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Abstract

The aim of this article is to present the slope stability charts for two layered soil slopes
by using the strength reduction method (SRM). The primary focus is to provide a quan-
titative estimation of the improvement of slope stability when a stronger layer is placed
over the weaker layer. The SRM carried in this work comprises a series of finite element
lower bound (LB) and upper bound (UB) limit analysis in conjunction with nonlinear
optimization. Unlike the limit equilibrium method (LEM), there is no need to consider
any prior assumptions regarding the failure surface in SRM. The study is carried out for
different combinations of (i) slope angles (B), (i) strength properties of the top and the
bottom layer (c, ) and (iii) different thickness of the top layer. The failure patterns are
shown for a few cases.
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Introduction

Since the last eight decades several researchers [3, 8, 12, 19, 33, 39, 44, 46] had drawn
their attention for analyzing the stability of soil slopes. Nevertheless, the problem still
remains to be one of the most interesting and challenging problems in geotechnical
engineering. Most of the previous studies related to slope stability analysis were mainly
carried out by using the limit equilibrium method (LEM). However, in LEM, prior to the
analysis, shape of the slip surface, distribution of the normal stress along the slip surface
and nature of the interslice forces are require to pre-assume. Moreover, strain and dis-
placement compatibility are not being considered in LEM and hence, the method suffers
serious limitations as discussed by Duncan [11] and Krahn [23]. Several other research-
ers [1, 2, 14, 21, 25, 32, 48, 49] used various other analytical and numerical methods
for analyzing the homogenous slopes and thereby removing the limitations associated
with LEM to some extent. Zaki [49] and Griffiths and Lane [15] used strength reduc-
tion method (SRM) in the framework of conventional displacement based finite element
method for analyzing the homogenous slope. Yu et al. [48] and Kim et al. [21] used finite
element limit analysis to analyze the homogenous slopes with and without considering
the effect of pore water pressure. Michalowski [32] proposed stability charts for uniform
slopes subjected to pore- water pressure and horizontal seismic force by using kinematic
approach of limit analysis. Baker et al. [1] produced stability charts for homogeneous
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slopes by applying the variational method and the strength reduction technique consid-
ering pseudostatic analysis.

The stability of layered slopes was also studied rigorously especially in the past few
years [4, 5, 7, 17, 18, 24, 27-29, 37, 42]. By assuming the log-spiral failure mechanism,
Chen et al. [7] evaluated the upper bound stability of non-homogeneous slopes corre-
sponding to varying cohesion with depth. Kumar and Samui [24] evaluated the stabil-
ity of layered soil slopes subjected to pore-water pressure and horizontal seismic force
by using the rigid block upper bound limit analysis. Hammouri et al. [17] carried out
the stability analysis of the layered slopes by considering the effects of rapid drawdown
and tension cracks with the aid of PLAXIS 8.0 and SAS-MCT 4.0 software. By using
the finite element limit analysis, [27, 28], Shiau et al. [42], and Qian et al. [37] analyzed
the undrained stability of the non-homogenous cohesive soil slopes. Chang-yu et al. [18]
considered rotational mechanism with logarithm helicoids surface and assessed the 3D
stability of non-homogeneous slopes. Lim et al. [29] proposed stability charts for fric-
tional fill material placed on purely cohesive soil by using finite element LB limit analysis
method. By using SRM, Chatterjee and Krishna [5] analyzed two and three-layered soil
slopes considering a fixed slope angle (26.57°) and different combinations of three differ-
ent chosen soils. The literature review clearly indicates that the rigorous analysis for the
two-layered cohesive-frictional soil slope is quite limited. Although a few stability stud-
ies [24, 38, 40, 41] were previously carried out by considering weaker layer overlying on
strong layer, however, as per the authors’ findings except the work of Sazzad et al. [40]
hardly any study seems to be available for the case where strong layer is considered to be
placed over weak stratum. The work of Sazzad et al. [40] also pertains to a specific com-
bination of layered system (Top Soil: ¢; =10 kPa, ¢; =18° and Bottom Soil: ¢,=6 kPa,
¢,=10°). Hence, there is a requirement to carry out an extensive and rigorous investiga-
tion to estimate the improvement in stability by placing a stronger layer over a weaker
layer. This is the prime motivation to carry out the present work. In this present arti-
cle, strength reduction method is employed to analyze the two-layered soil slopes and to
determine the factor of safety. The factor of safety is obtained for different combinations
of (i) slope geometry (i.e. slope angle, f3), (ii) strength properties of the top (c;, ¢;) and
bottom layer (c,, ¢,) (iii) and the thickness of the top layer (). The effect of placing dif-
ferent stronger layers over the weaker bottom layers is thoroughly investigated.

Strength reduction method (SRM)

The work of Zienkiewicz et al. [52] appears to be the first where SRM was used to solve
the slope stability problem. Following his work, many further studies [5, 9, 10, 13, 15, 16,
20, 26, 30, 31, 34, 35, 40, 45, 47, 50, 51] were performed for slope stability problems by
using SRM. This method is mainly based on the frame work of finite element method
(FEM) and hence, all the advantages of FEM are retained in this method. The signifi-
cant advantages of this method are the following: (i) the method is suitable to apply for
complex geometries, complicated boundary and loading conditions, and (ii) there is no
need to consider any assumptions regarding interslice shear forces and the critical fail-
ure surface. The critical failure surface is obtained automatically from the shear strength
reduction. The additional information regarding stresses, strains, and pore pressures can
also be obtained from this method. SRM is also applied on the basis of finite difference
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method [10]. Generally, SRM is applied to determine the factor of safety by successively
reducing or increasing the shear strength of the material until the slope reaches the lim-
iting equilibrium state.

The SRM is commonly used with the linear Mohr—Coulomb criterion where the fail-
ure strength is characterized by cohesion (c) and the internal friction angle (¢). The
Mohr—Coulomb model is expressed in Eq. (1).

T=c+o,tan¢ (1)

where 7 is the maximum amount of shear stress the soil can resist for a certain applied
normal stress (o,). The analysis is carried out by reducing the strength parameters (c,¢)
progressively until the slope becomes unstable. In conventional SRM, both parameters
are reduced by the same factor, or in other words, the reduction path of the cohesion
and the friction are identical. The reduced cohesion and the friction angle are computed

from Eq. (2).
c tan ¢ tan ¢ )
¢ = —; tang, =
"TF " F 2)

where (i) ¢, and ¢, are the reduced strength parameters and (ii) F, is the strength reduc-
tion factor. These reduced parameters are then reinserted into the model till the failure
occurs. The main objective of SRM approach is to compute the strength reduction factor
and the reduced material parameters that lead to collapse state.

In the present analysis, Optum G2 [36] is used for estimating the factor of safety of
the slope through strength reduction method. Optum@G2 is a finite element limit analy-
sis (FELA) based software developed by OptumCE. For obtaining the limiting solutions,
Optum@G?2 uses second order cone programming to solve the plane-strain stability prob-
lems. This scheme works by infeasibility detection in a very controllable way [22, 43].
Following steps are adopted for the formulation:

Step 1: Assuming F,,

. and F, ;. where, F,;, and F,,,, are the minimum and maxi-

mum value of factor of safety. Generally, F,,;, is chosen to be zero and F,,,, is taken to

be a large number within the range of machine precision.

Step 2: Initializing the value of F, and computing reduced strength parameters with
the help of Eq. (2).

Step 3: Checking feasibility through the interior point method by using the reduced
strength parameters.

Step 4: If the problem is feasible, assign F,,,, =F and evaluate a new factor of safety

by using the harmonic mean as depicted in Eq. (3).

1 FminFmax >:|
Fo= |- e 3
* |:2(Fmin+Fmax ()

Otherwise, if the problem is infeasible, assign F,,,, = Fs and evaluate a new factor
of safety by following the arithmetic mean as expressed in Eq. (4).

1
Fs = i(Fmin + Fmax) (4)
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Step 5: Continue the iterative process (Step 1-Step 4) until the following convergence
condition as mentioned in Eq. (5) is fulfilled:

Fmax - Fmin

E <Ti (5)

here, the tolerance limit, 7, is kept as 0-01.

It is worth mentioning that based on the solution process, F,;, and F,,,, provides

the limiting extremities of the bound theorem. F,;, and F,,,, represent rigorous lower
and upper bound on the factor of safety corresponding to the statically admissible
stress field domain and kinematically admissible velocity field domain, respectively.

The numerical values presented herein are the average of both the limiting values.

Problem statement and methodology

Figure 1 shows a two-layered soil slope having an angle, 5. The strength parameters of
the top and the bottom layer are represented by c;, ¢; and ¢,, ¢,, respectively. Slope
height (H) in the present analysis is taken as 20 m for representing the high cut slopes.
With the aid of strength reduction method, it is intended to analyze and subsequently
compute the factor of safety for three different two-layered slopes (namely, 25°, 35°
and 45°) consisting of different soil materials.

For performing the analysis, the size of the domain is considered adequately high
so that the failure surface remains contained well within the domain. Based on tri-
als, the height (D) and length (L) of the domain are kept as 2H and 9H, respectively.
The boundary conditions are mentioned in Fig. 1. Vertical and horizontal displace-
ments are restrained along the base of the considered domain. Along the left and
right boundaries, horizontal displacement is not allowed to occur. The soil mass is
discretized by using three nodded linear triangular elements. The soil plasticity is
governed by the Mohr—Coulomb failure criterion and associated flow rule. Adaptive
mesh refinement based on plastic shear dissipation has been used. Three iterations of
adaptive meshing with 10,000 elements have been considered for all analyses. A non-
linear optimizer named sonic is used in Optum G2 software for optimization.

u= Horizontal displacement c1-¢h t% | |T T
v= Vertical displacement ' i
ﬁ \‘ 02'@ | | 1
I 2% =l p=2m
[
o 3
T b I
| Il u=v=0 i
X 4L 4 4 4L 4L 4 4L -
T T T T T T T
« L=9H >

Fig. 1 Schematic diagram and the boundary conditions of a two-layered soil slope
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Results and discussions

In the present work, solutions are presented in terms of factor of safety for different
combinations of the (a) slope angles (5), (b) soil strength properties of the top and the
bottom layers (c;, ¢, and ¢,, ¢,) and (c) top layer thickness (f). Stability charts are pre-
sented in tabular form. Tables 1, 2, 3 show the factor of safety values computed for three
different two-layered slopes (8=25°, 35° and 45°). In this article, nine different stronger
soil layers [(35,0), (35,5), (35,8), (40,0), (40,5), (40,8), (45,0), (45,5), (45,8)] were consid-
ered to be placed over twelve different weaker bottom layer [(20,5), (20,10), (20,15),
(20,20), (25,5), (25,10), (25,15), (25,20), (30,5), (30,10), (30,15), (30,20)]; the first and sec-
ond part within the parenthesis indicate the frictional (in degrees) and cohesive strength
(in kPa), respectively. The thickness of the stronger layer was varied between 20%—-80%
of the domain height. Both the limiting values (lower and upper) were obtained. A total
number of 3240 computations were performed. Following observations are made from
the numerical results:

(a) As expected, the factor of safety (F,) decreases with an increase in slope angle (5).
However, this decrement depends on the strength of the soil layers. For an example,
as f varies from 25° to 45°, F, reduces markedly. This reduction differs by 14% (from
53 to 39%) as the cohesive strength of the top layer, (¢, =35°, and, t/D=0.4) which
is rested upon a certain bottom layer (c,=20 kPa, ¢,=25°), increases up to 8 kPa
from 0 kPa.

(b) Placing a stronger layer over a weaker stratum undoubtedly improves the stabil-
ity of the slope and this improvement is more significant for steep slopes. For the
previous example, (i) if the cohesive strength of the top layer rises from 0 to 8 kPa
(keeping ¢, equals to be 35°), the improvement in F, for 25° and 45° slope occurs by
19% and 56%, respectively; and, (ii) if the frictional strength increases from 35° to
45°, F, improves by 26% and 42% for 25° and 45° slope, respectively.

(c) When the thickness of the top layer is within a certain limit, the strength of the
bottom layer also influences the stability of the slope. There is almost a linear rela-
tionship between the improvement of F, with the increase in cohesive strength of
the bottom layer. However, the relation between the improvement of F, with the
increase in frictional strength of the bottom layer is highly nonlinear.

(d) The tabulated data clearly reveals that the improvement in F; is quite significant as
the top layer thickness changes from 0.2D to 0.4D. On the contrary, when ¢/D ratio
varies from 0.6 to 0.8, the improvement in stability is almost negligible. The effect of
the thickness of the top layer is further studied graphically.

Figure 2 illustrates the variation of F, with ¢/D for a 25° slope. Figures 2(a) and (b) rep-
resent the cases where weaker bottom layer (¢,=25°) is strengthened by placing two
different cohesionless layer of friction angle 40° and 45°. Figures 2(c) and (d) displays the
cases where the cohesion of the top layer is considered as 8 kPa. It is quite evident that
higher the strength of the top layer higher would be the safety factor, F,. These figures
depict that there is a certain #/D beyond which there is hardly any improvement in sta-
bility of the slopes. This particular top layer thickness is termed as optimum thickness
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Fig. 2 The variation of F; with t/D for a two-layered slope (3= 25°) corresponding to varying ¢, and (a)
¢, =0kPa, ¢, =40°, ¢, =25°, b c; =0kPa, p, =45°, ¢,=25°, c c,=8 kPa, ¢, =40°, ¢, =25°and (d) ¢, =8 kPa,

and is referred here as dimensionless parameter, 7,,/D. The value of t,,/D increases
with the increase in the strength of the top layer. The figure shows that the dependence
of ¢,,/D on the cohesive strength of the bottom layer is further influenced by the fric-
tional strength of the top layer; when ¢, =40°, £,,/D decreases with increase in ¢, how-

ever, when ¢, =45° there is no impact of ¢, on the computed value of ¢,,,/D.

Figure 3 shows the variation of F with ¢/D for =25 and 45°, corresponding to two
different ¢,, namely, 20° and 30°. The properties of the top layer are kept to be constant
and the cohesive strength of the bottom layer is varied within the range of 5-20 kPa. The
figures clearly reveal that for the same soil properties, optimum thickness of the top layer
is significantly smaller for the steeper slopes. As the frictional strength of the bottom
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layer increases, the magnitude of ¢,,/D further reduces. The numerical solutions give an
impression that the impact of the strength of the top layer on the stability is much higher
than the strength of the bottom layer.

Figure 4 shows the mesh pattern at the collapse state for three different slope angles,
namely, 25°, 35° and 45°. The soil profiles for these three cases are kept to be the same. It
is to be noted that adaptive mesh refinement technique continuously updates the sizes of
all the elements in an optimal fashion by computing the variations of stresses and veloci-
ties. Finer elements were automatically placed in the shear failure zone. Hence, these
meshes indirectly depict the failure patterns. The figure shows that the size of the failure
zone decreases with the increase in slope angle. Moreover, as the slope angle increases
the failure is likely to become toe failure. This observation is in accordance with the stud-
ies of Lim et al. [29] and Sazzad, et al. [40] who had earlier reported that if the top layer
is considered to be stronger than the bottom layer and the slope angle is considered to
be less than equal to 45° the incipient state of collapse in the soil slope will be triggered
by developing base failure. As the steepness of the slope increases, the extent of the fail-
ure zone seems to be restricted closer to the slope surface.

Figure 5 illustrates failure state corresponding to three different thickness of the top
layer. The soil properties of the top layer as well as the bottom layer are the same for all
the three cases. The figure demonstrates that as the thickness of the top layer increases
the type of failure surface turns from toe to base. However, beyond a certain thickness,
the slope collapses by developing the toe failure surface and the shear zone seems to be
confined within the top layer. This observation substantiates the existence of ¢,,,/D.

Figure 6 depicts the mesh pattern at the collapse state corresponding to three differ-
ent frictional angle of the top layer. All other geometrical and material strength param-
eters are kept to be the same. The figure illustrates that as the frictional strength of the
top layer increases the failure zone grows in size. However, the extent at which the finer
elements are laid at the collapse state goes thinner with the increase in ¢,. It gives an
impression that the thickness of the shearing zone (i.e. shear band) becomes smaller
with the placement of stronger layer over a weaker stratum.

Comparison of results

Comparisons of both the limiting solutions, for the homogenous and layered slopes,
are presented in Tables 4 and 5, respectively. In most of the cases the difference seems
to be in the second decimal place. Closeness of the lower and upper bound solutions
further depicts the accuracy in the computed solutions. Limit theorems suggest that
the true solution will lie somewhere between these bounding values. It should be
recalled that the safety factors charts presented in Tables 1, 2, 3, are the average value
of the two extremities.

Table 6 shows the comparison of the present solutions computed with the numeri-
cal results provided by Dawson et al. [10] for a homogenous slope of 10 m height
having unit weight of soil, y=20 kN/m? and cohesion, ¢=12.38 kPa. Dawson et al.
[10] had employed strength reduction method by using the explicit finite difference
code, FLAC. As the frictional strength of the soil increases the present method pro-
vides higher stability value. For the same soil, the difference between these two solu-
tions reduces as the steepness of the slope increases. The reason may be attributed
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(a)
=0.5D, f=25°
c1=5kpa, ¢.1=45°
c=5kpa, ¢2=30°
(b)
=0.5D, p=35°
ci1=5 kpa, ¢1=45°
=5 kpa, ¢2=30°
)
=0.5D, [=45°
[=0.5D, p=45°] c1=5 kpa, §1=45°
c2=5kpa, ¢»=30°
Fig. 4 Adaptive mesh patterns at the collapse state for three different slopes: a 8=25°, b =35 and (c)
B=45°

not only to the methodology but also to the choice of elements. Dawson et al. [10] had
discretized the chosen domain with four nodded rectangular elements, whereas, in
the present work three nodded linear triangular elements are used. The same trend is
also observed while the solutions of Dawson et al. [10] are compared with the upper
bound solutions (assuming log spiral mechanism) obtained by Chen [6]. It is to be
noted that the present finite element limit solutions are quite smaller than those rigid
block upper bound solutions provided by Chen [6]. It shows the improvement of the
solutions when finite element limit analysis is employed for the analysis.

Table 7 shows the comparison of the present solutions with the results provided by
Kumar and Samui [24] by using the rigid block upper bound method considering log-
spiral failure mechanism. The comparison is carried out for 45° slope corresponding to
different soil layer properties and varying top layer thickness. Similar to the previous
observation, it is well noted that the present solutions become quite smaller than the
reported solutions of Kumar and Samui [24] as the strength of the soil layer increases.

Table 8 illustrates the comparison of current solutions with the solutions provided by
Chatterjee and Krishna [5] for non-homogeneous slopes. Chatterjee and Krishna [5]
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(a)
c1=5 kpa, ¢1=45°
—0.2D, f=25° ER AR
¢2=10 kpa, ¢2=20°
(b)
=0.5D, p=25°
[=0.5D, p25°] LSRG
=10 kpa, ¢,=20°
(©)
=0.8D, p=25°
c1=5 kpa, ¢.1=45°
=10 kpa, ¢»,=20°
Fig. 5 Adaptive mesh patterns at the collapse state by varying the top layer thickness:a t=0.2D, b t=0.5D
and ct=0.8D

used (i) SLIDE v6 and Morgenstern and Price [33] method for performing the LEM anal-
ysis and (ii) PHASE v9 for obtaining the FE solutions. The present solutions are quite
agreeable with the reported FE solutions. Table 9 depicts the comparison of present
solutions with limit equilibrium solutions presented by Sazzad et al. [41] for layered soil
slopes. Sazzad et al. [41] used Bishop Method [3] for LEM analysis. The present solu-
tions appear to be smaller than the LEM solutions. This can be attributed to the fact that
LEM solutions generally overestimate the factor of safety due to the usage of statical and

kinematical assumptions. This is also observed in earlier studies as well [48].

Conclusions

In the present article, the stability of two-layered soil slopes is analyzed by using
strength reduction method. A series of upper and lower bound limit analyses are car-
ried out in Optum G2 software by placing different stronger layers of varied thick-
ness over the weaker stratum. Stability charts are prepared in the form of the factor
of safety for different soil properties, slope geometries and top layer thickness. The
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(a)
t=0.5D, =25°
c1=0kpa; ¢1=35°
=10 kpa, ¢2=20°
(b)
=0.5D, p=25°
¢1=0 kpa, ¢1=40°
=10 kpa, ¢2=20°
(c)
=0.5D, p=25°
¢1=0kpa, ¢1=45°
¢2=10 kpa, ¢2=20°
Fig. 6 Adaptive mesh patterns at the collapse state by varying the top layer frictional strength: a ¢, =35° b
@, =40°and c ¢, =45°

amount of improvement in the stability by placing a layer of stronger soil over the
weaker stratum is numerically investigated. The optimum thickness of the top layer
is reported for a wide range of slopes. The extent and the type of the failure zones
are presented for several cases. The obtained solutions compared quite well with
the available solutions. The proposed design charts may be useful to the practicing

engineers.

Table4 A comparison of the computed lower and upper bound values of F, for different

homogeneous slopes

? C® (kPa) B=25° B=35° B=45°
25° 20 1,687 (1.695) 1.292 (1.303) 1,048 (1.058)
15 1.560 (1.566) 1177 (1.187) 0.940 (0.951)
10 9(1.425) 1.050 (1.060) 0.827 (0.831)
5 1.258 (1.263) 0.904 (0.913) 0.692 (0.698)

The values within and outside the parenthesis are obtained by using UB and LB method respectively

2 ¢, internal friction angle of homogeneous soil slope

b ¢, cohesion of homogeneous soil slope
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Table 6 A comparison of F, obtained by Dawson et al. [10] and Chen [6] with the present solutions

for homogeneous slopes of 10 m height

B () () Present study Dawson et al. [10]° Chen [6]°
15 5 0932 1.023 0.890
10 1.368 1.027 2816
30 10 0.895 1.034 0.836
15 1111 1.027 1.343
20 1.330 1.033 2552
45 10 0.701 1.019 0576
20 0.994 1.026 1.000
30 1.295 1.031 2.200
40 1.645 1.008 5482

2 By using the explicit finite difference code, FLAC

b By using rigid block method with an assumption of a continuous log-spiral failure mechanism

Table 7 A comparison of F, obtained by Kumar and Samui [24] with the present solutions

considering 6=45°and ¢, =¢,

®q (®) (053 °) t=0.4H t=0.6H

Present study Kumar and Samui  Present study Kumar and
[24]2 Samui [24]

10 20 0.054 0.071 0.058 0.074

30 0.043 0.050 0.055 0.059

40 0.042 0.020 0.053 0.025

20 30 0.041 0.038 0.044 0.045

40 0.034 0.014 0.041 0.017

30 40 0.032 0.012 0.034 0.013

2 By using the rigid block upper bound method considering multi- log-spiral failure mechanism
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Table 9 A comparison of F, obtained by Sazzad et al. [41] with the present solutions considering
®,=¢,=0°and B=45°

c,/c; Present study Sazzad
etal. [41]?
0.2 0.34 0.50
04 0.56 078
0.6 0.77 0.88
0.8 0.97 1.18
1.0 117 1.38
1.2 1.36 1.40
14 136 140
1.6 1.36 1.40
18 1.36 140

2 By using LEM-Bishop Method [3]
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