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Abstract 

Background:  Due to the threat of emerging anti-malarial resistance, the World Health Organization recommends 
incorporating surveillance for molecular markers of anti-malarial resistance into routine therapeutic efficacy studies 
(TESs). In 2018, a TES of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) was conducted in Mozam-
bique, and the prevalence of polymorphisms in the pfk13, pfcrt, and pfmdr1 genes associated with drug resistance 
was investigated.

Methods:  Children aged 6–59 months were enrolled in four study sites. Blood was collected and dried on filter paper 
from participants who developed fever within 28 days of initial malaria treatment. All samples were first screened 
for Plasmodium falciparum using a multiplex real-time PCR assay, and polymorphisms in the pfk13, pfcrt, and pfmdr1 
genes were investigated by Sanger sequencing.

Results:  No pfk13 mutations, associated with artemisinin partial resistance, were observed. The only pfcrt haplotype 
observed was the wild type CVMNK (codons 72–76), associated with chloroquine sensitivity. Polymorphisms in pfmdr1 
were only observed at codon 184, with the mutant 184F in 43/109 (39.4%) of the samples, wild type Y184 in 42/109 
(38.5%), and mixed 184F/Y in 24/109 (22.0%). All samples possessed N86 and D1246 at these two codons.

Conclusion:  In 2018, no markers of artemisinin resistance were documented. Molecular surveillance should continue 
to monitor the prevalence of these markers to inform decisions on malaria treatment in Mozambique.
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Background
Malaria remains a leading health problem in many 
countries, particularly those in tropical and subtropical 
regions of the world [1]. In Mozambique, malaria repre-
sents a major cause of morbidity and mortality, account-
ing for 29% of all deaths and approximately 42% of deaths 
among children less than 5 years of age [2]. Plasmodium 
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falciparum is the predominant malaria parasite species in 
the country [3].

One of the fundamental steps toward malaria control 
is the rapid diagnosis and correct treatment of symp-
tomatic cases with an effective anti-malarial [4]. Anti-
malarial drug resistance continues to be a major hurdle to 
malaria control efforts in some settings. Since replacing 
chloroquine (CQ) with a combination of amodiaquine 
(AQ) + sulfadoxine-pyrimethamine (SP) for uncom-
plicated malaria treatment in 2003, the Mozambique 
national treatment guidelines have experienced various 
adjustments as parasites became resistant to treatments 
[5]. In 2006, artemisinin-based combination therapy 
(ACT) was formally introduced by adopting artesu-
nate (AS) + SP as a first-line treatment for uncompli-
cated P. falciparum malaria [6, 7]. Subsequently, the last 
change occurred in 2009, when the country introduced 
artemether-lumefantrine (AL) and artesunate-amodi-
aquine (ASAQ) as the official first-line treatments, with 
ASAQ as a backup in situations when AL is contraindi-
cated [6–8]. While ASAQ is part of the national treat-
ment algorithm, there has been limited procurement and 
use. In artemisinin-based combinations, the artemisinin 
component is short-acting and kills the majority of para-
sites within the first 2  days of treatment; the remaining 
parasites are cleared by the longer-acting partner drug 
[9], thus helping to abate the acquisition of parasite 
resistance to the treatment. However, resistance to arte-
misinin derivatives, defined as delayed parasite clearance 
(presence of > 10% parasitaemia on day 3 after the start of 
treatment), has been reported in Southeast Asia [10–12] 
and Rwanda [13]. Resistance to specific anti-malarials is 
associated with polymorphisms, such as a single nucleo-
tide polymorphisms (SNPs), a combination of SNPs, or 
gene copy number variation in drug target genes.

To monitor the efficacy of anti-malarial treatment, 
the World Health Organization (WHO) recommends 
periodic (at least every 2  years) monitoring of the first 
and second-line anti-malarial treatments [14] and, in 
addition, molecular surveillance of resistance markers 
is encouraged. Artemisinin partial resistance is associ-
ated with polymorphisms in the P. falciparum kelch 13 
(pfk13) gene [10] and ten SNPs in pfk13 gene are cur-
rently validated molecular markers for artemisinin partial 
resistance: F446I, N458Y, M476I, Y493H, R539T, I543T, 
P553L, R561H, P574L and C580Y [14]. One of these 
mutations, R561H, has been reported to be present in 
multiple samples from different sites in Rwanda [13, 15, 
16], highlighting the importance of conducting molecular 
surveillance to identify emerging artemisinin and part-
ner drug resistance genotypes. To date, there have been 
no reports of pfk13 polymorphisms associated with arte-
misinin partial resistance in Mozambique [17, 18].

Resistance to CQ is mainly associated with SNPs in the 
P. falciparum chloroquine resistance transporter (pfcrt) 
gene, resulting in an amino acid change from lysine (K76) 
to threonine (76T) at position 76; however, the P. falci-
parum multi-drug resistance (pfmdr1) gene may also 
play a role in CQ resistance [19, 20]. The most commonly 
reported pfcrt mutations are observed in codons 72, 
74–76 [21]. The wild type CVMNK haplotype is associ-
ated with CQ sensitivity, while the CVIET and SVMNT 
haplotypes are associated with CQ resistance, with 
CVIET being the more common of the latter two haplo-
types in Africa [22, 23].

The pfmdr1 gene is implicated in lower sensitivity or 
tolerance to several anti-malarial drugs, including CQ, 
AQ, and lumefantrine [22, 24]. In Africa, the most rel-
evant polymorphisms of pfmdr1 include N86Y, Y184F 
and D1246Y [8, 25]. Mutations at positions S1034C and 
N1042D of pfmdr1 are rarely reported on the conti-
nent [8, 26]. The 86Y mutation has been associated with 
decreased CQ and AQ sensitivity, while the N86 wild 
type codon has been implicated in decreased sensitivity 
to lumefantrine. The N86, 184F, and D1246 (NFD) haplo-
type is associated with decreased sensitivity to AL, while 
the 86Y, Y184, and 1246Y (YYY) haplotype is reported to 
be associated with decreased sensitivity to ASAQ [25]. In 
Mozambique, the prevalence of pfmdr1 mutations was 
low in the capital city of Maputo, although the alleles N86 
and 184F showed a significantly increased prevalence 
after the introduction of ACT [8].

Molecular surveillance for drug resistant parasites is 
part of a comprehensive approach along with TESs for 
early detection and subsequent prevention of spread of 
resistant parasites by permitting timely implementation 
of appropriate alternative treatment policy decisions. 
This study’s aim was to analyse the prevalence of molec-
ular markers associated with P. falciparum resistance to 
anti-malarial drugs in the pfk13, pfmdr1, and pfcrt genes 
in samples collected during a 2018 TES in four sentinel 
sites in Mozambique.

Methods
Study sites
This study was a sub-study of a TES that evaluated the 
efficacy and safety of AL and ASAQ in the treatment of 
uncomplicated P. falciparum malaria in children aged 
6–59  months in Mozambique, based on WHO-recom-
mended protocol [27]. Malaria transmission in the coun-
try is year-round, with seasonal peaks during and after 
the rainy season, which occurs between October and 
March. The peak of the malaria transmission extends 
from November into April [3]. This study was conducted 
between February and September 2018 in four sentinel 
sites: Rural Hospital of Montepuez, in Cabo Delgado 
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Province (Northern region), Moatize Health Center, 
in Tete Province (Central region), District Hospital of 
Mopeia, in Zambézia (Central region), and District Hos-
pital of Massinga, in Inhambane Province (Southern 
region) (Fig.  1). These sites are distributed across the 
Northern, Central, and Southern regions of Mozam-
bique, which represent areas with high, moderate, and 
low prevalence of malaria, respectively. The per proto-
col PCR-corrected efficacy results of this study will be 
reported elsewhere, but were greater than 95% for all four 
AL arms and greater than 98% for all three ASAQ arms 
(no ASAQ arm in Moatize).

Sample collection
Potential participants were screened for malaria parasites 
using microscopy at each study site. Patients were eligible 
for enrolment if they had uncomplicated P. falciparum 
mono-infection with an asexual blood density between 
2000 and 200,000/µL, were aged 6–59 months, and had 
a fever at presentation (axillary temperature ≥ 37.5  °C) 
or history of fever in the last 24  h. A dried blood spot 
on Whatman 3-mm filter paper was prepared using 

50 µL of blood collected on the day of enrolment (day 0/
pre-treatment) and on any other day the patient had a 
recurrent malaria infection during the follow-up period 
(post-treatment).

DNA extraction
DNA was extracted at the Manhiça Health Research 
Center Laboratory, Mozambique, from half of the dried 
blood spot using a QIAamp DNA Mini kit (QIAGEN, 
Hilden, Germany) according to the manufacturer’s 
instructions. The DNA was eluted in 150μL of elution 
buffer, aliquoted and transferred to the CDC Malaria 
Laboratory in Atlanta, GA, USA, for molecular analysis.

Molecular genotyping of resistance markers
Molecular analysis for drug resistance markers was per-
formed by a laboratory technician from Mozambique 
with the support of staff from the CDC Malaria Labo-
ratory in Atlanta, USA [28]. For this analysis, selected 
pre-treatment and all post-treatment samples were used. 
Samples were first screened using a multiplex real-time 
PCR assay (PET-PCR) for detection of Plasmodium 

Fig. 1  Location of sampling sites in Mozambique, 2018
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genus and P. falciparum, as previously described [29]. 
Polymorphisms in the pfk13 (propeller domain 389-
649), pfcrt (codons 72–76), and pfmdr1 (codons 86, 184, 
1034, 1042, and 1246) genes were investigated as previ-
ously described [30, 31]. Briefly, both pre-treatment and 
post-treatment samples were used to amplify fragments 
of pfk13, pfcrt, and pfmdr1 by nested PCRs. Three labo-
ratory P. falciparum parasite lines, 3D7, 7G8, and Dd2, 
were included as controls. Direct Sanger sequencing of 
the purified nested PCR products was performed using 
a BigDye Terminator v3.1 cycle sequencing kit on an 
iCycler thermal cycler (Bio-Rad, CA, USA). The reac-
tion mixtures were precipitated in 70% ethanol to clean 
up dye terminators, rehydrated in 10 μL HiDi formamide, 
and then sequenced on a 3130xl ABI genetic analyzer 
(ABI Prism, CA, USA). Sequence analysis was performed 
using Geneious R7 (Biomatters, Auckland, New Zea-
land). Raw sequence reads were cleaned using default 
settings and reads with high-quality scores (> 30%) were 
further analysed using the 3D7 pfk13, pfcrt, and pfmdr1 
genes as references.

Data analyses
Data were entered into a Microsoft Office Excel 2007 
sheet and then exported into R 3.6.0 (R Core Team 
2019) for validation, cleaning, and analysis. A statistical 
significance of difference in the risk of treatment fail-
ure (reinfection or recrudescence) was determined by 
Fisher’s exact test, at a 5% significance level. All possible 
haplotypes from mixed infections (both wild type and 
mutants) were included in construction of the pfmdr1 
haplotype.

Results
Characteristics of study subjects
From the 641 patients enrolled in the TES, 110 (17%) pre-
treatment samples were selected for the analysis. This 
included all the pre-treatment samples from subjects 
who returned with a recurrent infection (n = 51) and 10% 
randomly selected pre-treatment samples from patients 
who did not have a recurrent infection (n = 59); however, 
one sample was excluded due to poor quality DNA, leav-
ing 109 pre-treatment samples. All 51 post-treatment 
samples from patients who had a recurrent malaria infec-
tion were included in the analysis (Fig. 2). In the AL and 
ASAQ arms, 7.1% (26/368) and 3.0% (8/273) of subjects, 
respectively, remained parasitaemic at day 3, although no 
subject met criteria for early treatment failure.

Table  1 summarizes the characteristics by site of 109 
study participants used for molecular analysis. A total 
of 79 and 30 pre-treatment samples, and 48 and 3 post-
treatment samples, were in the AL and ASAQ treatment 
arms, respectively.

Molecular markers of drug resistance
pfk13 polymorphisms
All 109 pre-treatment samples and 48/51 (94.1%) of the 
post-treatment samples were successfully sequenced at 
the pfk13 gene. No polymorphisms associated with arte-
misinin partial resistance were observed in the propeller 
domain One sample from Mopeia contained a synony-
mous mutation at codon 469 (TGC to TGT) and three 
samples from Mopeia contained a synonymous mutation 
at codon 548 (GGC to GGT). No other synonymous or 
nonsynonymous mutations were found.

pfcrt polymorphisms
All 109 pre-treatment samples and 47/51 (92.2%) of the 
post-treatment samples were successfully sequenced at 
the pfcrt gene. All samples showed the wild type CVMNK 
haplotype.

pfmdr1 polymorphisms
All 109 pre-treatment and 48/51 (94.1%) post-treatment 
samples were successfully sequenced for the pfmdr1 
gene. All pre-treatment samples possessed the N86, 
S1034, N1042 and D1246 alleles, with polymorphisms 
being observed only at codon 184: 184F in 43 (39.4%), 
Y184 in 42 (38.5%), and mixed Y/F in 24 (22.0%).

Among the 79 pre-treatment samples obtained from 
the AL arm, NFD (86, 184, 1246 codons) and NYD haplo-
types were present in 49 (62.0%) and 45 (57.0%), respec-
tively. In the ASAQ arm, NFD and NYD were present in 
18 (60.0%) and 21 (70.0%) of the pre-treatment samples, 
respectively. Neither NFD nor NYD significantly changed 
(p > 0.05) in post-treatment infections after treatment 
with either AL or ASAQ (Table 2).

In the pre-treatment samples, NFD was present in 
29 (74.4%) and 8 (66.7%) samples from Massinga and 
Moatize, respectively, while NYD was present in 15 
(75.0%) and 26 (68.4%) samples from Montepuez and 
Mopeia, respectively. For the late treatment failure sam-
ples, the NFD was observed in all samples from Moatize 
and Montepuez and in 72.7% of the samples from Mass-
inga and Mopeia (Table 3).

Discussion
Mozambique has used AL and ASAQ as the two first-
line anti-malarial regimens since 2009, with AL being 
the most widely used and ASAQ as backup for situations 
in which AL could not be used or is not available. This 
study, provides insights into the pfk13, pfcrt, and pfmdr1 
genetic profiles of P. falciparum isolates from four senti-
nel sites throughout the country. In this study, no pfk13 
mutations associated with artemisinin partial resist-
ance were observed. These findings are encouraging and 
suggest that artemisinin partial resistance has not yet 
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emerged in the four study sites selected in Mozambique. 
A previous study in Mozambique revealed a very low 
prevalence (< 1%) of four polymorphisms in the pfk13 
gene (L619L, F656I, V666V, and G690G)[17]. Another 
study revealed the presence of a V494I  K13 polymor-
phism, found in two samples collected after the intro-
duction of ACT in Mozambique [32]; However, these 
aforementioned mutations are either synonymous or not 

known to be associated with artemisinin partial resist-
ance [17]. This current study’s findings are also consist-
ent with most reports from Africa in which no, or a very 
low prevalence of, pfk13 mutations have been reported 
[33, 34]. The absence of delayed parasite clearance and 
pfk13 mutations known to be associated with artemisinin 
partial resistance is reassuring for Mozambique, at least 
in the short term. Nevertheless, a recently published 
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Fig. 2  Selection of samples for analysis of molecular markers of resistance from 2018 TES samples. D0, day of enrolment; DF, day of recurrent 
infection; *a sample was not included due to poor quality DNA

Table 1  Characteristics of study participants by site, Mozambique 2018

SD, standard deviation; Hb, haemoglobin

Number of subjects Massinga Moatize Montepuez Mopeia Total
39 12 20 38 109

Female sex n (%) 21 (53.8) 5 (41.7) 9 (45.0) 18 (47.4) 53 (48.6)

Age in months (mean ± SD) 28.5 ± 5.4 37.2 ± 16.3 21.8 ± 14.3 29.6 ± 14.4 28.6 ± 15.3

Temperature in °C (mean ± SD) 38.4 ± 0.8 38.7 ± 1.1 38 ± 0.8 37.9 ± 0.4 38.2 ± 0.8

Parasite density geometric mean (range) 28,100 (800–126,800) 52,900 
(13,300–
181,100)

30,500 (4800–107,500) 41,500 (4300–168,200) 35,100 (800–181,100)

Hb in g/dL (mean ± SD) 8.2 ± 1.7 9.5 ± 1.1 9.6 ± 1.9 9.4 ± 1.6 9 ± 1.7
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Rwandan study, using samples collected between 2012 
and 2015, showed that 7.4% of the specimens carried the 
pfk13 R561H mutation [15], known to be associated with 
artemisinin partial resistance. Another recent Rwandan 
study also detected the presence of two validated mark-
ers of artemisinin partial resistance, R561H and P574L, 
and delayed parasite clearance (parasitaemia at day 3) in 
more than 10% of the study participants in two sites [13]. 
Although this finding was not linked to clinical treatment 
failure of AL, it highlights the importance of conducting 
molecular surveillance to identify emerging patterns of 
parasites with artemisinin and partner drug resistance 
genotypes.

The pfcrt data from this study showed that all sam-
ples sequenced contained the wild type pfcrt haplotype 
(CVMNK), suggesting the return of chloroquine sensitive 
alleles after its use was discontinued in 2003 in Mozam-
bique. This finding is consistent with data from previ-
ous studies carried out in Mozambique that reported 

an increasing frequency of the pfcrt CVMNK wild type, 
from 43.9 to 66.4% between 2009 and 2010 [22]. A 
Mozambique study from 2015 reported a very low preva-
lence of mutant alleles at codons M74I, N75E, and K76T; 
only 2.3% samples harbored the pfcrt SNP 76T [17]. A 
separate report from 2015 reported only 0.9% samples 
with the pfcrt 76T mutant allele, 3.7% samples with a 
mixed infection, and 95.4% samples with the wild type 
allele [35]. These findings confirm the likely return of 
CQ-susceptible P. falciparum and are similar to findings 
from studies conducted in other African countries that 
also observed a resurgence in the proportion of wild type 
pfcrt alleles after the discontinuation of CQ for treatment 
[36–38]. AL has been shown to select for pfcrt wild types 
[22, 39], and the widespread use of AL in most African 
countries may contribute to the re-emergence of these 
alleles associated with CQ sensitivity [39].

Polymorphisms in pfmdr1 were only observed at 
codon 184, resulting in two observed haplotypes, NFD 

Table 2  Prevalence of pfmdr1 184 polymorphisms in pre-treatment and post-treatment samples stratified by treatment arms

AL, artemether-lumefantrine; ASAQ, artesunate-amodiaquine

*Statistical significance in risk of recurrent infection (reinfection or recrudescence) was determined by Fisher’s exact test; three post-treatment samples (two in the AL 
arm and one in the ASAQ arm) failed to amplify at one or more loci and are not included in corresponding single nucleotide polymorphism and haplotype counts
a Haplotype percentages may not sum to 100% because all possible haplotypes from mixed infections (both wild type and mutants) were included in the construction 
of haplotypes

pfmdr1 Polymorphism AL arm ASAQ arm

Pre-treatment Post-treatment p value* Pre-treatment Post-treatment p value*

n (%) n (%) n (%) n (%)

 pfmdr1 codon 184 n = 79 n = 46 n = 30 n = 2

 Y184 30 (38.0) 12 (26.1) Ref 12 (40.0) 0 (0) Ref

 184Y/F 15 (10.0) 16 (34.8) 0.054 9 (30.0) 1 (50.0) 0.454

 184F 34 (43.0) 18 (39.1) 0.657 9 (30.0) 1 (50.0) 0.454

 pfmdr1 haplotypesa n = 79 n = 46 n = 30 n = 2

 NYD 45 (57.0) 28 (60.9) Ref 21 (70.0) 1 (50.0) Ref

 NFD 49 (62.0) 34 (73.9) 0.746 18 (60.0) 2 (100) 0.597

Table 3  Prevalence of pfmdr1 polymorphisms in pre-treatment and post-treatment samples stratified by study site

Samples are from both AL and ASAQ arms; MEGA: Massinga; MEZE: Moatize; MEMP: Montepuez; MEIA: Mopeia; three samples (two in the AL arm and one in the ASAQ 
arm) failed to amplify at day of failure at one or more loci and are not included in corresponding single nucleotide polymorphism and haplotype counts
a Percentages may not sum to 100% because all possible haplotypes from mixed infections (both wild type and mutants) were included in the construction of 
haplotypes. Tests of significance not performed due to low sample sizes in two sites

pfmdr1a Pre-treatment (N = 109) Post-treatment (N = 48)

MEGA MEZE MEMP MEIA MEGA MEZE MEMP MEIA

n = 39 n = 12 n = 20 n = 38 n = 22 n = 1 n = 3 n = 22

Y184 10 (25.6) 4 (33.3) 9 (45.0) 19 (50.0) 6 (27.3) 0 (0) 0 (0) 6 (27.3)

184Y/F 8 (20.5) 3 (25.0) 6 (30.0) 7 (18.4) 8 (36.4) 1 (100) 0 (0) 8 (36.4)

184F 21 (53.8) 5 (41.7) 5 (25.0) 12 (31.6) 8 (36.4) 0 (0) 3 (100) 8 (36.4)

NYD 18 (46.2) 7 (58.3) 15 (75.0) 26 (68.4) 14 (63.6) 1 (100) 0 (0) 14 (63.6)

NFD 29 (74.4) 8 (66.7) 11 (55.0) 19 (50.0) 16 (72.7) 1 (100) 3 (100) 16 (72.7)
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and NYD. This is consistent with previous findings from 
Mozambique. In 2015, a low prevalence of 86Y (3.1%) and 
a higher prevalence of 184F (46.7%) were reported [17]. 
In addition, a high prevalence of wild type N86 (73.2%) 
and D1246 (96.7%) and the presence of the mutant 184F 
(22.7%) were reported in a 2010–2012 study [8].

The pfmdr1 gene has been implicated in lower sensitiv-
ity or tolerance to several anti-malarial drugs, including 
lumefantrine, CQ, and AQ [22, 24], with the 86Y muta-
tion being associated with decreased CQ and AQ sensi-
tivity and the N86 wild type allele implicated in decreased 
sensitivity to lumefantrine [25]. The NFD haplotype 
increased in prevalence between the pre- and post-treat-
ment samples in this study’s AL arm, but this was not 
significant when compared with NYD. In Mozambique, 
NFD haplotype prevalence increased from approximately 
22–38% between 2009 and 2010 [22]. While the sites 
from this study are not comparable to that report, the 
61.5% pre-treatment NFD prevalence indicates that this 
haplotype is still circulating. Similar findings over time 
have been reported in other African countries in which 
AL was used as the first-line anti-malarial treatment [40, 
41]. Some studies showed that the pfmdr1 gene polymor-
phism at codons N86Y, Y184F, and D1246Y is mainly 
linked to AL or ASAQ drug pressure [42, 43]. Stratify-
ing by site, NFD was identified in 100% of post-treatment 
samples from Moatize and Montepuez and 72.7% of sam-
ples from Massinga and Mopeia, although this was not 
statistically significant. Notable limitations of this study 
include a low sample size in some sites, due to few late 
recurrences, and the limited number of pre-treatment 
samples analysed, due to budgetary restrictions.

Conclusion
Given that no pfk13 or pfcrt molecular markers of resist-
ance were observed, the results of this study corrobo-
rate the findings of the associated TES that showed AL 
and ASAQ were efficacious. The high prevalence of the 
pfmdr1 NFD haplotype, associated with decreased sen-
sitivity to lumefantrine in some studies, requires further 
investigation to fully understand the role of this haplotype 
in the sensitivity of the currently used artemisinin-based 
combinations, AL and ASAQ. Because alleles associated 
with artemisinin partial resistance are emerging in the 
East Africa region, continued molecular surveillance for 
early detection of these alleles as well as relevant partner 
drug resistant markers remains important.
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