regions (Song et al.,

2021).

Previously, we generated a whole-genomic pool for scanning

gRNA in maize (http://crispr.hzau.edu.cn/CRISPR-Local/), but

this approach is not suitable for wheat which has a 16 Gb

genome (Figure 1b), seven times bigger than maize (Appels

et al., 2018; Jiao et al., 2017). It is an obstacle to speedy screen

genome-wide off-targets in wheat. To solve the problem,

CRISPR-Cereal applies the command-line tool, FlashFry to

perform genome-wide scan for off-targets (McKenna and

Shendure, 2018). FlashFry uses guide-to-genome aggregation

model to scan the genome and supports screening for uncon-

strained number of mismatches for putative off-targets. Given

that DNA cleavage by Cas9 allows three to five mismatches, we

made the option of mismatches range from zero to five.

CRISPR-Cereal could identify all the off-targets with less than

four mismatches for each candidate guide in 49 s in wheat, 35 s

in maize and 9 s in rice, which outperforms all the other gRNA

design tools including E-CRISP (http://www.e-crisp.org/E-CRISP/),

CRISP direct (http://crispr.dbcls.jp/) and wheatCRISPR (https://

crispr.bioinfo.nrc.ca/WheatCrispr/) in which either only stands

two mismatches or cannot search for genome-wide off-targets

speedily. The output of CRISPR-Cereal contains information for

all off-targets, which can be downloaded for further compari-

son. We further compared the off-targets between CRISPR-

Cereal and Cas-OFFinder (http://www.rgenome.net/cas-offinder/),

and observed that the off-targets detected by the above two

tools are very similar (details in help page of the website).

Significantly, this is the first time to perform genome-wide off-

target scan in wheat. We randomly submitted three different

wheat DNA sequences in FASTA format to search genome-wide

off-targets with 0–5 mismatches. It shows that the off-target

numbers could reach up to several millions (Figure 1c), implying

the importance of whole-genome scan for off-targets. The on-

target and off-target scores are predicted with the widely used

on-target metrics and cutting-frequency determination (CFD)

scoring scheme (Doench et al., 2014, 2016). CRISPR-Cereal

provides the information of GC content, position, proximal gene,

location of gene structure element (promoter, exon, intron or

intergenic), efficiency score of on-targets and genome-wide off-

ª 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

2141

Plant Biotechnology Journal (2021) 19, pp. 2141–2143 doi: 10.1111/pbi.13675

https://orcid.org/0000-0001-8165-7335
https://orcid.org/0000-0001-8165-7335
https://orcid.org/0000-0001-8165-7335
https://orcid.org/0000-0002-3005-526X
https://orcid.org/0000-0002-3005-526X
https://orcid.org/0000-0002-3005-526X
mailto:
mailto:
http://crispr.hzau.edu.cn/CRISPR-Local/
http://www.e-crisp.org/E-CRISP/
http://crispr.dbcls.jp/
https://crispr.bioinfo.nrc.ca/WheatCrispr/
https://crispr.bioinfo.nrc.ca/WheatCrispr/
http://www.rgenome.net/cas-offinder/
http://creativecommons.org/licenses/by/4.0/


targets (Figure 1d). For the off-targets in wheat, CRISPR-Cereal

specifies whether they belong to the homologous group in the A,

B or D sub-genomes (Figure 1d), and telling users whether the

selected gRNAs would cause unintended editing in the homol-

ogous genes from the sub-genomes.

The importance of regulatory elements such as promoters

and distal enhancers in gene expression has been increasingly

documented (Yan et al., 2019). To ensure more efficient editing of

genes or functional elements of interests, we integrated gene

expression, chromatin accessibility and epigenetic modifications
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Figure 1 gRNA design using CRISPR-Cereal tool. (a) Regulome and SNP information are available for on-targets identified by CRISPR-Cereal. (b) The crop

genomes included in CRISPR-Cereal. (c) The numbers of genome-wide off-targets are increased when allowed mismatches are from zero to five. (d) CRISPR-

Cereal basal result page for gRNA designing. (e) The regulome visualization page using GBrowse. (f) The regulome information in 2 kb region around the

on-target site. (g) The chromatin accessibility on the upstream 350 bp of OsWOX11. (h) The chromatin accessibility information on TG2 target region. (i)

The correlation between mutant frequency and chromatin accessibility in gRNAs target sites. (j) The SNP information on TG7 target region. (k) The

workflow of gRNA design using CRISPR-Cereal.
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to assist gRNA design (Figure 1d–f). We collected data sets of

assay for transposase-accessible chromatin using sequencing

(ATAC-seq), DNaseI-hypersensitivity sequencing (DNaseI-seq),

and formaldehyde-assisted isolation of regulatory elements by

sequencing (FAIRE-Seq) to locate open chromatin, data from

chromatin immunoprecipitation sequencing (ChIP-seq) to mark

histone modifications, and data from whole-genome bisulphite

sequencing (WGBS) to present DNAmethylation level. Information

of the data sets was listed in http://crispr.hzau.edu.cn/CRISPR-Ce

real/help.php. The data sets were reanalysed and could be easily

visualized by Generic Genome Browser (GBrowse) 2.0 (https://

github.com/GMOD/GBrowse) after clicking the on-target position

(e.g. 1A:-1264382) on the elementary result page ofCRISPR-Cereal

(Figure 1d,e). Users could extend to a widely region to see the

global regulome information around targets (Figure 1f). Besides,

to further help users decide which gRNA to use, the chromatin

status of the targets has been scored (Figure 1d). The chromatin

accessibility information helps to choose and design gRNAs.

Recently, Gong and colleagues reported that when gRNA targeted

350 bp upstream ofOsWOX11, the edit efficiency was high (Gong

et al., 2020). We found that the reason might be due to the open

chromatin feature at that region (Figure 1g). In addition, the gRNA

for TG2 that failed to activate transcription is partly located in anun-

open chromatin region (Gong et al., 2020) (Figure 1h). To further

confirm the relationship between editing efficiency and chromatin

accessibility on the gRNAs target sites, we randomly collected the

published data for 84 endogenous sites and checked the chromatin

accessibility on the corresponding on-target sites in rice callus

(Zhang et al., 2012). As expected, gRNAs targeting open chromatin

regions result in significantly higher editing efficiency than those

against un-open regions (R = 0.34, P = 0.002) (Figure 1i).

To expand the application of CRISPR-Cas tool from reference

genome to elite cultivars, CRISPR-Cereal collected and visualized

SNPs information from Ensembl Plants (ftp://ftp.ensemblgenome

s.org/pub/plants/release-48/variation/vcf/) and RiceVarMap v2.0

(http://ricevarmap.ncpgr.cn/) for rice, MaizeSNPDB (https://venya

o.xyz/MaizeSNPDB/) for maize and 487 wheat genotypes (Pont

et al., 2019). Remarkably, we found that 39.59% guide

sequences in rice genome possess SNPs, which would cause

mismatches if guide sequence would be decided only by

reference genome. One example is that the gRNA for TG7

designed based on the Nipponbare genome has 6 SNPs failed to

mediate transcription activation of OsWOX11 (Gong et al., 2020)

(Figure 1j), although the location and chromatin openness may

also play roles in this process.

In summary, CRISPR-Cereal integrates regulome information

and considers SNPs existed in the candidate gRNAs to promote

precise and high-efficient gene editing for wheat, maize and rice.

The workflow of CRISPR-Cereal is shown in Figure 1k, it is freely

available at http://crispr.hzau.edu.cn/CRISPR-Cereal/.
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