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Abstract
In this paper, we consider the existence of solutions of the following Kirchhoff-type
problem:

{
–(a + b

∫
R3 |∇u|2 dx)�u + V(x)u = f (x,u), in R

3,

u ∈ H1(R3),

where a,b > 0 are constants, and the potential V(x) is indefinite in sign. Under some
suitable assumptions on f , the existence of solutions is obtained by Morse theory.
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1 Introduction and main result
This paper is concerned with the following Kirchhoff-type problem:

⎧⎨
⎩–(a + b

∫
R3 |∇u|2 dx)�u + V (x)u = f (x, u) in R

3,

u ∈ H1(R3),
(1.1)

where a, b > 0 are constants, and the potential V (x) is indefinite in sign, f satisfies some
conditions which will be stated later.

In recent years, more and more attention has been devoted to study the following
Kirchhoff-type problem:

⎧⎨
⎩–(a + b

∫
RN |∇u|2 dx)�u + V (x)u = f (x, u) in R

N ,

u ∈ H1(RN ),
(1.2)

where V : RN → R and a, b > 0 are constants. (1.2) is a nonlocal problem as the appear-
ance of the term

∫
RN |∇u|2 dx�u, which implies that (1.2) is not a pointwise identity. This
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causes some mathematical difficulties which make the study of (1.2) particularly interest-
ing. Problem (1.2) appears in an interesting physical context. Indeed, if we consider the
case V (x) = 0 and replace R

N with a bounded domain � ⊂ R
N in (1.2), then we get the

following Dirichlet problem of Kirchhoff type:

⎧⎨
⎩–(a + b

∫
�

|∇u|2 dx)�u = f (x, u) in �,

u = 0 on �,
(1.3)

which is a nonlocal problem due to the presence of the nonlocal term b
∫
�

|∇u|2 dx�u and
is related to the stationary analogue of the equation

utt –
(

a + b
∫

�

|∇u|2 dx
)

�u = f (x, u). (1.4)

(1.4) was first proposed by Kirchhoff in [12] as a generalization of the classical D’Alembert
wave equations, particularly taking into account the subsequent change in string length
caused by oscillations. The readers can learn some early classical research of Kirchhoff
equations from [4, 22]. For the results concerning the existence of sign-changing solutions
for (1.3), we refer the reader to papers [20, 24, 34], which depend heavily on the nonlinear
term with 4-superlinear growth at infinity in the sense that

lim|t|→∞
F(x, t)

t4 = +∞, x ∈ �,

where F(x, t) =
∫ t

0 f (x, s) ds. And [19, 32] deal with the fact that the nonlinearity f (x, u) may
not be 4-superlinear at infinity.

Motivated by the strong physical background, equations (1.2) and (1.3) have been ex-
tensively studied in recent years under variant assumptions on V and f . There are many
papers involving the existence of nontrivial solutions of equation (1.2). In [21], Perera and
Zhang obtained a nontrivial solution of (1.2) via Yang index and critical group. By using the
local minimum methods and the fountain theorems, He and Zou [9] obtained infinitely
many solutions. Later, Jin and Wu [11] proved the existence of infinitely many radial solu-
tions by applying a fountain theorem. Using the Nehari manifold and fibering map meth-
ods, equation (1.2) was studied with concave and convex nonlinearities, the existence of
multiple positive solutions was obtained by Chen et al. [6]. Moreover, the existence of in-
finitely many solutions to equation (1.2) has been derived by a variant version of fountain
theorem in [18]. Subsequently, in [13] Li and Ye, using a monotone method and a global
compactness lemma, showed the existence of a positive ground state solution for the cor-
responding limiting problem of equation (1.2). After that, Guo [8] generalized the result
in [13] to a general nonlinearity. In [26] Tang and Cheng proposed a new approach to re-
cover compactness for the (PS)-sequence, and they proved that equation (1.3) possesses
one ground state sign-changing solution, and its energy is strictly larger than twice that
of the ground state solutions of Nehari type. In [25] Tang and Chen proved that equation
(1.2) admits a ground state solution of Nehari–Pohozaev type and a least energy solution
under some mild assumptions on V and f by using a new approach to recover compact-
ness for the minimizing sequence.
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Recently, Xiang et al. [31] considered the existence and multiplicity of solutions for a
class of Schrödinger–Kirchhoff type problems involving the fractional p-Laplacian and
critical exponent. By using the concentration compactness principle in fractional Sobolev
spaces, they obtained m pairs of solutions, by using Krasnoselskii’s genus theory, the ex-
istence of infinitely many solutions were obtained. Later, Xiang et al. [30] developed the
fractional Trudinger–Moser inequality in the singular case and used it to study the exis-
tence and multiplicity of solutions for a class of perturbed fractional Kirchhoff-type prob-
lems with singular exponential nonlinearity. For further important and interesting results,
one can refer to [3, 10, 14, 27, 29] and the references therein.

In all the above-mentioned studies, we notice that the potential V (x) was assumed to be
equipped with some “compact” condition or positive definite. But in this paper the poten-
tial V (x) is indefinite in sign, the methods and arguments for the cases V (x) ≥ 0 are not ap-
plicable to the indefinite cases. So, this article is a complement to the indefinite Kirchhoff
problems in the literature. Our main aim is to study the existence of nontrivial solutions
for problem (1.1) by means of Morse theory and local linking, which are different from
the literature mentioned above. Before stating our main results, we need to describe the
eigenvalue of Schrödinger operator –a� + V . Consider the following increasing sequence
λ1 ≤ λ2 ≤ · · · of minimax values defined by

λn := inf
S∈�n

sup
u∈S\{0}

∫
R3 (a|∇u|2 + V (x)u2) dx∫

R3 u2 dx
,

where �n denotes the family of n-dimensional subspaces of C∞
0 (R3), remember a 	= 0. Let

λ∞ := lim
n→∞λn,

then λ∞ is the bottom of the essential spectrum of –a� + V if it is finite, and for every n ∈
N, the inequality λn < λ∞ implies that λn is an eigenvalue of –a� + V of finite multiplicity
(see [23, Chapt. XIII] for details). Note that if V is bounded from below, then λn is well
defined and is finite.

Set F(x, u) :=
∫ u

0 f (x, t) dt. We assume that V and f satisfy the following conditions:
(V ) V (x) ∈ C(R3,R) bounded and there exists an integer k ≥ 1 such that λk < 0 < λk+1.
(f1) f ∈ C(R3 ×R,R), and there exist C > 0 and p ∈ (2, 6) such that

∣∣f (x, u)
∣∣ ≤ C

(
1 + |u|p–1) for all (x, u) ∈R

3 ×R.

(f2) f (x, u) = o(u) as u → 0 uniformly in x ∈R
3.

(f3) There exists μ > 4 such that 0 < μF(x, u) ≤ f (x, u)u for all (x, u) ∈R
3 ×R and u 	= 0.

(f4) For any r > 0, we have

lim|x|→∞ sup
0<|u|≤r

∣∣∣∣ f (x, u)
u

∣∣∣∣ = 0.

It is easy to see that condition (f3) implies that

lim|u|→∞
F(x, u)

u4 = +∞.
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Concerning the existence of solutions for problem (1.1), we have the following result.

Theorem 1.1 Suppose that (V ) and (f1)–(f4) hold. Then problem (1.1) has at least one
nontrivial solution.

Remark 1.2 We should also mention two recent papers [15, 33] related to problem (1.1).
In these two papers, the variational functional is coercive and bounded from below. When
the nonlinearity is odd, infinitely many nontrivial solutions of (1.1) were obtained in both
[15] and [33] by using critical point theory of even functional; while if the nonlinearity is
not odd, two nontrivial solutions were obtained in [15] via Morse theory. In the current
paper, the variational functional is neither bounded from above nor bounded from below,
this is quite different from the situation in [15, 33].

Remark 1.3 To deal with problem (1.1), one encounters various difficulties. On the one
hand, the Sobolev embedding H1(R3) ↪→ L2(R3) is not compact. To overcome this, one
can restrict the energy functional � to a subspace of H1(R3), which embeds compactly into
L2(R3) with certain qualifications or consists of radially symmetric functions. In [7], Chen
and Liu considered the standing waves of (1.1) with the nonlinearity f is 4-superlinear and
the potential V satisfying assumption (V ) and

μ
(
V –1(–∞, M]

)
< ∞ (1.5)

for all M > 0, where μ denotes the Lebesgue measure in R
N , then the working space

X :=
{

u ∈ H1(
R

N)∣∣∣∣
∫
RN

V (x)u2 dx < ∞
}

embeds compactly into L2(RN ), which is crucial in verifying the Palais–Smale condition.
However, our assumptions on V are much weaker.

On the other hand, under our assumptions the potential V (x) is indefinite in sign, then
the quadratic part of the functional � (defined in (2.2)) possesses a nontrivial negative
space, and the functional � does not satisfy the linking geometry any more, so that the
linking theorem is not applicable. We will use the idea of local linking to overcome the
difficulty. To our knowledge, there are a few results on this case.

The remainder of this paper is organized as follows. In Sect. 2, we give the variational
framework for problem (1.1) and prove that � satisfies the (PS) condition. In Sect. 3, we
recall some concepts and results in infinite-dimensional Morse theory [5] and give the
proof of Theorem 1.1.

2 Variational setting and Palais–Smale condition
In this section, we give the variational setting for problem (1.1) and establish the compact-
ness conditions. By | · |s as follows, we denote the usual Ls-norm for s ≥ 2, and C, Ci stand
for different positive constants.

Let

H1(
R

3) :=
{

u ∈ L2(
R

3)|∇u ∈ L2(
R

3)},
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with the usual norm

‖u‖H =
(∫

R3

(|∇u|2 + u2)dx
) 1

2

and

E :=
{

u ∈ H1(
R

3)∣∣∣∣
∫
R3

V (x)u2 dx < ∞
}

,

be a linear subspace of H1(R3). Let E– be the space spanned by the eigenfunctions with re-
spect to λ1, . . . ,λk and E+ = (E–)⊥. From (V ), we deduce that E = E– ⊕ E+, where E–, E+ are
the negative eigenspace and the positive eigenspace of the operator –a� + V . Moreover,
k ≤ dim E– < ∞.

For any u, v ∈ E, we define

(u, v) :=
∫
R3

(
a∇u+∇v+ + V (x)u+v+)

dx –
∫
R3

(
a∇u–∇v– + V (x)u–v–)

dx,

where u = u– + u+, v = v– + v+, u+, v+ ∈ E+, u–, v– ∈ E–. Then (·, ·) is an inner product in E.
Hence, E is a Hilbert space with the norm ‖u‖ = (u, u) 1

2 , which is an equivalent norm on
H1(R3). It is easy to see that

∫
R3

(
a|∇u|2 + V (x)u2)dx =

∥∥u+∥∥2 –
∥∥u–∥∥2.

For any s ∈ [2, 6], since the embedding E ↪→ Ls(R3) is continuous, then there exists a
constant ds > 0 such that

|u|s ≤ ds‖u‖ for all u ∈ E. (2.1)

It is easy to see that, from (f1) and (f2), the functional � : E →R,

�(u) =
1
2

∫
R3

a|∇u|2 dx +
1
2

∫
R3

V (x)u2 dx +
b
4

(∫
R3

|∇u|2 dx
)2

–
∫
R3

F(x, u) dx, (2.2)

is of class C1 with derivative

〈
�′(u), v

〉
=

∫
R3

(
a∇u · ∇v + V (x)uv

)
dx + b

∫
R3

|∇u|2 dx
∫
R3

∇u · ∇v dx

–
∫
R3

f (x, u)v dx (2.3)

for all u, v ∈ E. It can be proved that a weak solution of problem (1.1) is a critical point of
the functional �.

We say that a functional I ∈ C1(E,R) satisfies the (PS) condition if any sequence {un} ⊂ E
such that

sup
n

∣∣I(un)
∣∣ < ∞ and I ′(un) → 0 in E–1

(called a (PS) sequence) has a convergent subsequence.
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Lemma 2.1 Under assumptions (V ), (f3), every (PS) sequence of functional � is bounded
in E.

Proof Let {un} be a (PS) sequence of functional �, that is,

sup
n

∣∣�(un)
∣∣ < ∞ and �′(un) → 0 in E–1.

If the conclusion is not true, we may assume ‖un‖ → ∞, as n → ∞. Let vn = un
‖un‖ , then

‖vn‖ = 1 up to a subsequence

vn = v+
n + v–

n ⇀ v = v+ + v– ∈ E, v±
n , v± ∈ E±.

If v = 0, then v–
n → v– = 0 due to dim E– < ∞. Since

‖vn‖2 =
∥∥v–

n
∥∥2 +

∥∥v+
n
∥∥2 = 1,

for n large enough, we obtain

∥∥v+
n
∥∥2 –

∥∥v–
n
∥∥2 ≥ 1

2
.

Now, using (f3), for n large enough, we deduce

1 + sup
n

∣∣�(un)
∣∣ + ‖un‖

≥ �(un) –
1
μ

〈
�′(un), un

〉

=
(

1
2

–
1
μ

)∫
R3

(
a|∇un|2 + V (x)u2

n
)

dx +
(

1
4

–
1
μ

)
b
(∫

R3
|∇un|2 dx

)2

+
∫
R3

(
1
μ

f (x, un)un – F(x, un)
)

dx

≥
(

1
2

–
1
μ

)∫
R3

(
a|∇un|2 + V (x)u2

n
)

dx

=
(

1
2

–
1
μ

)
‖un‖2(∥∥v+

n
∥∥2 –

∥∥v–
n
∥∥2) (2.4)

≥
(

1
4

–
1

2μ

)
‖un‖2,

contradicting ‖un‖ → ∞, thus v 	= 0.
It follows from (2.4) that

0 ← 1 + supn |�(un)| + ‖un‖
‖un‖4 ≥

(
1
2

–
1
μ

)(‖u+
n‖2

‖un‖4 –
‖u–

n‖2

‖un‖4

)
+

(
1
4

–
1
μ

)
b
|∇un|42
‖un‖4 ,

which implies that

lim
n→∞

|∇un|42
‖un‖4 = 0.
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Define ϒ(u) := |∇u|2, it is easy to see that ϒ is continuous and convex, hence it is weak
lower semi-continuous. Consequently,

lim inf
n→∞ |∇vn|2 ≥ |∇v|2,

and then

0 = lim inf
n→∞

|∇un|42
‖un‖4 = lim inf

n→∞ |∇vn|42 ≥ |∇v|42 > 0.

This is a contradiction, thus the proof is completed. �

Lemma 2.2 Under the assumptions of Theorem 1.1, � satisfies the (PS) condition.

Proof Assume that {un} is a (PS) sequence of �. It follows from Lemma 2.1 that {un} is
bounded in E, then up to a subsequence

un ⇀ u, in E, un → u in Ls
loc

(
R

3), 2 ≤ s < 6, un(x) → u(x) a.e. in R
3.

We have
∫
R3

(
a∇un · ∇u + V (x)unu

)
dx →

∫
R3

(
a|∇un|2 + V (x)u2)dx =

∥∥u+∥∥2 –
∥∥u–∥∥2.

Consequently,

o(1) =
〈
�′(un), un – u

〉
=

∫
R3

(
a∇un · ∇(un – u) + V (x)un(un – u)

)
dx

+ b
∫
R3

|∇un|2 dx
∫
R3

∇un · ∇(un – u) dx –
∫
R3

f (x, un)(un – u) dx

=
∫
R3

(
a|∇un|2 + V (x)u2

n
)

dx –
∫
R3

(
a∇un · ∇u + V (x)unu

)
dx

+ b
∫
R3

|∇un|2 dx
∫
R3

∇un · ∇(un – u) dx –
∫
R3

f (x, un)(un – u) dx (2.5)

=
(∥∥u+

n
∥∥2 –

∥∥u–
n
∥∥2) –

(∥∥u+∥∥2 –
∥∥u–∥∥2)

+ b
∫
R3

|∇un|2 dx
∫
R3

∇un · ∇(un – u) dx –
∫
R3

f (x, un)(un – u) dx + o(1)

=
(∥∥u+

n
∥∥2 –

∥∥u+∥∥2) –
(∥∥u–

n
∥∥2 –

∥∥u–∥∥2)
+ b

∫
R3

|∇un|2 dx
∫
R3

∇un · ∇(un – u) dx –
∫
R3

f (x, un)(un – u) dx + o(1).

Since dim E– < ∞, we have u–
n → u–, thus ‖u–

n‖ → ‖u–‖. Collecting all infinitesimal terms,
we obtain

∥∥u+
n
∥∥2 –

∥∥u+∥∥2 =
∫
R3

f (x, un)(un – u) dx
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– b
∫
R3

|∇un|2 dx
∫
R3

∇un · ∇(un – u) dx + o(1). (2.6)

With the assumption (f4), it has been shown in [2, p.29] that

lim
∫
R3

f (x, un)(un – u) dx ≤ 0.

Because ϒ(u) = |∇u|2 is weak lower semi-continuous, we have

lim
∫
R3

∇un · ∇(un – u) dx = lim

(∫
R3

|∇un|2 dx –
∫
R3

∇un · ∇u dx
)

≥
∫
R3

|∇u|2 dx –
∫
R3

|∇u|2 dx

= 0.

Now, from (2.6), we have

lim
(∥∥u+

n
∥∥2 –

∥∥u+∥∥2)
= lim

(∫
R3

f (x, un)(un – u) dx – b
∫
R3

|∇un|2 dx
∫
R3

∇un · ∇(un – u) dx
)

≤ lim
∫
R3

f (x, un)(un – u) dx – limb
∫
R3

|∇un|2 dx
∫
R3

∇un · ∇(un – u) dx

≤ lim
∫
R3

f (x, un)(un – u) dx

≤ 0,

which implies lim‖u+
n‖2 ≤ ‖u+‖2. From the weak lower semi-continuity of the norm, we

have

∥∥u+∥∥2 ≤ lim
∥∥u+

n
∥∥2 ≤ lim

∥∥u+
n
∥∥2 ≤ ∥∥u+∥∥2,

that is, ‖u+
n‖2 → ‖u+‖2, combining ‖u–

n‖2 → ‖u–‖2, we get ‖un‖ → ‖u‖. Thus un → u in
E. The proof is completed. �

3 Critical groups and the proof of Theorem 1.1
In Sect. 2, we have established the (PS) condition for �. Now, we recall some concepts and
results in infinite-dimensional Morse theory [5], then analyze the critical groups of � at
infinity, and give the proof of Theorem 1.1.

Let X be a Banach space, ϕ : X → R be a C1-functional, u be an isolated critical point of
ϕ and ϕ(u) = c. Then

Cq(ϕ, u) := Hq
(
ϕc,ϕc\{u}), q = 0, 1, 2, . . . ,

is called the qth critical group of ϕ at u, where ϕc := ϕ–1(–∞, c] and Hq(·, ·) stands for the
qth singular relative homology group with integer coefficients.
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If ϕ satisfies the (PS) condition and the critical values of ϕ are bounded from below by
α, then following Bartsch and Li [1], we call

Cq(ϕ,∞) := Hq(X,ϕα), q = 0, 1, 2, . . . ,

the qth critical group of ϕ at ∞. It is well known that the homology on the right does not
depend on the choice of α.

Proposition 3.1 ([1]) If ϕ ∈ C1(X,R) satisfies the (PS) condition and Cl(ϕ, 0) 	= Cl(ϕ,∞)
for some l ∈N, then ϕ has a nonzero critical point.

Proposition 3.2 ([16]) Suppose ϕ ∈ C1(X,R) has a local linking at 0, that is, X = Y ⊕ Z
and

ϕ(u) ≤ 0 for u ∈ Y ∩ Bρ ,

ϕ(u) > 0 for u ∈ (
Z\{0}) ∩ Bρ ,

for some ρ > 0, where Bρ := {u ∈ X | ‖u‖ ≤ ρ}. If l = dim Y < ∞, then Cl(ϕ, 0) 	= 0.

To prove Theorem 1.1 with Proposition 3.1, we need the following lemma to investigate
the critical groups of � at infinity.

Lemma 3.3 Under the assumptions of Theorem 1.1, there exists A > 0 such that, if �(u) ≤
–A, then

〈
�′(u), u

〉
=

d
dt

∣∣∣∣
t=1

�(tu) < 0.

Proof We argue by contradiction. Assume that there exists a sequence {un} ⊂ E such that
�(un) ≤ –n, but

〈
�′(un), un

〉
=

d
dt

∣∣∣∣
t=1

�(tun) ≥ 0. (3.1)

By (f3), we have

∥∥u+
n
∥∥2 –

∥∥u–
n
∥∥2 ≤ (∥∥u+

n
∥∥2 –

∥∥u–
n
∥∥2) +

∫
R

[
f (x, un)un – 4F(x, un)

]
dx

= 4�(un) –
〈
�′(un), un

〉
≤ –4n. (3.2)

This implies ‖un‖ → ∞. Let vn = un
‖un‖ , and v±

n be the orthogonal projection of vn on E±.
Then v–

n → v– for some v– ∈ E– since dim E– < ∞.
If v– 	= 0, then for some v ∈ E\{0}, we have vn ⇀ v in E, and the set 
 = {x ∈ R

3 : v 	= 0}
has positive Lebesgue measure. For x ∈ 
, we have |un(x)| → ∞, from (f3), that

F(x, un(x))
u4

n(x)
v4

n(x) → +∞.
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Then, by Fatou’s lemma and (f3), we have

∫
R3

f (x, un)un

‖un‖4 dx ≥
∫
R3

μF(x, un)
‖un‖4 dx

≥ μ

∫
v	=0

F(x, un)
u4

n(x)
v4

n(x)

→ +∞.

Hence, using (3.1), we have

0 ≤ 〈�′(un), un〉
‖un‖4

=
‖u+

n‖2 – ‖u–
n‖2

‖un‖4 + b
|∇un|42
‖un‖4 –

∫
R3

f (x, un)un

‖un‖4 dx

≤ 1
‖un‖2 + C1b –

∫
R3

f (x, un)un

‖un‖4 dx

≤ 1 + C1b –
∫
R3

f (x, un)un

‖un‖4 dx

→ –∞,

a contradiction. Therefore v– = 0, from

‖vn‖2 =
∥∥v+

n
∥∥2 +

∥∥v–
n
∥∥2 = 1,

we see that ‖v+
n‖ → 1. Consequently, for n large enough, we have

∥∥u+
n
∥∥ = ‖un‖

∥∥v+
n
∥∥ ≥ ‖un‖

∥∥v–
n
∥∥ =

∥∥u–
n
∥∥,

a contradiction to (3.2). Thus the conclusion of the lemma is true. �

Lemma 3.4 Under the assumptions of Theorem 1.1, Ci(�,∞) ∼= 0 for all i ∈ N.

Proof Let B = {v ∈ E|‖v‖ ≤ 1} be the unit ball in E, S = ∂B be the unit sphere. Let A > 0 be
the number given in Lemma 3.3. Without loss of generality, we may assume that

inf‖u‖≤2
�(u) > –A.

Then, for v ∈ S and (f3), we deduce that

�(sv) =
s2

2
(∥∥v+∥∥2 –

∥∥v–∥∥2) +
bs4

4

(∫
R3

|∇v|2 dx
)2

–
∫
R3

F(x, sv) dx

= s4
{‖v+‖2 – ‖v–‖2

2s2 +
b
4

(∫
R3

|∇v|2 dx
)2

–
∫
R3

F(x, sv)
s4 dx

}

→ –∞, as s → +∞.

So there is sv > 0 such that �(svv) = –A.
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Set w = svv, a direct computation and Lemma 3.3 give

〈
�′(svv), v

〉
=

d
ds

∣∣∣∣
s=sv

�(sv) =
1
sv

d
dt

∣∣∣∣
t=1

�(tw) < 0.

By the implicit function theorem, T : v → sv is a continuous function on S. Using the
function T and a standard argument (see, e.g., [17, 28]), we can construct a deformation
from X\B to �–A = �–1(–∞, –A], and deduce via the homotopic invariance of singular
homology

Ci(�,∞) = Hi(X,�–A) ∼= Hi(X, X\B) = 0, for all i ∈N.

The proof is completed. �

Lemma 3.5 Under assumptions (V ), (f1), and (f2), the functional � has a local linking at
0 with respect to E = E– ⊕ E+.

Proof By (f1) and (f2), there exists a constant C > 0 such that

∣∣F(x, u)
∣∣ ≤ εu2 + Cup.

If u ∈ E–, by (2.1) and the equivalence of norms on finite dimensional space E–, we have

�(u) =
1
2

∫
R3

(
a|∇u|2 + V (x)u2)dx +

b
4

(∫
R3

|∇u|2 dx
)2

–
∫
R3

F(x, u) dx

= –
1
2
‖u‖2 +

b
4
|∇u|42 –

∫
R3

F(x, u) dx

≤ –
1
2
‖u‖2 + C2

b
4
‖u‖4 + ε|u|22 + C|u|pp

≤
(

–
1
2

+ εd2
2

)
‖u‖2 + C2

b
4
‖u‖4 + Cdp

p‖u‖p.

If u ∈ E+, we have

�(u) =
1
2

∫
R3

(
a|∇u|2 + V (x)u2)dx +

b
4

(∫
R3

|∇u|2 dx
)2

–
∫
R3

F(x, u) dx

=
1
2
‖u‖2 +

b
4
|∇u|42 –

∫
R3

F(x, u) dx

≥ 1
2
‖u‖2 – ε|u|22 – C|u|pp

≥
(

1
2

– εd2
2

)
‖u‖2 – Cdp

p‖u‖p.

So, there exists 0 < ρ < 1 small enough such that

�(u) ≤ 0 for u ∈ E– with ‖u‖ ≤ ρ,

�(u) > 0 for u ∈ E+ with ‖u‖ ≤ ρ.

The proof is completed. �
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We are now ready to prove Theorem 1.1.

Proof It follows from Lemma 3.5 that � has a local linking at 0 with respect to E = E– ⊕E+.
Therefore Proposition 3.2 yields

Ck(�, 0) 	= 0,

where k = dim E– < ∞. By Lemma 3.4, we have

Ck(�,∞) = 0.

Applying Proposition 3.1, we see that � has a nontrivial critical point. The proof of The-
orem 1.1 is completed. �

Acknowledgements
The authors wish to thank the referees and the editor for their valuable comments and suggestions.

Funding
This research was supported by the National Natural Science Foundation of China (No. 12161019) and Doctoral research
project of Guizhou Normal University (No. GZNUD[2017]27, GZNUD[2019]14).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this paper. All authors wrote, read, and approved the final
manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 30 March 2021 Accepted: 8 August 2021

References
1. Bartsch, T., Li, S.: Critical point theory for asymptotically quadratic functionals and applications to problems with

resonance. Nonlinear Anal. 28, 419–441 (1997)
2. Bartsch, T., Liu, Z., Weth, T.: Sign changing solutions of superlinear Schrödinger equations. Commun. Partial Differ.

Equ. 2, 25–42 (2004)
3. Bensedik, A., Bouchekif, M.: On an elliptic equation of Kirchhoff-type with a potential asymptotically linear at infinity.

Math. Comput. Model. 49, 1089–1096 (2009)
4. Bernstein, S.: Sur une classe d’équations fonctionelles aux dérivées partielles. Bull. Acad. Sci. URSS. Sér. 4, 17–26 (1940)
5. Chang, K.-C.: Infinite-Dimensional Morse Theory and Multiple Solution Problems. Progress in Nonlinear Differential

Equations and Their Applications, vol. 6. Birkhäuser, Boston (1993)
6. Chen, C.Y., Kuo, Y.C., Wu, T.F.: The Nehari manifold for a Kirchhoff type problem involving sign-changing weight

functions. J. Differ. Equ. 250, 1876–1908 (2011)
7. Chen, S., Liu, S.: Standing waves for 4-superlinear Schrödinger-Kirchhoff equations. Math. Methods Appl. Sci. 38,

2185–2193 (2014)
8. Guo, Z.: Ground states for Kirchhoff equations without compact condition. J. Differ. Equ. 259, 2884–2902 (2015)
9. He, X.M., Zou, W.M.: Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal. 70, 1407–1414

(2009)
10. He, X.M., Zou, W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in R

3 . J. Differ.
Equ. 2, 1813–1834 (2012)

11. Jin, J., Wu, X.: Infinitely many radial solutions for Kirchhoff-type problems in R
N . J. Math. Anal. Appl. 369, 564–574

(2010)
12. Kirchhoff, G., Hensel, K.: Vorlesungen Über Mathematische Physik:bd. Vorlesungen Über Mechanik. Teubner, Leipzig

(1883)
13. Li, G., Ye, H.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R

3 . J. Differ.
Equ. 257, 566–600 (2014)

14. Li, Y., Li, F., Shi, J.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ.
Equ. 253, 2285–2294 (2012)



Zhou and Wu Boundary Value Problems         (2021) 2021:74 Page 13 of 13

15. Liu, H., Chen, H.: Multiple solutions for an indefinite Kirchhoff-type equation with sign-changing potential. Electron. J.
Differ. Equ. 2015, 274 (2015)

16. Liu, J.Q.: The Morse index of a saddle point. Syst. Sci. Math. Sci. 2, 32–39 (1989)
17. Liu, S.: Existence of solutions to a superlinear p-Laplacian equation. Electron. J. Differ. Equ. 2011, 66 (2001)
18. Liu, W., He, X.: Multiplicity of high energy solutions for superlinear Kirchhoff equations. J. Appl. Math. Comput. 39,

473–487 (2012)
19. Lu, S.S.: Signed and sign-changing solutions for a Kirchhoff-type equation in bounded domains. J. Math. Anal. Appl.

432, 965–982 (2015)
20. Mao, A.M., Zhang, Z.T.: Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition.

Nonlinear Anal. 70, 1275–1287 (2009)
21. Perera, K., Zhang, Z.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221, 246–255

(2006)
22. Pohožaev, S.I.: A certain class of quasilinear hyperbolic equations. Mat. Sb. (N. S.) 96, 152–166, 168 (1975). Russian
23. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York

(1978)
24. Shuai, W.: Sign-changing solutions for a class of Kirchhoff type problem in bounded domains. J. Differ. Equ. 259,

1256–1274 (2015)
25. Tang, X.H., Chen, S.T.: Ground state solutions of Nehari–Pohozaev type for Kirchhoff-type problems with general

potentials. Calc. Var. Partial Differ. Equ. 56, 110 (2017)
26. Tang, X.H., Cheng, B.T.: Ground state sign-changing solutions for Kirchhoff type problems in bounded domains.

J. Differ. Equ. 261, 2384–2402 (2016)
27. Wang, J., Tian, L., Xu, J., Zhang, F.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem

with critical growth. J. Differ. Equ. 253, 2314–2351 (2012)
28. Wang, Z.Q.: On a superlinear elliptic equation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 8, 43–57 (1991)
29. Wu, X.: Existence of nontrivial solutions and high energy solutions for Schrödinger–Kirchhoff-type equations in R

N .
Nonlinear Anal., Real World Appl. 12, 1278–1287 (2011)

30. Xiang, M.Q., Radulescu, V.D., Zhang, B.L.: Nonlocal Kirchhoff problems with singular exponential nonlinearity. Appl.
Math. Optim. 84(1), 915–954 (2021)

31. Xiang, M.Q., Zhang, B.L., Radulescu, V.D.: Superlinear Schrödinger–Kirchhoff type problems involving the fractional
p-Laplacian and critical exponent. Adv. Nonlinear Anal. 9, 690–709 (2020)

32. Yao, X.Z., Mu, C.L.: Infinitely many sign-changing solutions for Kirchhoff-type equations with power nonlinearity.
Electron. J. Differ. Equ. 59, 1 (2016)

33. Zhang, Q., Xu, B.: Infinitely many solutions for Schrödinger–Kirchhoff-type equations involving indefinite potential.
Electron. J. Qual. Theory Differ. Equ. 58, 1 (2017)

34. Zhang, Z.T., Perera, K.: Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math.
Anal. Appl. 317, 456–463 (2006)


	Existence of solutions for a class of Kirchhoff-type equations with indeﬁnite potential
	Abstract
	Keywords

	Introduction and main result
	Variational setting and Palais-Smale condition
	Critical groups and the proof of Theorem 1.1
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


