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Abstract Public transport networks (PTNs) are critical in

populated and rapidly densifying cities such as Hong Kong,

Beijing, Shanghai, Mumbai, and Tokyo. Public trans-

portation plays an indispensable role in urban resilience

with an integrated, complex, and dynamically changeable

network structure. Consequently, identifying and quanti-

fying node criticality in complex PTNs is of great practical

significance to improve network robustness from damage.

Despite the proposition of various node criticality criteria

to address this problem, few succeeded in more compre-

hensive aspects. Therefore, this paper presents an efficient

and thorough ranking method, that is, entropy weight

method (EWM)–technology for order preference by simi-

larity to an ideal solution (TOPSIS), named EWM–TOP-

SIS, to evaluate node criticality by taking into account

various node features in complex networks. Then we

demonstrate it on the Mass Transit Railway (MTR) in

Hong Kong by removing and recovering the top k critical

nodes in descending order to compare the effectiveness of

degree centrality (DC), betweenness centrality (BC),

closeness centrality (CC), and the proposed EWM–TOPSIS

method. Four evaluation indicators, that is, the frequency

of nodes with the same ranking (F), the global network

efficiency (E), the size of the largest connected component

(LCC), and the average path length (APL), are computed to

compare the performance of the four methods and measure

network robustness under different designed attack and

recovery strategies. The results demonstrate that the

EWM–TOPSIS method has more obvious advantages than

the others, especially in the early stage.

Keywords Public transport network � Network analysis �
Node criticality � Entropy weighting method � Network

connectivity

1 Introduction

Public transport networks (PTNs), including buses, trol-

leybuses, trams or light rail, rapid transit (i.e., metro,

subway, underground), and ferries, are the backbone and

central pillars for urbanization. Urbanization, especially in

coastal regions, has exacerbated PTNs’ vulnerabilities to

disruptions. Various disruptions, ranging from natural

hazards such as super typhoons or flooding to man-made

events such as accidents, terrorism, and social unrest, will

induce cascading failures in PTNs. Cascading failure of

highly connected and interrelated components can cause

significant damages to the whole network. As a result,

identifying vulnerabilities of each component of PTNs has

recently generated considerable research interest in the

impacts of disruptive events.

Critical nodes can affect the structure and function of

complex networks more significantly than the others [1].

Meanwhile, it reflects its control over structural connec-

tivity and contributions to the functional operability of the

system. Consequently, identifying the critical nodes is of

considerable significance in analyzing the vulnerability and

fragility of a tiny fraction of critical nodes against disrup-

tive events [2–5]. Current methods, including degree
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centrality (DC), betweenness centrality (BC), closeness

centrality (CC), eccentricity, page rank, and subgraph

centrality, have been widely used to measure node criti-

cality in complex networks. For example, Yin et al. [6]

addressed the importance evaluation problem by estab-

lishing the betweenness-based indexes of stations, edges,

and lines based on passenger flow, shortest paths, and

k shortest paths. By conducting empirical studies on

Shanghai’s subway system, Zhang et al. [7] depicted that

the system is more vulnerable and susceptible to targeted

attacks, and the high betweenness node-based removal

would result in further damage to the whole network.

Psaltoglou and Calle [8] provided a novel methodology for

identifying the critical nodes in urban PTNs over time by

comparing the degree centrality and betweenness central-

ity. Kanwar et al. [9] compared the Delhi Metro (DMop)

network and its extension (DMext) by performing targeted

and random attacks on high-degree, high-betweenness-

based node attacks, and edge-based attacks to study the

network vulnerability.

Although many efforts have been made on using a single

criterion, such as degree centrality (DC), betweenness

centrality (BC) [10], and closeness centrality (CC) to

evaluate node criticality, these only exhibit the single-sided

aspect of node criticality. DC [11] represents the number of

neighbor nodes connected to a node, which implies its

influence on the network structure. However, as a simple

centrality measure, it only calculates the number of nodes

connected to a certain node and does not account for how

critical those neighbors are, which indicates the computa-

tion precision is not high enough. Moreover, the nodes with

the same degree play different roles in a complex network

[10]. Meanwhile, BC only considers nodes that belong to

the shortest path of other node pairs [12]. At the same time,

CC would fail when there is a disconnected component in a

network. Both centrality measures have high computational

complexity.

Considering the various node features, this paper pre-

sents a comprehensive method that can effectively identify

the critical nodes in PTNs. This method incorporated the

entropy weight method (EWM) [13] and the technology for

order preference by similarity to an ideal solution (TOP-

SIS) that are widely used in other research areas. EWM is a

commonly used weighting method to measure the struc-

tural complexity and characterize the size of information in

decision-making [14]. On the other hand, TOPSIS is a

multicriteria decision-making approach proposed by

Hwang and Yoon in 1981 and further developed by Yoon

in 1987 and Hwang et al. in 1993 [15]. It is based on the

concept that an ideal alternative should have the shortest

geometric distance to a positive ideal solution (PIS) Aþ and

the farthest distance to a negative ideal solution (NIS) A�.

TOPSIS has been widely used to identify the critical nodes

in different research fields such as the coal industry [16],

infrastructure resources [17], security risk [18], social

network [19], and public transportation systems [20]. It

accredits equal weights to each criterion, whereby the

different roles various criteria would play during the pro-

cedure are ignored [21].

In this paper, EWM is used to calculate the weight of

each criterion and reduce the disadvantages of TOPSIS,

which adopts equal weights. This method addresses the

problem of inaccurate assessment and avoids the single-

sided effects of using a single criterion. Additionally,

structural data from the Mass Transit Railway (MTR)

network in Hong Kong are used to illustrate the effec-

tiveness of the proposed method. Four evaluation indica-

tors, that is, the frequency of nodes with the same ranking

(F), global network efficiency (E), the size of the largest

connected component (LCC), and the average path length

(APL), are adopted to measure network robustness before

and after removing or recovering the top k ranked nodes by

different ranking methods. The results indicate the supe-

riority of the proposed method.

The remainder of this paper is structured as follows.

Section 2 describes the main elements of the node prop-

erties, existing centrality criteria, and the proposed method.

An empirical analysis is conducted on the MTR network in

Hong Kong. Section 3 quantifies the effectiveness of the

proposed method by evaluating the network robustness

after node removal and the network recovery speed based

on different designed sequences. Section 4 presents a

detailed discussion, conclusion, and further work.

2 Materials and Methods

2.1 Methods

Considering the problems of using a single criterion to

evaluate the node criticality, this paper adopts a weighting

method, namely EWM, and a multicriteria decision anal-

ysis method, namely TOPSIS, which incorporate different

centrality measures for node criticality evaluation.

2.1.1 Centrality Measures

A network can be represented as a graph that contains

nodes and edges with attributes [22]. PTNs can be denoted

as an undirected network G ¼ V ;E;W ;Að Þ, where V ¼
v1; v2; � � � ; vnf g stands for the set of stations, and

E ¼ eij
� �

, i 6¼ j ¼ 1; 2; 3; � � � nð Þ denotes the connection

between the stations, respectively [23]. W denotes the

weight set, which equals the travel time between the
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stations. In practice, from the passenger’s point of view, it

is better to spend the minimum time to travel in daily life.

Hence, in this paper, the shortest path length dij between

the nodes is defined as the minimum travel time from vi to

vj. It is expressed as:

wij ¼

0 t12 t13

t21 0 t23

t31 t32 0

t14 � � � t1n
t24 � � � t2n
t34 . . . t3n

t41 t42 t43

..

. ..
. ..

.

tn1 tn2 tn3

0 . . . t4n
..
. . .

. ..
.

tn4 � � � 0

2

6666664

3

7777775

ð1Þ

A ¼ faijgm�n is the adjacency matrix, where aij ¼ 1 if

there is a connection between node i and node j, and 0

otherwise. By calculating the sum of aij, ki ¼
Pn

j aij can be

expressed as the degree of node i. Hence the degree cen-

trality can be denoted as

DC ið Þ ¼ ki
n� 1

ð2Þ

Generally speaking, a node’s influence is significantly

associated with its capacity and its surrounding neighbors

[24]. Therefore, degree centrality (DC) is used to evaluate

the ability of a node to transmit information to others. The

greater the value, the more critical the node is.

Betweenness centrality (BC) is a measurement of node

criticality proposed over the years to evaluate the node or

edge criticality by measuring the structural centrality [25].

It reflects the ability of a node to control the whole network

flow, such as passenger flow passing through the shortest

path in PTNs. For undirected network, it can be expressed

as follows:

BC ið Þ ¼ 2Bi

n� 1ð Þ n� 2ð Þ ð3Þ

Bi denotes as the fraction of the shortest paths between

nodes.

In a connected PTN, closeness centrality (CC) of a node is

calculated as the reciprocal of the sum of the length or links

of the shortest paths between two nodes [26]. It is regarded as

a measure of how long it will take passengers to travel from a

given node to other reachable nodes in the network [27]. It

can be represented as in the following equation:

CC ið Þ ¼ n� 1
Pn

j�1 dij
ð4Þ

where dij is the shortest paths between nodes i and j. It can

be regarded as a measurement of the average travel time

from vi to vj. The greater the value, the higher the effi-

ciency of the node.

Although these criteria have been used to evaluate node

criticality from different perspectives, they only reflect a

single-side characteristic of the nodes. Hence, there should

be a unified criterion to evaluate the node criticality from

diverse perspectives. To illustrate this problem, this paper

proposes a novel method using the centrality criterion

illustrated above, i.e., TOPSIS and EWM, to assess the

node criticality in undirected networks such as PTNs.

2.1.2 Proposed Method

Step 1: Initialize the original matrix

If there is a set of nodes in a graph-based network,

whose nodes are denoted as V ¼ v1; v2; � � � ; vnf g and

another three centrality measures j ¼ 1; 2; 3ð Þ, which rep-

resent DC, BC, and CC respectively, then the

vi cj
� �

i ¼ 1; 2; . . .; n; j ¼ 1; 2; 3ð Þ represents the value of jth

centrality measures for the ith node. The original matrix

would be decided as

D ¼
v11 v12 v13

v21

..

.
v22

..

.
v23

..

.

vn1 vn2 vn3

2

664

3

775 ð5Þ

To eliminate dimensional differences among the cen-

trality measures and standardize the original matrix, the

centrality measures can be standardized into benefit criteria

denoting that the higher the measure, the more important

the node is. It is expressed as

rij ¼
vij � vijmin

vijmax � vijmin
ð6Þ

where vijmin ¼ min vij; 1� i� n
� �

,

vijmax ¼ max vij; 1� i� n
� �

. Therefore, the standardized

matrix can be denoted as

R ¼
r11 r12 r13

r21

..

.
r22

..

.
r23

..

.

rn1 rn2 rn3

2

664

3

775 ð7Þ

Step 2: Calculate the objective weight of each criterion

According to Shannon’s entropy calculation procedure,

there is a calculation of the ratio of each criterion and the

sum of all criteria, where pij ¼ rij=
Pn

k¼1 rkj.

EWM is used to calculate each weight of each criterion,

which decides the weight according to the different roles it

plays. Therefore, the entropy is defined as

Ej ¼ �K
Xn

i¼1

pij ln pij; j ¼ 1; 2; . . .; n ðpij 6¼ 0ÞEj ¼ 0;

j ¼ 1; 2; . . .; n ðpij ¼ 0Þ
ð8Þ

where K ¼ 1= ln n.

When pij ¼ 0, Ej ¼ 0. Then the weighting coefficient of

jth criterion will be calculated through
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xj ¼
1 � Ej

P3
k¼1 1 � Ekð Þ ð9Þ

Step 3: Normalize the standardized matrix
Multiplying the columns of the standardized matrix by

the corresponding weights yields the weighted matrix,

which can be expressed as

Y ¼ y½ � ¼ xjrij
� �

¼
x1r11 x2r12 x3r13

x1r21

..

.
x2r22

..

.
x3r23

..

.

x1rn1 x2rn2 x3rn3

2

664

3

775 ð10Þ

Step 4: Calculate the distance to the ideal solution

Based on each standardized criterion, the positive ideal

solution (PIS) Yþ and the negative ideal solution (NIS) Y�

can be denoted as

Yþ ¼ max
i� 1;2;...;nf g

yi1; yi2; yi3ð Þ
� �

¼ yþ1 ; y
þ
2 ; y

þ
3

� �

Y� ¼ min
i� 1;2;...;nf g

yi1; yi2; yi3ð Þ
� �

¼ y�1 ; y
�
2 ; y

�
3

� � ð11Þ

Therefore, the distance between each standardized cri-

terion and PIS, and NIS, can be calculated through the

following equations:

Sþi ¼
X3

j¼1

yij � yþj

� 	
" #1=2

S�i ¼
X3

j¼1

yij � y�j

� 	
" #1=2

ð12Þ

Step 5: Calculate the relative closeness degree
The closer to the PIS and the farther away from the NIS,

the more importance the node is. Accordingly, the relative

closeness degree to the ideal solution is the measurement of

a node’s importance and criticality, which can be calcu-

lated as follows:

Ci ¼
S�i

S�i þ Sþi
; i ¼ 1; 2; . . .; nð Þ ð13Þ

Step 6: Ranking node importance

The vector of node importance can be denoted as

Qe ¼ C1;C2; . . .;Cn½ � ð14Þ

Then Qe is ranked in descending order based on each

centrality measure of each node; it can be acquired through

Q
0

e ¼ sort Qe½ � ¼ sort
�

C1;C2; . . .;Ci; . . .;Cn

��

¼


Q

0

e1; . . .;Q
0

ej; . . .;Q
0

en

� ð15Þ

On the basis of the theoretical analysis, the algorithm to

rank the node importance in a graph-based network is

shown in Algorithm 1. All the analyses are executed

through MATLAB.

2.2 Materials

To validate the feasibility and effectiveness of the proposed

method, a case study is demonstrated on the MTR network

in Hong Kong. MTR, as a rapid transit system in Hong

Kong, consists of 11 lines serving the urbanized areas of

Hong Kong Island, Kowloon, and the New Territories

(Fig. 1): Airport Express; Tseung Kwan O Line; Disney-

land Resort Line; Tsuen Wan Line; East Rail Line; Tung

Chung Line; Island Line; West Rail Line; Kwun Tong

Line; Ma On Shan Line; South Island Line. Each station is

regarded as a node, and each link between stations is

regarded as an edge in a graph-based network. The dataset

is collected from MTR’s official website.

This paper computed the basic topological features of

the Hong Kong MTR network, which contains 95 nodes

and 102 edges. The number of nodes, number of edges,

maximum degree (Dmax), minimum degree (Dmin), average

degree (Davg), clustering coefficient (C), and average

betweenness (AB) are presented in Table 1. The node

betweenness is defined as the number of the shortest paths

passing through nodes within the whole network. AB is an

attribute to evaluate the average frequency of shortest paths

passing a node, which indicates the average transport

capacity of nodes.

The degree distribution of the Hong Kong MTR network

is shown in Fig. 2. It depicts that when the degree is equal

to 2, the probability of degree distribution of the Hong

Kong MTR network will exceed 0.6. When the degree is

equal to 4, the probability of degree distribution is less than

0.1. The maximum degree is 4, while the minimum degree

is 1. Particularly, underground pedestrian passages serve as

Algorithm 1. Rank the most important nodes

Input: Decision matrix D with |V|=n

Output: Most important nodes with the result of ranking Q
0

e ¼
sort Qe½ � ¼ sort C1;C2; . . .;Ci; . . .;Cn½ �ð Þ ¼ Q

0
e1; . . .;Q

0
ej; . . .;Q

0
en

h i

(1) Constitute the weighted decision matrix

(i) For each vi, calculate standardized decision matrix R through

Eq. (5).

(ii) The weights of each centrality measure are determined through

Eq. (8) on the basis of EWM.

(iii) Based on each weight, the weighted decision matrix Y is

generated.

(2) Calculate the ideal solution (PIS) Yþ and NIS Y� and the distance

(Sþi and S�i ) to Yþ and Y� through Eq. (10) and (11), respectively

(3) Set and rank the node importance in descending order through

Eq. (14), and obtain the results
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the connection between Hong Kong Station and Central

Station and East Tsim Sha Tsui Station and Tsim Sha Tsui

Station. Hence, in this paper, we assume the connection

between the aforementioned stations to be a weighted edge.

3 Quantify the Effectiveness of the Proposed
Method

Demonstrated on the real and synthetic PTNs, we examine

the effectiveness of the proposed method in the case of

random, targeted attacks and recovery speed. For targeted

attacks, we remove the nodes in descending order ranked

by degree centrality (DC), betweenness centrality (BC),

closeness centrality (CC), and the proposed EWM–TOPSIS

method, respectively, while network recovery refers to the

recovery speed based on the above-mentioned methods

after random attacks in the removal of top 30 nodes. The

random attack is used as a benchmark. Then, four evalu-

ation indicators, that is, the frequency of nodes with the

same ranking (F) initially, the global network efficiency

(E), the size of the largest connected component (LCC),

and the average path length (APL), are calculated to

measure the performance of the proposed method.

3.1 Evaluation Indicators

Global efficiency (E)—Global efficiency, developed by

Latora and Marchiori [28], is used to eliminate the disad-

vantage of the size of giant component theory and can be

calculated through Eq. (16). It measures how efficient a

network performs before and after disruptions, which is

expressed as follows:

Fig. 1 Hong Kong Mass Transit Railway (MTR) network

Table 1. Basic topological statistical parameters of Hong Kong MTR

network

Parameter Hong Kong MTR network

Node number 95

Edge number 102

Dmax 4

Dmin 1

Davg 2.15

AB 408.11
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E ¼ 1

n n� 1ð Þ
Xn

i;j�Gði6¼jÞ

1

dij
ð16Þ

where dij is the shortest path length between node i and j in

G and n is the total number of nodes. The distance dij
should be infinite if nodes are disconnected. The higher the

value of E, the higher the efficiency of the networks. The

ratio of network efficiency before and after node removal l
is adopted to evaluate the effect of removing nodes on

network connectivity, which is expressed as

l kð Þ ¼ Ek

E0

ð17Þ

where E0 denotes the network efficiency before removing

the top k critical nodes, whereas Ek denotes the efficiency

after removing the top k nodes at kth time step. The faster

the decrease in the value of l, the more critical the

removed nodes and the more efficient the methods.

The size of the largest connected component (LCC)—In

complex graph theory, a connected component is a

subgraph in which edges connect any two nodes. The lar-

gest connected component is the maximal connected sub-

graph. When a fraction of the nodes is removed, the

network will be split into several connected components.

The size of the largest connected component (LCC) is used

as a robustness indicator to evaluate network connectivity

and compare the performance of the proposed method with

other methods. The ratio of the size of the largest con-

nected components before and after node removal S kð Þ is

expressed as

S kð Þ ¼ LCCk

LCC0

ð18Þ

where LCCk denotes the final size of LCC after removing

the top k nodes, and LCC0 denotes the initial size of LCC.

The smaller the S, the better the ranking method is.

Average path length (AOL)—The average path length is

a structural robustness indicator to measure how intercon-

nected a network is. It is calculated by determining the

average value of the length of the shortest path between all

pairs of nodes in the weighted network. Smaller APL

reflects strong connectivity between the nodes. When a

fraction of nodes in the network fails, the value of APL will

change. It is calculated as follows:

l ¼ 1

n � n� 1ð Þ �
Xn

i;j¼1ði 6¼jÞ
dij ð19Þ

The ratio of the average path length before and after

removing the top k critical nodes L kð Þ is denoted as

L kð Þ ¼ lk
l0

ð20Þ

where lk is the value of APL after removing the top k

critical nodes, and l0 is the original value of APL.

Fig. 2 Degree distribution of MTR network in Hong Kong

Fig.3 The removal process in

the representative network with

six nodes
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3.2 Attack Strategies

Different attack strategies are introduced in this section. In

this paper, we continuously attack the network by remov-

ing the nodes according to the attack protocols designed as

follows:

(1) The highest degree-based attacks

(2) The highest betweenness-based attacks

(3) The highest closeness-based attacks

(4) The highest EWM–TOPSIS-based attacks

(5) Random attacks serve as a benchmark, which refers

to removing the nodes randomly, while 20 indepen-

dent runs are conducted and the ensemble mean

values for the LCC, APL, and E are plotted

(6) Recovery speed after random attacks in the early

stage.

This paper adopts a dynamic attack manner because it

performs better than the static attack for the same attack

sequence [29]. After an attack, the topological features are

recalculated, ensuring that the most critical node in the

current network is removed in each round of attack. To

increase statistical significance, nodes with the same

ranking will fail randomly, and 20 independent runs are

considered. Figure 3 shows the removal process in an

undirected network with six nodes and the change of net-

work connectivity under attacks.

Nodes in yellow and blue are selected for targeted

removal. When a certain node is removed, it will lead to

the failure of the edges that connect it with other neigh-

boring nodes. Furthermore, the neighbored nodes with

degree 1 will get dysfunctional. The dashed nodes and

edges indicate that they have been detached from the net-

work and, hence, incapacitated, resulting in the deduction

of LCC, APL, and E.

3.3 Results

3.3.1 Frequency of Nodes with the Same Ranking (F)

Table 2 presents the results for comparison, which indi-

cates the 20 top-ranked nodes from original state on the

basis of DC, BC, CC, and EWM–TOPSIS by descending

order.

A higher frequency of the same ranking will lead to

difficulty in ranking node criticality effectively. According

to the overall ranking results, the frequency of nodes with

the same ranking sorted by the DC method is the highest,

reaching 62.11%. Nodes ranked by DC are divided into

four categories according to the degree’s value; for

example, the top eight nodes share the same ranking with

four adjacent nodes. This is due to it only considering the

number of adjacent nodes from a local perspective and

exhibiting less structural information from a global per-

spective. In contrast, the BC and CC methods have much a

Table 2 Top 20 nodes ranked

by DC, BC, CC, and EWM–

TOPSIS

Rank DC BC CC EWM–TOPSIS

1 Diamond Hill Tai Wai East Tsim Sha Tsui Kowloon Tong

2 Kowloon Tong Kowloon Tong Tsim Sha Tsui Tai Wai

3 Tai Wai Admiralty Prince Edward Admiralty

4 Lai King Tsim Sha Tsui Kowloon Tong Mei Foo

5 Mei Foo Mei Foo Shek Kip Mei Tsim Sha Tsui

6 Tsing Yi Prince Edward Hung Hom Prince Edward

7 Nam Cheong East Tsim Sha Tsui Jordan East Tsim Sha Tsui

8 Admiralty Shek Kip Mei Mong Kok Diamond Hill

9 Yau Tong Quarry Bay Admiralty Quarry Bay

10 Prince Edward Wan Chai Yau Ma Tei Lai King

11 Yau Ma Tei Sham Shui Po Sham Shui Po Nam Cheong

12 Tsim Sha Tsui Causeway Bay Austin Yau Tong

13 East Tsim Sha Tsui Yau Tong Lok Fu Sha Tin

14 Central Cheung Sha Wan Mong Kok East Shek Kip Mei

15 Quarry Bay Sha Tin Tai Wai Central

16 Tseung Kwan O Diamond Hill Mei Foo Tsing Yi

17 Kowloon Lai Chi Kok Cheung Sha Wan Wan Chai

18 Sunny Bay Tin Hau Central Sham Shui Po

19 Sha Tin Fortress Hill Wan Chai Causeway Bay

20 University North Point Lai Chi Kok Cheung Sha Wan

232 Urban Rail Transit (2021) 7(3):226–239
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lower frequency at 16.84% and 2.11%, respectively.

However, the frequency of nodes with the same ranking by

the EWM–TOPSIS method has reached zero. Figure 4

shows the comparison of the frequency of nodes with the

same ranking by applying the four methods. It is concluded

that the EWM–TOPSIS method is much more accurate and

efficient than the other centrality measures with the lowest

F.

Although the EWM–TOPSIS method is calculated

based on DC, BC, and CC, it shows a better performance of

ranking critical nodes and of higher resolution than DC,

BC, and CC, themselves. The ranking results will be used

as a baseline to quantify the network robustness under

target attacks. Kowloon Tong, Tai Wai, Admiralty, Mei

Foo, and Tsim Sha Tsui, as the five top-ranked nodes

ranked by EWM–TOPSIS, highlight their criticality in

terms of network connectivity and transport capacity.

Further discussion will be portrayed in the next section.

3.3.2 Connectivity Analysis

In this section, we examine the effectiveness of the pro-

posed method in terms of network robustness and recovery

through connectivity measures, including l kð Þ, S kð Þ, and

L kð Þ. The robustness of a complex network refers to its

capability to maintain network connectivity given the

failure of a fraction of nodes or edges. Firstly, nodes are

removed from the network in descending order according

to designed attack protocols 1–5. Then, the value of l kð Þ is

recalculated through formula (17) separately in each round

of attack. The lower the value of l kð Þ, the greater the

decrease in network efficiency, indicating a higher-ranking

accuracy. A fraction of critical nodes is removed according

to the ranking results in a dynamic manner. The process is

conducted continuously until the value of l kð Þ reaches the

threshold limit value (TLV). The resulting l kð Þ values are

depicted in a line graph, as shown in Fig. 6 to provide a

more in-depth insight into the quantitative change in net-

work efficiency.

As can be seen from Fig. 5, the decrease of l kð Þ in the

case of EWM–TOPSIS is more significant than the others,

which has shown its higher accuracy and efficiency,

especially in the initial stage. The EWM–TOPSIS method

corresponds to the most significant decline in global net-

work efficiency. It has declined from 0.5999 to 0.5269

when ‘‘Kowloon Tong’’ is removed, which shows a sig-

nificant (12.17%) fall in l kð Þ. Simultaneously, there is a

sudden decrease from 0.5999 to 0.2918 (i.e., 51.36%) when

‘‘Kowloon Tong,’’ ‘‘Tai Wai,’’ and ‘‘Admiralty’’ are

removed, while the corresponding numbers of DC, BC, and

CC are 34.92%, 51.36%, and 26.82%. BC shows the same

performance level as EWM–TOPSIS in the early stage.

However, EWM–TOPSIS is superior to BC attack proto-

cols during the latter stages. When 69 nodes ranked by

EWM–TOPSIS are removed, the value of l kð Þ has

declined to less than 0.01, which implies the most signifi-

cant connectivity loss and network paralysis. Meanwhile,

in the case of node criticality ranked by DC, BC, and CC,

the change of network efficiency follows a similar down-

ward trend.

Figure 6 displays the decrease of the size of the largest

connected component (S kð Þ) subject with four attack pro-

tocols. As can be seen from Fig. 7b, it drastically decreases

to less than half of its original size when only removing the

top three nodes under EWM–TOPSIS and BC attack pro-

tocols, whereas it requires the removal of five and nine

nodes to achieve the same performance level in regard to

nodes ranked by DC and CC, respectively. It can be

inferred that CC corresponds to the least accuracy and

effectiveness when quantifying node criticality. Since the

EWM–TOPSIS attack strategy can increase the decline

speed of S fastest when removing a small fraction of nodes

and ensure continuously high strike effectiveness when

removing a large fraction of nodes, the proposed EWM–

TOPSIS method performs the best to quantify node criti-

cality further.

Furthermore, we explore the decline speed of average

path length (APL) subjected to different attack strategies.

As shown in Fig. 7, the variation of APL shows an ‘‘up-

ward-downward’’ trend, which refers to the fact that the

removal of the most critical nodes can result in the failure

of edges that are critical to network connectivity. The

variation exhibits a descending trend when top k nodes are

removed at kth time step. The smaller the ratio of the

average path length before and after removing the top k

critical nodes (L), the more accurate the ranking method is.

Fig. 4 Frequency of nodes with the same ranking using the four

methods
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It can be seen from the figure that the EWM–TOPSIS

method proposed in this paper has the most significant

strike effect on network fragmentation, and hence the

effectiveness of the proposed method is further quantified

by different topological features.

3.3.3 Recovery Speed

To further examine the effectiveness of the proposed

method, recovery sequences are generated by different

methods after 30% random attacks. Additionally, 20

random recovery sequences are generated to be regarded as

a baseline for comparison. In this case, the recovery speed

is measured by computing the area between the Y-axis and

the recovery curve, which is defined as the impact area (IA)

[24]. A larger IA indicates a less efficient recovery strat-

egy. Observing the results, as shown in Fig. 8, we can find

that the recovery sequence generated by EWM–TOPSIS

has an approximately 10% smaller IA than the corre-

sponding value based on the DC-based sequence, which

shows that the proposed EWM–TOPSIS can make the

Fig. 5 The decline rate of global network efficiency (l) with different attack protocols
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network recover from random attacks more efficiently and

indicates its superiority for ranking node criticality.

In real-world transportation systems, node criticality is

complicatedly correlated with different centrality mea-

sures. However, a purely single centrality-based measure is

incapable of satisfying the demand for the fastest restora-

tion. In summary, the results indicate that the proposed

EWM–TOPSIS emerges as a better method for examining

network robustness and, hence, evaluating node criticality

than degree centrality (DC), betweenness centrality (BC),

and closeness centrality (CC) in a dynamic attack manner,

which has more evident advantages in the initial rounds of

attack, indicating its highest application value. Compre-

hensively, BC performs the second-best in evaluating node

criticality, whereas CC is the worst.

4 Discussion and Conclusions

Prior work has utilized a single criterion, for example, BC,

CC, DC, page rank, etc., to evaluate node criticality in

complex networks. However, these studies only reflect the

Fig. 6 The decline rate of the size of the largest connected component (S) with different attack protocols
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single-sided characteristic of node criticality. To eliminate

this deficiency, we propose a node criticality identification

method based on EWM and TOPSIS. The network

robustness and recovery simulation experiments on real

PTNs show that the proposed method synthesizes the

advantages of three single criteria (DC, BC, and CC), and

gains more accurate and effective assessment results.

An empirical analysis is conducted on MTR in Hong

Kong to warrant the effectiveness of the proposed method.

Four evaluation indicators have been used to quantify the

effectiveness of different ranking methods, including the

frequency of nodes with the same ranking (F), the global

network efficiency (E), the size of the largest connected

component (LCC), and the average path length (APL). The

network connectivity decreases sharply after removing the

top three critical nodes in descending order ranked by DC,

BC, CC, and EWM–TOPSIS. Since the EWM–TOPSIS

method corresponds to the most significant decline in the

value of E, LCC, and APL after removing the top k critical

nodes in a dynamic attack manner, it shows superiority

over the other three centrality measures in the context of

accurately evaluating node criticality. Its superiority over

the other three measures is more evident when a smaller

fraction of nodes is removed. The network gets close to

Fig. 7 The decline rate of the size of the largest connected component (L) with different attack protocols
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Fig. 8 The change of (l), (S),

and (L) subject with different

recovery strategies after random

attacks
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dysfunctionality when only less than 10% of critical nodes

are removed in the case of all ranking methods. To further

certify the application value of the proposed method, we

compare the performance of multiple station recovery

sequences generated from different methods after ran-

domly removing 30% nodes. In this case, EWM–TOPSIS

tends to generate the most efficient recovery sequences and

bring the network back to full functionality most

effectively.

This paper has proposed a comprehensive method of

evaluating node criticality. It takes a multicriteria approach

and recalculates the weights of each centrality criterion to

overcome the deficiencies of using a single criterion, which

can provide support for the planning of highly efficient

transport systems. However, some limitations are worth

noting. The proposed method in this paper is for the

undirected networks. In real PTNs, many of them are

directed networks where the connections between nodes

are not bidirectional.

Additionally, although the proposed method has supe-

rior performance in evaluating node criticality and pro-

viding necessary analysis results for assessing network

topology, further optimization still exists, including con-

sidering the impact of dynamic features (i.e., passenger

flow). Future work will, therefore, consider the effect of

passenger flow through different stations over time. Fur-

thermore, more tests on real networks will be carried out

for generalization into other fields.
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