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Abstract

Background: There exist few, if any, practical guidelines for predictive and falsifiable multi-omic data integration
that systematically integrate existing knowledge. Disease modules are popular concepts for interpreting genome-
wide studies in medicine but have so far not been systematically evaluated and may lead to corroborating multi-
omic modules.

Result: We assessed eight module identification methods in 57 previously published expression and methylation
studies of 19 diseases using GWAS enrichment analysis. Next, we applied the same strategy for multi-omic
integration of 20 datasets of multiple sclerosis (MS), and further validated the resulting module using both GWAS
and risk-factor-associated genes from several independent cohorts. Our benchmark of modules showed that in
immune-associated diseases modules inferred from clique-based methods were the most enriched for GWAS
genes. The multi-omic case study using MS data revealed the robust identification of a module of 220 genes.
Strikingly, most genes of the module were differentially methylated upon the action of one or several
environmental risk factors in MS (n =217, P = 10~ %) and were also independently validated for association with five
different risk factors of MS, which further stressed the high genetic and epigenetic relevance of the module for MS.

Conclusions: We believe our analysis provides a workflow for selecting modules and our benchmark study may
help further improvement of disease module methods. Moreover, we also stress that our methodology is generally
applicable for combining and assessing the performance of multi-omic approaches for complex diseases.
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Summary

Our benchmark of multi-omic modules and validated
translational systems medicine workflow for dissecting
complex diseases resulted in multi-omic module of 220
genes highly enriched for risk factors associated with
multiple sclerosis.

Background

Complex diseases are the result of disruptions of many
interconnected multimolecular pathways, reflected in
multiple omic layers of regulation of cellular function,
rather than perturbations of a single gene or protein [1].
Systems and network medicine aim to translate observed
omic differences in patients using networks, to
personalize medicine [2]. Importantly, genes that are
associated with diseases are more likely to interact with
each other rather than with non-disease associated
genes, forming multi-omic network disease modules [3,
4]. Owing to the incompleteness of the underlying
multi-omic interactions, the networks are often modeled
as effective gene-gene interactions, using for example
STRING database [5]. Thus, network modules might be
ideal tools for multi-omic analysis. However, the evalu-
ation of performance of different module inference
methods remains a poorly understood topic, which cre-
ates the need for transparent evaluation of these
methods based on objective benchmarks across various
diseases and omics. Genomic concordance has been sug-
gested as a multi-omic validation principle [4, 6], ie.,
modules derived from one omic, such as gene expression
or DNA methylation should be enriched for disease-
associated single nucleotide polymorphisms (SNPs).

The variety of algorithms that have been proposed and
applied for identification of disease modules can be cate-
gorized into two main groups. On the one hand, there
are methods which rely purely on clustering of the genes
in relevant disease networks [7]. On the other hand,
there are algorithms which make use of disease-
associated molecules or genetic loci to reveal disease
modules that correlate with disease function, such as the
disease module detection (DIAMOnD) algorithm ([8],
clique-based methods [9, 10] and weighted gene co-
expression network analysis (WGCNA) [11]. The data-
derived information can either be differentially expressed
genes or differentially correlated or co-expressed genes.
Methods following the former approach were recently
benchmarked by a metric utilizing genomic concordance
within the DREAM consortia [6]. However, so far,
algorithms from the latter group have not been
benchmarked.

In this study we analyzed, assessed, and compared the
performance of eight of the most popular methods for
disease module analysis using the R package MODifieR
[12] on 19 different diseases including 47 expression and
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ten methylation datasets. We assessed the performance
of the methods using genome-wide association (GWAS)
enrichment analysis from the summary statistics of all
assayed SNPs similarly as in DREAM [6]. The resulting
workflow provided a systematic procedure for selecting
the best method for each disease and set the stage for
method development in the disease module area. More-
over, it allowed the predictive assessment of combining
multiple datasets across several omics using GWAS,
which we tested in multiple sclerosis (MS), a heteroge-
neous complex disease. Briefly, we derived multi-omic
modules in a stepwise optimization of GWAS enrich-
ment from transcriptomic and methylomic analyses of
MS. We further evaluated the identified multi-omic MS
module of 220 genes for its enrichment across DNA
methylation studies of eight known lifestyle-associated
risk factors of MS. Additionally, we validated the identi-
fied significant enrichment risk factors in an independ-
ent DNA methylation MS study which indeed showed a
very strong and significant MS enrichment for both
module genes and risk factor associations. In summary,
we provide a robust multi-omic strategy that can be
used to disentangle networks of affected genes in com-
plex diseases from both genetic and environmental
levels.

Results

A benchmark comparing 337 transcriptionally derived
disease modules from 19 different diseases

We compiled a benchmark source of disease modules
and summary statistics of GWAS datasets from 19 well-
powered case-control studies (Supplementary Table 1),
some of which were previously used in the DREAM
topological disease module challenge [6]. For these data-
sets we assessed modules using the same metric as in
the recent DREAM study [6], based on the pathway
scoring algorithm (Pascal) [13]. For each disease we
compiled one to five publicly available transcriptomic
datasets considering both easily assessable tissues (e.g.,
blood) and target tissues, thereby covering 47 transcrip-
tomic datasets in total (Fig. 1la). Modules were created
using eight different methods from MODifieR [12] and
as underlying network we used 631,782 high confidence
interactions from STRING database [5] (see methods;
complete results are found in Additional file 1: Table S4,
S5). In addition, we also tested if genes detected by sev-
eral methods, hereafter called consensus module genes,
had higher enrichment scores than single-method mod-
ule genes. Enrichment scores for the non-empty mod-
ules (n =337) from this analysis were summarized for
each method and dataset (Fig. 2a). In total, we found sig-
nificantly GWAS-enriched modules in 17.8% (60/337) of
the single-method modules and 25.5% (12/47) of the
non-empty consensus modules that combined at least
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Fig. 1 Overview of the benchmark assessment of disease modules and the integration workflow for MS. (a) Transcriptomic and methylomic
datasets from 19 different diseases were used as inputs for eight MODifieR module identification methods. The resulting single-omic disease
modules (n =456) were independently assessed by GWAS enrichment analysis of the same disease using Pascal module scoring. MODifieR
methods were evaluated by the combined enrichment score of their respective disease modules. (b) Multi-omic integrative workflow for multiple
sclerosis (MS)-associated modules. Data from 20 case-control comparisons were used as input for module detection with MODifieR methods.
Cligue SuM modules presented the highest GWAS enrichment score and were therefore used to generate single-omic consensus modules. The
intersection of the best transcriptomic and methylomic consensus modules resulted in an MS multi-omic module (n =220 genes) with the
highest GWAS enrichment, which was independently found to be enriched for genes associated with five known lifestyle MS risk factors using
public omic data from healthy individuals

three methods as a criterion. These numbers seemed
higher than expected, which might have been a conse-
quence of the same GWAS being used to evaluate mul-
tiple transcriptomic datasets of the same disease. Hence,
we aggregated scores of the same disease and method as
meta-P-values (see Methods). Out of the 152 possible

disease-method combinations, 18% of the pairs showed a
significant GWAS Pascal enrichment, which is more
than expected by chance (n =27, P =1.0x 10~ 8). The
most enriched method was Clique SuM, which showed
significant enrichment in seven out of 19 diseases (bino-
mial test P = 2.3 x 10~ °). Many methods exhibited strong
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Fig. 2 Genomic concordance of MODifieR modules on transcriptomic datasets. (a) Heatmap of PASCAL p-values for eight single-method and
eight consensus MODifieR modules, identified for 47 publicly available transcriptomic datasets. Module performance P-values are shown in a

Module size

white to blue scale, where any shade of blue represents a significant module (< 0.05; the darker, the more significant), white represents a non-
significant module, and grey represents a module of size zero. Datasets are classified into six disease types: cardiovascular (red), glycemic (golden),
inflammatory (green), neurodegenerative (fuchsia), psychiatric and social (pink), autoimmune (dark purple), and others (light purple); and two cell
types: blood (maroon), and others (light yellow). Datasets are ranked by meta-P-values using Fisher's method of the single-method module P-
values across and within their disease types (dataset score, bottom boxplot). MODifieR methods are organized by algorithm type: seed-based
(green), co-expression-based (yellow), and clique-based (red), plus the consensus modules (blue). Single-methods and consensus were scored by
meta-P-values across datasets (method score, right boxplot). Consensus x/8 indicates that the module genes are found in at least x methods out

disease type

of eight. (b) Scatter plot showing Spearman correlation between module score and betweenness centrality. Modules are represented with a
different shape depending on their method and colored based on the disease type. (c) Scatter plot showing Spearman correlation between
module score and module size. Modules are represented with a different shape depending on their method and colored based on the

enrichments in coronary artery disease (CAD), type 2
diabetes, multiple sclerosis (MS), rheumatoid arthritis
(RA), and the inflammatory bowel diseases (IBD) ulcera-
tive colitis (UC) and Crohn’s disease (CD), while no sig-
nificant enrichments were found for asthma, hepatitis C,
type 1 diabetes, narcolepsy, Parkinson’s disease, or for
any psychiatric and social diseases. If we instead ranked
methods based on their respective module GWAS

enrichment, Clique SuM was again the most enriched
method, with significant associations found for 34% (16/
47) of its modules, corresponding to seven different dis-
eases, followed by the consensus modules identified by
two out of three methods. Lastly, DIAMOnD and co-
expression-based methods all achieved significant re-
sults, although worse than Clique SuM. To test the sen-
sitivity of our results to the utilized backbone network,
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we recomputed modules for the methods utilizing prior
networks using smaller network datasets, namely 1)
120,000 only experimentally verified interactions from
STRING-db and 2) 27,719 curated interactions from
Reactome database. Analyzing these results showed on
average smaller modules and some difference in method
performances, e.g., MCODE scoring very good on the
Reactome network but poorer on the others (Additional
file: Table S4). However, in general these scorings corre-
lated well for these three datasets (Spearman rho in the
range 0.18-0.26, with 7.2x10"° > P >6.8x 10" %) and
analyzing the rankings of the methods on their worst
dataset showed similar rankings as above. Next, we
tested the impact of network centrality and module size
as potential confounding factors of the applied perform-
ance metric. We found a significant but very modest
correlation for module size (Fig. 2c, Spearman rho =
0.165, P =23 x 10" °) and a non-significant correlation
for interactome centrality (Fig. 2b, rho = 0.068, P = 0.21).
Thus, it is meaningful to compare results with differ-
ences in those module properties. In summary, we found
that the Clique SuM method resulted in the highest dis-
ease enrichment for most diseases, while not producing
significant modules for others, such as type 2 diabetes,
where co-expression-based methods and DIAMOnD
scored best. In general, we observed stronger enrich-
ments for cardiovascular and inflammatory diseases, and
weaker results for psychiatric and social diseases. Con-
sidering that the transcriptomic modules showed that
Clique SuM was the best performing method, and that
the cardiovascular and inflammatory diseases were the
most enriched within the Clique SuM modules, we
wanted to test whether this was true for methylomic
data as well.

A benchmark comparing 72 methylation-based disease
modules from six different diseases using GWAS
Following the same logic of the transcriptomic bench-
mark, we performed a similar benchmark study for
methylation modules. We collected ten datasets from
three different disease categories, including six complex
diseases, and ran the eight MODifieR methods on them
(Fig. 1a; complete results are found in Additional file 1:
Table S6, S7). In addition, we constructed consensus
modules for each of the datasets. Modules were then
tested for GWAS enrichment using Pascal. Inspecting
the overall performance, we found nine single-method
modules with a significant GWAS enrichment (9/72,
11.8%). Though this might be due to disease and cell
type heterogeneity, the enrichment is more than ex-
pected by chance (P =9.6 x 10~ °). Interestingly, inflam-
matory diseases such as MS and UC showed a more
significant GWAS enrichment. Since the evaluation of
module performance by GWAS enrichment may be
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biased due to differences in module sizes and interac-
tome centrality, we again assessed the correlation be-
tween these values. We found a significant correlation
between GWAS enrichment and module size (Fig. 3c,
rho =0.235, P =0.046) and a non-significant correlation
between GWAS enrichment and interactome centrality
(Fig. 3b, rho =0.190, P =0.109). We found that 12.5% of
the disease-method combinations vyielded significant
GWAS enrichment, which is more than expected from
an independent random selection of modules (Fisher’s
exact test P =0.031, n =6). The highly enriched disease
modules belong to MS, UC, and CD. Two out of the six
diseases showed significant GWAS enrichment by using
the Clique SuM modules (P =0.032). In summary, the
Clique SuM method resulted in a more significant
GWAS enrichment for most diseases also for the methy-
lomic benchmark.

Multi-omic approach revealed a module enriched for
MS-associated genes

Considering genomic concordance as the guidance
principle for the modules that show enrichment for
GWAS SNPs, differentially methylated genes and differ-
entially expressed genes, we further wanted to evaluate
multiple datasets of one specific complex disease, MS.
We compiled 11 MS transcriptomic and nine methyla-
tion (see Additional file 1: Table S2) datasets from GEO
which satisfy the pre-defined dataset criteria (see
Methods). For each dataset we implemented the pipeline
for module identification and scoring shown in Fig. 1b.
We evaluated each module using MS SNP enrichment
analysis and selected the most enriched modules per
omic from this metric (complete results are found in
Additional file 1: Table S8, S9). This analysis again
showed that Clique SuM yielded the far highest average
enrichment score (meta-P = 3.2 x 10”'?) and was signifi-
cantly enriched (P <0.05) in 9/11 transcriptomic data-
sets (Fig. 4a) and 4/9 of the methylation datasets (Fig.
4b). From the significant modules generated by Clique
SuM, we chose the top four modules from each of the
gene transcription and methylation sets, and prioritized
genes detected in modules from multiple datasets in
each omic (see Additional file 1: Table S10). This ana-
lysis showed that the strongest MS SNP enrichment was
found for genes in at least three out of four transcrip-
tomic modules (n =1552; P =6.0 x 10 7) and two out of
four methylomic modules (n =324, P =15x10" )
Next, we used the same principle to combine these two
single-omic consensus modules and found that the inter-
section between them resulted in a module (n =220
genes, Fig. 4) enriched for MS-associated genes (75/220,
P <22x10 ', OR=7.8) and with the highest GWAS
enrichment (P =8.8 x10™°%), which we hereafter is re-
ferred to as the multi-omic MS module. To test if such
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Fig. 3 Genomic concordance of MODifieR modules on methylomic datasets. (@) Heatmap of Pascal P-values for eight single-method and eight
consensus MODifieR modules, identified for ten publicly available methylomic datasets. Module performance P-values are shown in a white to
blue scale, where any shade of blue represents a significant module (P < 0.05; the darker, the more significant), white represents a non-significant
module, and grey represents a module of size zero. Datasets are classified into two disease types: glycemic (golden), and inflammatory (green);
and two cell types: blood (maroon), and others (light yellow). Datasets are ranked by Fisher's combined P of the single-method module P-values
across and within their disease types (dataset score, bottom boxplot). MODifieR methods are organized by algorithm type: seed-based (green),
co-expression-based (yellow), and clique-based (red), plus the consensus modules (blue). Single-methods and consensus are scored by meta-P-
values across datasets (method score, right boxplot). Consensus x/8 indicates that the module genes are found in at least x methods out of eight.
(b) Scatter plot showing Spearman correlation between module score and betweenness centrality. Modules are represented with a different
shape depending on their method and colored based on the disease type. (c) Scatter plot showing Spearman correlation between module score
and module size. Modules are represented with a different shape depending on their method and colored based on the disease type

high concordance was expected even if wouldn’t have
used modules, we computed the overlap statistics be-
tween the differentially expressed and methylated genes
of each of the MS datasets. This led to 190 pairs of stud-
ies (Additional file 1: Table S11), where the overlap be-
tween any two expression studies (n =55) had average
odds ratio (OR) of 1.58, while any two methylation stud-
ies (n =36) had OR 2.81 and across overlap (n =99) was
tremendously low, merely OR = 1.03. Thus, we conclude
that the overlapping multi-modules is not trivially

observed in studies of genes lists, rather a result of our
careful integration of omics.

The multi-omic MS module was enriched in genes
associated with major MS pathways

As we used GWAS enrichment as a selection criterion,
the high GWAS enrichment of the final module was
partly expected, which led us to analyze its biological
functions and their potential epigenetic associations to
MS. First, pathway enrichment analysis showed that the
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multi-omic module genes are significantly involved in
several inter-linked immune-related pathways, most of
which have been previously associated to MS, including
the T cell receptor [14] (adjusted P = 3.6 x 10~ 47y, PI3K/
Akt [15] (P =4.6 x 10~ *°), ErbB [16] (P =7.7 x 10~ *), Fc
epsilon RI [17] (P =8.3x1072%, chemokine [18, 19]
(P =2.6 x 10" *), MAPK [20, 21] (P =2.0x 10" *°), and B
cell receptor [21] (P =3.9 x 10™'°) signaling pathways;
Thl7 (P =9.6x10"%), and Thl and Th2 (P =6.9 x
10~ %) cell differentiation [22]; natural killer cell medi-
ated cytotoxicity (P = 1.6 x 10~ *’); and leukocyte trans-
endothelial migration (P =3.9 x10™%°), which indeed
supports their relevance in MS. Interestingly, the module
was also highly enriched in morphogenetic and neuroge-
netic signaling pathways, such as the neurotrophin (ad-
justed P =1.3 x 107>°), Ras (P = 1.4 x 10" %¢), Rapl (P =
2.2 x 10~ ), vascular endothelial growth factor (VEGF,

P =17x10"%), FoxO (P =3.6x10"%), and mTOR
(P = 4.1 x 10~ '*) signaling pathways; and in growth hor-
mone synthesis, secretion and action (P = 6.6 x 10~ 3h,

The multi-omic MS module was enriched in genes
associated with five known environmental MS risk factors
validated in an independent cohort

Second, from a literature study [23, 24] we found nine
environmental MS risk factors of varying evidence for
which we could identify methylation studies in healthy
controls. For each of these risk factors we derived the
top 1000 differentially methylated genes (DMGs) and
tested their enrichment with the module. Intriguingly,
the module was significantly enriched for genes associ-
ated with five risk factors (Fig. 5b), which included the
top associated risk factors, i.e., Epstein-Barr virus (EBV)
infection (Fisher’s exact test P =1.5x10" 3, OR =2.1),
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Fig. 5 Risk factor enrichment and network visualization of the MS multi-omic module. (a) Evidence levels and effect on MS of the risk factor. (b)
Enrichment overlap of multi-omic MS module genes in the top 1000 DMGs in risk factor datasets and independent risk factor methylation dataset
(see Methods) shown as Fisher's exact test P-values (threshold a=0.05). (c) Visualization of the module. Nodes (module genes) are arranged in
functional clusters according to their overrepresented GO terms. Genes with a known association to MS are marked with a blue circle. Node
colors display the associations to an MS risk factor for which the module is significantly enriched (red, alcohol use; green, high BMI; yellow,
smoking; purple, low sun exposure; light blue, EBV infection; grey, no association). Edges were extracted from the STRING dB v11 human PPI
network of experimentally validated interactions (confidence score > 700)

smoking (P =12x10"% OR=2.3), low sun exposure
(P =12x10"*% OR=2.3), high BMI (P =0.023, OR =
1.7), and alcohol consumption (P =2.9 x 10”4 OR = 2.2).
Then, we asked whether these putative gene-risk factor

associations could be validated using an independent
omic dataset with paired risk factor associations. For this
purpose, we utilized methylation arrays of peripheral
blood from 139 MS patients and 140 controls, which
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have been described previously [25]. In this analysis we
also considered risk factor associations for each individ-
ual including age, sex, BMI at age of 20, smoking, alco-
hol consumption, sun exposure, night shift work,
contact with organic solvents. This enabled the analysis
of DMGs for the MS and risk factor status as covariates
in linear mixed effect analysis (see Additional file 1:
Table S12). Indeed, the module genes were highly sig-
nificantly enriched for MS (n =217; permutation test
P =12x10"%), but also for all the tested risk factors
(EBV was not included, Methods) and non-significantly
associated to age and sex having 104-135 of the genes
in each factor (3.9 x 10”8 < P <0.013; Fig. 5b). Combin-
ing these results, we found 90 of the 220 module genes
to be associated with a risk factor from both studies, 25
genes were associated with two risk factors, and seven
genes were associated with three risk factors (CSK,
PRKCA, PRKCZ, RUNX1, RUNX3, STAT5A, and
SYNJ2) (Fig. 5c). These suggest that the multi-omic
module is capturing a key disease network with both
genetically and epigenetically driven alterations, thereby
providing the possibility to use it to identify potential
novel biomarkers or therapeutic targets for MS.

Lastly, to check the robustness of our GWAS selection
procedure we tested each of the utilized 88 expression-
and 41 methylation-based MS modules for general risk
factor enrichments by combining the enrichments from
the seven MS risk factors, which resulted in alternative
assessments of MS modules. Intriguingly, we found a
highly significant correlation of this measure with our
previous GWAS enrichment P-values (Spearman rho =
0.44, P <7.3x 107 7). Inspecting the individual methods,
we again found Clique SuM to score far higher than the
rest of the methods, with 45% significant modules,
whereas each of the other methods had less than 25%
significant modules (see Additional file 1: Table S13,
S14). In summary, these results confirm the robustness
and general applicability of our findings.

Discussion

The analysis of case-control data in the context of net-
works has gained increased interest to detect consistent
robust gene signatures of individual diseases. The appli-
cation of disease modules might vary for different re-
searchers, but here we systematically aimed at the
detection of disease genes supported by genetic associ-
ation. For this purpose, our study of the transcriptome
and methylome profiles of 19 diseases showed significant
GWAS enrichments for several inflammatory and heart
diseases, while psychiatric disorders showed no enrich-
ments and might not be suitable for GWAS validation of
modules, potentially due to differences in affected tissue
types and sampling points. However, the analysis of the
significant results showed that methods based on
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differentially expressed cliques in the protein-protein
interaction network (PPI) achieved the strongest enrich-
ments (highest scoring for Clique SuM), while those
based primarily on correlations, like WGCNA, showed
weaker enrichments. A potential reason for this could be
that GWAS has shown to be mostly associated to the
central genes of the PPI network, but our analysis dem-
onstrated that the correlation between GWAS enrich-
ment and centrality was non-significant in either of the
omic benchmarks. We also tested whether there was an
improvement using consensus approaches that counted
the frequency of the result of multiple methods but
found this not to increase performance. Moreover, we
tested the same strategy on a set of inflammatory, gly-
cemic, and autoimmune methylation datasets and found
similar results. We would like to emphasize that, rather
than scoring a single best working method, our study
provides a pipeline for evaluating modules using inde-
pendent high-throughput enrichments.

The work on transcription and methylation datasets
suggested that MS is a disease highly enriched for
GWAS, and we therefore tested if increased enrichments
could be derived by their integration. We found 20 pub-
licly available datasets and ran the assessment for both
omics independently, which again showed Clique SuM
to score highest. We then tested if improved results
could be obtained using modules from multiple datasets
of these two omics using consensus modules from
Clique SuM. This resulted in a module of 220 genes
highly enriched for GWAS (P =8.8 x 10~ °). The multi-
omic module was also enriched in immune-associated
pathways, such as T cell and B cell receptor signaling,
Th1/Th2 differentiation, or leukocyte transendothelial
migration. These results conform with the current hy-
pothesis that MS is mediated by an autoreactive re-
sponse of CD4+ T cells against myelin surrounding
neuronal axons, preceded by their migration across the
blood-brain barrier (BBB) [26]. This auto proliferation of
brain-targeting Thl cells has been shown to be driven
by memory B cells, in a process mediated by HLA-DR15
[27]. In addition, another enriched pathway was VEGF
signaling. MS patients present high serum VEGF levels,
which is related to pro-inflammatory functions and can
alter the permeability of the BBB [28]. As GWAS was
used for method prioritization, we asked if modules in-
stead could be validated using epigenetics and lifestyle
risk factor genes that we identified to associate with MS.
With this aim, we compiled a set of publicly available
data from methylomic studies of these risk factors in
healthy individuals. This analysis demonstrated that five
out of eight risk factors were enriched in our module.
To validate the use of an environmental assessment
using published risk factor associations, we found an in-
dependent methylome study of MS comprising
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environmental data for MS patients and healthy individ-
uals. This analysis showed a remarkable enrichment of
217 of the 220 module genes in MS-associated DMGs
(P =12x10"*), and a majority to be associated with
the tested risk factors.

In contrast to previously known community chal-
lenges, in our study we not only used the topological
properties of the network, but we also combined the
methods to use an omic-based input to uncover the dis-
ease modules that might be dysregulated at each omic
level, contributing to the diverse causative mechanisms
behind complex diseases. Although using the PPI net-
work as background may lead to certain knowledge bias,
this kind of benchmark allowed us to look at the rele-
vant risk factors. In our assessment of the disease mod-
ules, Clique SuM showed more robust performance on
average, compared to the other methods and to the
community-based consensus predictions, independently
of omics using GWAS or risk factor enrichments as
scorings. This robustness in result could stem from the
underlying idea that fully connected sub-graphs on aver-
age represent small functional building blocks. However,
for specific research problems we recommend that re-
searchers test multiple methods and assess the outcome
using independent data sources as we presented in this
manuscript.

Conclusions

In summary, our study provides a practical integrative
workflow that enables system-level analysis of heteroge-
neous diseases, in terms of multi-omic disease modules,
as well as the validation of these by using both disease-
specific GWAS and risk factors enrichment. We believe
that this analysis validates our integrated datasets and
suggest a pipeline that could readily be tested in at least
other inflammatory and cardiovascular diseases. Lastly,
our study did not aim to optimize parameters for indi-
vidual disease module identification methods, instead
used default values from the MODifieR R package im-
plementation of the methods, when possible [12]. How-
ever, this might be a key step in the analysis of specific
diseases. Thus, the code and processed datasets are
available at GitLab (https://gitlab.com/Gustafsson-lab/
modifier-benchmark). In future work, this approach can
be expanded to include diverse and context-specific net-
works to determine whether multi-omic modules are
able to capture various other levels of granularity.

Methods

Benchmark data

A total of 47 publicly available datasets for the transcrip-
tomic benchmark and ten publicly available datasets for
the methylomic benchmark were used. To avoid bias
due to subtypes of diseases and drug treatments, we
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searched for datasets that have only patient and control
samples, and that are available for download from the
Gene Expression Omnibus (GEO) database. We catego-
rized the datasets into seven distinct disease types based
on the disease-trait type associations used in Choobdar
et al. [6], i.e, autoimmune, cardiovascular, glycemic, in-
flammatory, neurodegenerative, and psychiatric and so-
cial disorders. A total of 19 complex diseases were used
in the transcriptomic benchmark analysis, while six com-
plex diseases were used in the methylation benchmark
analysis. The methylation benchmark diseases belong to
inflammatory, autoimmune, and glycemic disease types
(Additional file 1: Table S1).

MS use case data

A total of 14 publicly available and one non-publicly
available transcriptomic and methylomic MS-related
datasets were used in the MS multi-omic integration use
case. In general, every dataset in the MODifieR bench-
mark was also used in the MS use case, with exceptions
according to certain criteria (Additional File 1: Table
S2). The inclusion of transcriptomic MS datasets
followed the criteria: 1) The largest dataset by sample
number, per tissue, is shown in the MODifieR bench-
mark; 2) Replication cohorts are not included in the MS
use case. Criteria for inclusion of methylomic MS data-
sets were the following: 1) The largest dataset by sample
number, per tissue or cell type, was included in the
MODifieR benchmark; 2) A single dataset for every cell-
specific tissue was included in the benchmark; 3) Methy-
lation studies that reported using whole blood as sample
tissue were excluded from the MS use case, due to the
high heterogeneity of this type of data.

For the additional independent validation, we utilized
the methylation microarray analysis of 279 blood sam-
ples analyzing from Kular et al. [25]. For each of these
MS patients (nps =139) and healthy controls (nyc =
140), we also collected their lifestyle-associated risk fac-
tors from questionnaires that were part of the Epidemio-
logical Investigation of Multiple Sclerosis (EIMS) study.
Those factors were smoking status, prior EBV infection,
sunbathing, nightshift work, alcohol consumption, as
well as phenotypic features (age, sex, BMI at age of 20).

Pre-processing and quality control of risk factor
methylation data

DNA methylation datasets were downloaded from GEO
as raw IDAT files, when available, or matrices of beta
values. Pre-processing of the data was performed using
the Chip Analysis Methylation Pipeline (ChAMP) R
package [29], version 2.16.2. Default parameters were
used for probe and sample filtering. Probes with a detec-
tion P-value above 0.01, probes with a fraction of failed
(bead count less than 3) samples over 0.05, non-CpG
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probes, SNP-related probes, multi-hit probes, and probes
located on chromosomes X and Y were removed. Sam-
ples with a proportion of failed (NA) probe P-values
over 0.1 were also removed from the analysis. Post-
filtering imputation of NA values was conducted on the
beta matrices, with default parameters (“combine”
method, k=5, probe cutoff=0.2, sample cutoff=0.1).
Filtered imputed matrices were normalized applying the
Beta-Mixture Quantile dilation (BMIQ) normalization
method [30], including correction of Type-I and Type-II
probe effects. Data quality was assessed by producing
multi-dimensional scaling (MDS) plots of the top 1000
most variable positions per sample, density plots for the
distribution of beta values, and hierarchical clustering of
samples, before and after normalization. Singular value
decomposition (SVD) was used to detect the most sig-
nificant components of variation in the data. Unwanted
sources of variation in the normalized data were cor-
rected using ComBat batch effect correction [31].

Module identification
The MODifieR [12] R package offers nine different
methods for producing disease modules for which we in-
cluded all but Clique SuM exact as it is highly similar to
Clique SuM. The included methods will produce mod-
ules based on the provided omic input and background
network and do not include prioritization of pathway as-
sociation. MODifieR methods used for module identifi-
cation through this study are listed in the Additional file:
Table S3. For the methods that require a network, we
used the high confidence interactions (cut-off 700) from
the human PPI network from STRING [5] database ver-
sion 11, which included 816,352 interactions between
16,770 proteins (used in the MS use case). In the two
benchmark sections when we compared expression and
methylation methods, we further limited the network to
631,782 very high confidence interactions (cutoff >900)
between 12,123 proteins as the running times of some
methods (e.g., Module Discoverer) took too long time to
compute. Additionally, the benchmark was performed
using also the 120,000 experimentally verified STRING
interactions between 8000 proteins and the 27,719
Reactome [32] curated interactions of 5147 proteins.
The processed matrix for each dataset and their re-
spective phenotypic information were downloaded from
GEO. The input object is prepared using the create_in-
put_microarray function from the MODifieR package
which is then used for creating the modules. The input
function applies linear model using limma for compari-
son of patients vs. controls to get the differentially meth-
ylated or expressed genes. A dynamic cutoff of 5% in the
differentially methylated or expressed genes was applied
for input seed genes, for the methods that require them.
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Differential methylation analysis of risk factor data
Differentially methylated probes (DMPs) were found by
fitting a linear model to the data using the limma R
package [33], version 3.42.2 implemented in the ChAMP
function champ. DMP. P-values were adjusted for mul-
tiple testing using Benjamini-Hochberg False Discovery
Rate (FDR) correction. Differentially methylated genes
(DMGs) were obtained and annotated using the org.
Hs.eg.db R package, version 3.10.0. DMG lists were
cross-checked against the STRING database version 11
PPI network used for module identification in the MS
multi-omic approach (high confidence interactions,
combined score >700). DMGs that were not present in
the PPI network were removed. In case of the additional
MS validation dataset, a linear mixed effect model with
risk factors (age, sex, BMI at age of 20, smoking, alcohol
consumption, sun exposure, night shift work, contact
with organic solvents) as categorical covariates was im-
plemented to find the differentially methylated genes
after the preprocessing step, as described in the prepro-
cessing section of the methods. Since all the patients
were EBV positive, we did not include it in the linear
mixed effect model.

Validation of modules

The final modules produced from each single algorithm
and the consensus were evaluated using Pascal [13]
(Pathway scoring algorithm). Pascal implements a fast
and rigorous gene scoring and pathway enrichment
pipeline that can be run on a local machine. The SNP
values are converted to gene scores by computing pair-
wise SNP-by-SNP correlations and obtaining Z-scores
from their distribution, where SNPs are mapped to the
closest gene. These obtained gene scores are fused with
the pathway enrichment analysis to recompute a chi-
square P-value for the given set of module genes. Thus,
the obtained chi-square P-value serves as the signifi-
cance of the module in its enrichment of the disease-
associated pathway gene loci. A combined P-value was
computed for each of the methods using Fisher’s method
[34], diseases, and datasets for ranking the performance
of the modules in each criterion (see Additional file 1:
Table S1 for details).

Integration of MS single-omic modules

Clique SuM was ranked as the best performing method
on average for both transcriptomic and methylomic data,
according to the MS GWAS enrichment of the modules
calculated by Pascal. Therefore, significant Clique SuM
modules (P <0.05) were selected for further analysis
(nine transcriptomic and four methylomic modules).
Consensus modules were generated across each omic by
applying a module count-based method, where the cri-
teria for gene inclusion in the consensus is its presence
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in a certain number of single-method modules. To bal-
ance the weight of each omic in the multi-omic integra-
tion, the top four significant modules per omic were
used to create each consensus (Fig. 4a and b). Single-
omic Clique SuM consensus were ranked again by
GWAS enrichment, and the best performing consensus
per omic was selected for integration into the multi-
omic module.

Enrichment analyses of the MS multi-omic module
Disease enrichment analysis of the multi-omic module
was performed by Fisher’s exact test, with a significance
threshold of P <0.05. MS-associated genes were ob-
tained from the gene-disease association summary
provided by DisGeNET database 6.0 [35]. All genes with
a known association to the disease “multiple sclerosis”
(Unified Medical Language System unique identifier
C0026769) were considered MS-associated genes (n =
1105). Pathway enrichment analysis was carried out
using the function enrichKEGG from the clusterProfiler
R package [36], version 3.14.3. P-values were adjusted
for multiple testing using Benjamini-Hochberg FDR cor-
rection, with a significance threshold of adj. P <0.05.
Enrichment of the multi-omic module in MS risk-factor-
associated genes was performed by Fisher’s exact test,
with a significance threshold of P <0.05. To provide a
uniform comparison of MS risk factor-associated genes
across datasets, the module was tested for enrichment in
the top 1000 DMGs (with at least P<0.05) obtained
from the differential methylation analysis with ChAMP
for each risk factor dataset.

Representation of the MS multi-omic module

Experimentally validated interactions for the multi-omic
module genes were obtained from STRING database
version 11 (experimental score >700) and imported into
Cytoscape [37] version 3.7.2. To determine representa-
tive functional clusters of module genes, overrepresented
Gene Ontology (GO) Biological Process (BP) terms in
the module were found using BINGO [38] version 3.0.4,
with Benjamini-Hochberg FDR for multiple testing
correction, and a significance threshold of adj. P <0.05.
Then, enriched GO terms with adj. P <10~ 10 were sum-
marized using REVIGO [39] server tool (medium
allowed similarity = 0.7) and categories of interest were
selected by uniqueness (> = 80%), dispensability (> = 50%),
and frequency (<=10%) criteria. Further manual assess-
ment was performed to group similar terms with an
adequate number of genes in the network.
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