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Abstract

Background: The use of auxiliary variables with maximum likelihood parameter estimation for surveys that miss data
by design is not a widespread approach, despite its documented improved efficiency over traditional approaches that
deploy sampling weights. Although efficiency gains from the use of Normally distributed auxiliary variables in a model
have been recorded in the literature, little is known about the effects of non-Normal auxiliary variables in the
parameter estimation.

Methods: We simulate growth data to mimic SCALES, a two-stage survey of language development with a screening
phase (stage one) for which data are observed for the whole sample and an intensive assessments phase (stage two),
for which data are observed for a sub-sample, selected using stratified random sampling. In the simulation, we allow a
fully observed Poisson distributed stratification criterion to be correlated with the partially observed model responses
and develop five generalised structural equation growth models that host the auxiliary information from this criterion.
We compare these models with each other and with a weighted growth model in terms of bias, efficiency, and
coverage. We finally apply our best performing model to SCALES data and show how to obtain growth parameters
and population norms.

Results: Parameter estimation from a model that incorporates a non-Normal auxiliary variable is unbiased and more
efficient than its weighted counterpart. The auxiliary variable method is capable of producing efficient population
percentile norms and velocities.

Conclusions: The deployment of a fully observed variable that dominates the selection of the sample and correlates
strongly with the incomplete variable of interest appears beneficial for the estimation process.
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Content
Text and results for this section, as per the individual
journal’s instructions for authors.

Background
The topic of children’s growth has been attracting the
attention of health professionals for almost a century.
Reports and studies of anthropometric measurements
appeared initially in the U.S.A. in the early 1930s and
included information on height, weight, subcutaneous tis-
sue folds and several body parts. These measurements
formed part of the application of preventative medicine,
as health practitioners started to recognise its useful-
ness towards the link between malnutrition and stunted
growth [1]. However, to assess whether a child was devel-
oping as expected, this information alone was not suffi-
cient. What was needed was the establishment of bench-
marks that would allow a comparison of a child’s mea-
surements against what was considered to be normal. This
would enable practitioners to develop an understanding
of whether the growth of an individual tracked that of
healthy peers. Creation of benchmarks or norms, there-
fore, became topical among health practitioners at first
and subsequently among statisticians.
Norms are summary statistics of measurements, com-

monly calculated using simple random samples of typi-
cally developing children, who form the reference popu-
lation. These summary statistics appear, for example, as
standard scores or as percentiles and are usually presented
for several ages, so that age-specific comparisons can be
made between a child and the reference population. Typ-
ically, norms are presented in the form of a graph known
as a growth chart.
Growth can be assessed via three tools. Each one

answers qualitatively different questions. The first tool
refers to what is frequently termed as distance stan-
dards. Distance standards gauge the status of a person’s
growth at a particular point in time. Their construction
requires cross-sectional information across ages (longi-
tudinal information that is treated as cross-sectional can
also be used [2]). According to Tanner [1], two of the
best early examples of distance norms were the works
by Gore and Palmer in 1949 and by Daley in 1950, who
presented standards for height and weight for British chil-
dren. The second and third tools are termed velocity
and acceleration standards. They are mentioned together
because they both require longitudinal data to be esti-
mated. They answer questions about how fast or slow a
person grows during a particular period (velocity stan-
dards), and whether a person’s growth during a period is
accelerated or decelerated when compared to their growth
during another period (acceleration standards).
In this paper we will develop and evaluate via simu-

lation a model for the estimation of growth parameters

for two-stage sample designs and will show how we can
manipulate these parameters to obtain distance percentile
norms for language. We will show that our model has the
potential to answer questions relating to the normality of
a child’s attained language skills such as, what is a child’s
current language ability, what can a child’s expected lan-
guage development be and what is the speed with which a
child is improving in these skills compared to their peers.
In a previous paper ([2]) we produced Z-scores and dis-
tance percentile curves for six language indices. There, we
used a method known as the LMS method [3] and pro-
duced population scores and percentiles after embedding
weights in the estimation process. LMS assumes the raw
scale scores at a given time are approximately standard
normal after application of a skew-removing transforma-
tion. Thismethod is capable of simultaneous estimation of
centile-curves at different ages and is arguably one of the
most popular transformation method due to its efficient
use of data and flexibility [4–9].
As in [2], this paper too, will utilise data from the

SCALES study (see [10, 11] for details). SCALES is an
ongoing two-stage (screening/in-depth assessment) pop-
ulation longitudinal survey of UK children attending
mainstream reception classrooms. It comprises a unique
sample with a wider range of language and non-verbal
cognitive profiles than those reported in previous studies
of language disorder (e.g. Beitchman et al. [12]; Tomblin et
al. [13]) and more in-depth language phenotyping relative
to existing cohort studies (e.g. Avon Longitudinal Study of
Parents and Children, Millennium Cohort Study).

Weights
The estimation of population parameters from stratified
surveys has often been approached by weighting. Weights
can be functions of probabilities, measurement precisions,
and sample sizes. In its simplest form, a weight for subject
i is calculated as the inverse of their selection probabil-
ity pi. Weights can compensate not only for observations
which were never planned to be collected (missing by
design), but also for observations which were planned to
be collected but were not (missing due to non-response).
Pfeffermann [14, 15] asserts that weights can safe-

guard the analyst against non-ignorable sampling designs
and model mis-specifications. Non-ignorability refers to
the situation where information on how the sample was
selected cannot be ignored during the inferential pro-
cess. When omissions of important interactions or mis-
specifications of the relationship between the response
and the explanatory variables exist, use of weights can help
to correct the estimated results (see [16] and [17]).
Despite these advantages, the use of weights has

limitations. The major limitation is that probability-
weighted estimators are generally inefficient compared
to unweighted estimators [16–19]. Pfeffermann [15] and
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Kalton [20] point out that an increase in variance and
hence a decrease in the precision of the estimates is
higher with smaller sample sizes and larger weight vari-
ability. When DeMets and Halperin [21] compared max-
imum likelihood (ML) with probability-weighted esti-
mators under two simple stratified designs, they found
that the ML estimators were considerably more effi-
cient. Other limitations include the restriction of infer-
ence mainly to populations from which the sample was
drawn, and the inability to conduct standard inferential
procedures, such as the likelihood ratio test [15].

Auxiliary information
Rubin [22] proves that when the data are missing at ran-
dom (MAR), inference (frequentist and Bayesian) can pro-
ceed based only on what is observed, ignoring the ‘miss-
ingness’ mechanism. If the variable of interest is an incom-
plete variable XK , ignorability holds only when inference
is based on the conditional distribution ofXK |X1, ...,XK−1,
where X1, ...,XK−1 are assumed to be fully observed vari-
ables associated with ‘missingness’ in XK , and the missing
data mechanism R is independent of the partially com-
plete data [15]. This requires that all variables affecting the
selection process be identified and known for the whole
target population [23]. An influential paper by Collins
et al. [24] categorise these variables, which are referred
to as auxiliary variables (AVs), into three classes, and
maintain that their incorporation in the analysis yields
unbiased results and increases in efficiency and statis-
tical power. The first class involves variables correlated
both with the partially observed variable XK and the
missingness mechanism R. The second class comprises
variables that correlate with XK but not with R. Finally,
in the third class the authors list variables that are not
correlated with XK , but may or may not be correlated
with R. Their simulations suggest that omission of class
one variables causes “substantial problems with bias, effi-
ciency and coverage”. This, however, was evident only
when the amount of missing data was quite large (over
50%) or when the correlation of the AVs with XK or R
was less than 0.40. Collins et al. showed that including
in the model the class two variables can be very helpful
for estimation, in terms of bias and “can add information
that results in a decrease in standard errors”. They also
argue that inclusion of class three variables has at worst
no effect and at best an extremely beneficial effect on
inference.
Savalei and Bentler [25] provide an intuitive explanation

of why the incorporation of such correlated variables can
be beneficial to estimation. They argue that a variable that
is perfectly correlated with an incomplete variable offers
perfect knowledge of the missing values and therefore,
results are as efficient as those from fully observed anal-
yses. Having said that, the authors warn against the use

of a large number of AVs in a model and posit that doing
so, might “add noise” to the model, potentially reversing
any efficiency gains. It has been argued, however, that the
effect of this is not severe; as White et al. [26] and Collins
et al. [24] point out within the context of multiple imputa-
tion, loss of precision frommodel overfitting is often small
and of no concern.
While the incorporation of AVs during a multiple impu-

tation process is straightforward (see [27]), less clarity
exists about how to utilise auxiliary information under
ML. Graham [28] is one of few authors who shows how
to include AVs when ML is the estimation method of
choice. He specified two models for use within the struc-
tural equation modelling (SEM) framework. In an anal-
ogous way to multiple imputation, where the AVs are
inserted into the imputation step leaving the substantive
hypothesis of the analysis model intact, employment of
latent-variable modelling too, allows for the incorporation
of auxiliary information in the modelling process with-
out altering themeaning of the substantive estimates. This
means that inference does not have to rely on the con-
ditional distribution f (XK |X1, ...,XK−1) mentioned above
leading some authors ([25, 29]) to define AVs as vari-
ables “unrelated to the substantive hypothesis”, carrying
nonetheless information about the missing values or even
the probability of being missing.
Graham [28] tests 3 models; a basic model, whose data

are preprocessed by the expectation-maximisation (EM)
algorithm, and two SEM models that incorporate AVs in
different ways to each other. His simulations suggest that
all three models yield very similar results, and insofar as
the EM algorithm is equivalent to multiple imputation
(the two methods produce identical results under cer-
tain mild conditions [24]) the two SEM models are very
promising in terms of bias and efficiency. Graham used
fully observed AVs. Enders [29] replicated Graham’s mod-
els allowing for missing data in the AVs, and found that
although the partially observed AVs do not confer as big a
benefit as their fully observed counterparts, it was clearly
better to include them than to omit. Savalei and Bentler
[25] presented an alternative way to incorporate AVs
within aML process based on an improved two-stage esti-
mator, which overcomes convergence problems that may
occur when the number of parameters in a model is large
(such as with Graham’s model specification). Although
their method performs similar to Graham’s in terms of
bias and efficiency, it becomes slightly less efficient when
the number of missing values in the dataset increases or
when the data are MAR.
Auxiliary variables need not be Normally distributed.

In the context of the SCALES study, for example, the
design variable was an inexpensive and easy to use
non-Normally distributed indicator of language difficul-
ties. Despite this, not much research exists within the



Vamvakas et al. BMCMedical ResearchMethodology          (2021) 21:173 Page 4 of 18

ML framework on whether AVs that are not Normally
distributed have the same effect on bias and efficiency as
those that are Normally distributed. Originally, the impact
of the AVs on estimation was tested assuming some
form of multi-variate Normality. DeMets and Halperin
[21] presented estimators for multiple linear regression
parameters assuming joint Normality. Holt et al. [30] pro-
duced Normally distributed AVs for inclusion in their ML
model before they compared the OLS, ML, and proba-
bility weighted estimators. Nathan and Holt [31] relaxed
the assumption of Normality imposed by DeMets and
Halperin, and showed that consistent estimation can also
be achieved under some milder restrictions, as long as
auxiliary information is fully observed for the target pop-
ulation. Several more recent research studies (Collins et
al. [24], Graham [28], Enders [29] and Savalei and Bentler
[25]) deploy Normally distributed AVs in their multiple
imputation or ML-based modelling comparisons.

Simulation
The simulation study explores the impact of a discrete
auxiliary variable on the bias and efficiency of ML estima-
tors and compares them with a weighted estimator.
Fitted to datasets with incomplete data, different speci-

fications of structural equation models that host auxiliary
information were compared with each other and with a
regression-based growth model that employed weights. A
growth model fitted to the complete data, prior to the
creation of missing data, served as the reference model.
The aim is the establishment of a model that handles

auxiliary information adequately and yields estimates with
desirable properties in a two-phase stratifying random
sampling setting, analogous to the design of SCALES.

The SCALES study and data generation
The data generation process was based on the SCALES
study (see [32]) for which the consent procedures and the
study protocol were developed in consultation with Sur-
rey County Council and approved by the Royal Holloway
Ethics Committee (where the study was initiated) in Year
1 of the study and the UCL Research Ethics Committee
(9733/002) in Year 6 of the study. Informed consent was
collected from parents/guardians before in-depth assess-
ments in Year 1 and Year 6. Informed assent was collected
from children prior to each assessment. Children were
given certificates and small prizes at the end of each
assessment session.
The SCALES cohort was selected using stratified ran-

dom sampling. The study involved a two-phase design: in
the first phase, screening data from 7,267 children were
obtained. In this paper, we include monolingual English-
speaking children only who attended mainstream schools
and had phrased speech, bringing the total population of
children down to 6,411. In the second phase, a sub-sample

of 636 children were randomly selected for intensive indi-
vidual assessment. Selection was based mainly on the
Communication Checklist-Short (CCC-S) test, which is
described in the Application section.
Scores from the intensive assessments were collected

over three separate points in time; 490 children aged 5–6
years provided data during the 1st year at school, 462 chil-
dren aged 7–8 years provided data during the 3rd year at
school, and 337 children aged 10–11 years provided data
during the 6th year at school.
The parameters that would be used in the simulation to

generate the data extracted from an unweighted growth
model fitted to SCALES data. The model

yij = β0 + βi0 + β1ageij + βi1ageij + εij (1)

provided estimates for the fixed intercept β0, fixed coeffi-
cient of age β1, random intercepts βi0, random coefficients
βi1, residual term εij, and the covariance ψij between βi0
and βi1. The outcome yij for participant i at occasion j, are
repeated measurements from the Expressive One Word
Picture Vocabulary Test, described in the Application
section. The model used an unstructured random-effects
covariance matrix and age was centred using the mean of
the children’s age at each time point.
Simulated data for 2,000 participants were generated.

Each participant had their own random intercept and
coefficient, drawn from a bivariate Normal distribution
with a mean of 0 and covariance matrix parameters equal
to βi0, βi1, and ψij. It was assumed that participants had
the same covariance parameters across all occasions. To
construct the initial age variable, Normal variates were
drawn using the marginal mean and standard deviation
of the children’s ages at the first time point. For future
ages, the average age difference between a subsequent
time point and the first time point was added to the child’s
age at time one. Having sampled values for the age vari-
able, the random intercepts and the random coefficients,
and using the estimated coefficients of the fixed inter-
cept and fixed age from model 1 and an error term eij ∼
N(0, sd(εij)), three outcome data per participant, one for
each time point, were generated.
A variable that correlated with the individual random

intercept βi0 was generated to act as our auxiliary vari-
able. This variable followed a Poisson distribution, such
that PAux ∼ Po(βi0/14). A rate of βi0/14 was selected
after comparing the two distributions graphically, so that
the shape of the distribution of PAux resembles the shape
of the distribution of the design variable CCC − S from
SCALES. The reason why this was done through graphical
means is because we generally do not know the rela-
tionship between the auxiliary variable and the random
intercept that is used in the calculation of the rate of the
auxiliary variable. MARmissing data were created, condi-
tioning on PAux; firstly, the probability of missingness was
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calculated as: Pi(miss) = exp(−0.5 + 0.3 ∗ PAuxi)/(1 +
exp(−0.5 + 0.3 ∗ PAuxi)). Then, a uniformly distributed
variableUi was generated to help to create a missing value
indicator coded 0 if Ui > PAuxi and 1 if Ui < PAuxi. Val-
ues were deleted in yij and ageij whenever the indicator
was 0. The process produced around 50% of missing data.
Weights were calculated by inverting Pi(miss).

Methods
We report on the ability of six models to recover the pop-
ulation parameter estimates. First, model 1 was fitted to
the whole population (complete data model) assuming it
is the correct population model and used its estimates
as a benchmark to compare the estimates of alternative
models. After creating missing data in the outcome and
the age, model 1 was fitted again. We refer to this model
as the naive model. A weighted version of model 1 (the
weighted model), and a series of latent-variable growth
models that included the auxiliary variable PAuxwere also
fitted to the incomplete datasets. The latent-variablemod-
els allowed the fully observed PAux to be predicted by
β0i, the growth parameter that describes the initial state of
participant i.
The system of equations below shows the specification

of the first latent-variable model, termed Poisson auxiliary
model.

yij = β0 + βi0 + β1ageij + βi1ageij + εij1

μi = exp(γ0 + z1βi0) (2)
βi1 = z2βi0 + εi2

where PAuxi ∼ Poisson(μi) is a time-invariant variable. It
can be seen the auxiliary variable is used as the expected
count outcome μi in a Poisson regression conditional on
a constant and the random intercept. This setup respects
the distribution of the auxiliary variable and the associ-
ation between PAuxi and β0i imposed during the data
generation. The association between the random slope
and random intercept entered the model in the form of
a simple linear regression of β1i on β0i. This equation
did not include a constant, so that β1i was proportional
to β0i.
The second structural equation model was identical to

model 2 except that now the auxiliary variable was trans-
formed using a skew-removing function (see Software
section) and treated as a continuous outcome in a simple
Gaussian model equation. We refer to this model as the
transformed Poisson auxiliary model.
The next model specification introduces an extra

equation in which the outcome is a binary indicator coded
1 if yij is observed and 0 otherwise. In this setup, the
model, termed Poisson/missingness model, allowed the
random intercept to affect not only PAuxi, but also the
probability of missingness Pi(miss). This took the form:

yij = β0 + βi0 + β1ageij + βi1ageij + εij1

μi = exp(γ0 + z1βi0) (3)
βi1 = z2βi0 + εi2

log
[

Pi(miss)
1 − Pi(miss)

]
= δ0 + z3βi0

where now Pi(miss) forms the log-odds of amissing obser-
vation in a logistic regression model which includes the
random intercept and a constant.
As with the Poisson auxiliary model, a different ver-

sion of the Poisson/missingness model was trialled after
transforming the auxiliary variable using the same skew-
removing function and replacing the Poisson equation
in (3) with a Gaussian equation. We call this model the
transformed Poisson/missingness model.
Finally, we revisit model 2 but this time we allow our

count auxiliary variable to be modelled alongside an over-
dispersion parameter by treating it as the outcome of a
negative binomial regression.

Estimands
The target of the simulations were five estimands; the
fixed intercept β0, the fixed effect of age β1, the vari-
ances of β0i and β1i, and the covariance between β0i and
β1i. According to Rubin [33], an estimand is defined as
“the quantity of scientific interest that can be calculated
in the population and does not change its value depend-
ing on the data collection design used to measure it”. For
these simulated datasets, β0 represents the average value
of the outcome measure for subjects at mean age who
share similar unobserved growth characteristics. β1 is the
fixed effect of age, conditional on the unobserved growth
characteristics. The latent quantities β0i and β1i repre-
sent variability in unobserved characteristics of growth;
β0i refers to the initial state of individual i, and β1i to a
latent growth trajectory across the span of the observation
time.

Performance measures
The performance of the estimators targeting the esti-
mands was assessed primarily by three measures: the bias,
the empirical standard deviation, and the coverage of the
estimator.
The bias of an estimator quantifies the average proxim-

ity of a parameter estimate to the population value (esti-
mand) upon repeated sampling. For any tested param-
eter, the empirical estimate of bias is obtained as:

1
Nsims

∑Nsims
h=1 θ̂h − θ , where θ̂ are estimates of the true

parameter θ [34].
The empirical standard deviation (ESD) describes

the precision or efficiency of the estimator of θ and
is given by the standard deviation of θ̂h over nsims:√

1
Nsims−1

∑Nsims
h=1

(
θ̂h − θ̄

)2
, where θ̄ is the average of the
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parameter estimates θ̂ over the total number of simulation
runs. As such, the ESD depends only on θ̂ . For an estima-
tor to be precise this measure is expected to be as small as
possible. A low bound, however, is hard to establish, and
for this reason the ESD of a model is reported relative to
the ESD from the complete data model. As Morris et al.
[34] show, this is calculated as:

100

⎛
⎝

(
̂ESDcomplete

̂ESDmodelm

)2

− 1

⎞
⎠ , (4)

where ̂ESDmodel is the estimated ESD of model m, and
̂ESDcomplete the estimated ESD of the reference complete

data model.
To investigate the precision of the estimators, we report

the average model standard error, ̂ModelSE, and its value
relative to the model’s ESD:

100
(

̂ModelSE
ÊSD

− 1
)
. (5)

The model standard error targets the empirical standard
deviation and the former should on average be equal to the
latter. A disagreement between the two quantities denotes
bias in the estimation of the model standard error [34].
Generally, coverage is defined as the probability that a

100(1 − α)% Confidence Interval (CI) contains the true
parameter theta. Here, we evaluate whether the empirical
coverage of each parameter approaches the nominal 95%
coverage rate.
The performance measures are estimates themselves

and therefore subject to uncertainty. For this reason, the
Monte Carlo standard error, a measure that reflects the
simulation uncertainty about these estimates, is shown
next to each performance value. Efficiency and coverage
rates were interpreted with bias born in mind. A com-
plication in the interpretation of simulation results arises
from the fact that bias can be a source of both small
model standard errors and under-coverage. More specif-
ically, Morris et al. [34] state that where the estimators
are biased towards the null hypothesis the standard errors
will be invariably smaller. The authors go on to explain
that coverage rates are influenced by three things; i) bias,
ii) the degree to which the model standard error agrees
with the ESD, and iii) the sampling distribution of the
estimated parameter. Bias not equal to zero results in
under-coverage. Disagreement between the model stan-
dard error and the ESD results in under-coverage if
ModelSE < ESD, and in over-coverage ifModelSE > ESD.
A non-Normal sampling distribution of the parameter
results in under-coverage.

Software
One thousand simulated datasets were generated to
test each model. This was carried out in Stata v.16.

The rnormal(m,s) command was used to draw
Normal deviates, and the rpoisson(m) command
to simulate count data. The inverse logit function
(expit) invlogit() was used for Pi(miss) and the
runiform() for Ui. PAux was transformed using
lnskew0 which attempts to create a Normally dis-
tributed variable with 0 skewness using the Box-Cox
transformation [35].
All models were fitted using Stata’s suite for generalised

structural equation models gsem. Although the Popula-
tion, the Naive, and the Weighted models are regression-
based models that can be fitted using multi-level model
software we opted to fit these models with gsem to be
consistent with the implementation of the latent variable
models. With gsem the responses can be continuous or
binary, ordinal, count, or multinomial. The package can
handle a wide variety of models such as linear regression,
(ordinal) logit, (ordinal) probit, Poisson, negative bino-
mial, andmultinomial logit.Models can be fitted to single-
or multi-level data and latent variables can be included
at any level. Models can have continuous latent variables
or categorical latent variables but not both. gsem’s esti-
mation method is maximum-likelihood. It includes four
integration methods (see Stata’s sem manual for details)
and where there are no closed analytical forms, integrals
are approximated by adaptive quadrature [36].
All performance measures were generated by simsum,

written by Ian White [37]. An attractive feature of this
command is the calculation of the Monte Carlo error,
which is often ignored in the reporting of simulation
results.

Simulation results
The convergence rate was 100% for all models except for
the negative binomial auxiliary model, which converged in
677 simulation runs; since the simulated data had no over-
dispersion for which the corresponding negative binomial
over-dispersion parameter would be minus infinite, we
would expect estimation problems in 50% of samples. In
fact, the convergence rate for this model was 67.7%.
Subsequent analyses include converged models only. In

what follows, all models except for the complete data
model are sometimes collectively called the missing data
models.
Table 1 presents the bias along with the corresponding

Monte Carlo standard error of the simulation, by model
and by parameter. The existence of significant biases is
highlighted in red; deep red denotes bias values that are
50% or more of the ESD value from the complete data
model for the specific parameter. Cells in light red, denote
biases that lie between 20% and 50% of the ESD value from
the complete data model. Table 2 displays the percentage
increase (or decrease) in a model’s precision relative to the
precision of the parameter from the complete data model,
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Table 1 Bias (and Monte Carlo standard error) of parameters by model

Fixed intercept Fixed Age R.Intercepts R.Coefficients R.Covariance

Complete -0.0015 (0.0103) -0.0000 (0.0002) -0.0769 (0.2163) 0.0000 (0.0001) -0.0013 (0.0021)

Naive 2.7674 (0.0152) 0.0056 (0.0002) 19.4979 (0.3273) 0.0001 (0.0001) 0.0349 (0.0034)

Weighted -0.0175 (0.0136) 0.0003 (0.0002) -0.1934 (0.3014) 0.0001 (0.0001) -0.0042 (0.0032)

PoAux -0.0062 (0.0132) 0.0003 (0.0003) 0.1243 (0.2835) 0.0000 (0.0001) -0.0047 (0.0030)

TPoAux 0.1947 (0.0133) 0.0006 (0.0002) 14.8592 (0.3140) 0.0001 (0.0001) 0.0255 (0.0033)

PoMiss -2.9330 (0.0148) -0.0054 (0.0002) 42.4033 (0.3852) 0.0003 (0.0001) 0.0778 (0.0037)

TPoMiss -2.2639 (0.0167) -0.0042 (0.0002) 32.7086 (0.3604) 0.0002 (0.0001) 0.0603 (0.0036)

NbAux 0.0214 (0.0160) 0.0003 (0.0003) 0.2479 (0.3468) 0.0001 (0.0001) -0.0070 (0.0037)

Values highlighted in red denote significant biases, as defined in the text. The models are abbreviated as follows: Complete the complete data model, Naivemodel 1 fitted to
incomplete data,Weighted the Weighted model, PoAux the Poisson auxiliary model, TPoAux the transformed Poisson auxiliary model, PoMiss the Poisson/missingness model,
TPoMiss the transformed Poisson/missingness model, NbAux the negative binomial auxiliary model

calculated using formula 4. Values highlighted in red show
which model returned the largest precision discrepancy
for each parameter. Table 3 displays the results from a
comparison between a model’s average standard error for
an estimate and its corresponding ESD value, based on
formula 5. Finally, Table 4 displays the coverage rates by
model and parameter. Values highlighted in red represent
some of the lowest rates observed in the table.
Figures 1 and 2 display the sampling distribution of θ̂h

and ŜE(θ̂h), respectively, for each one of the five esti-
mands, as estimated by each model over 1000 simulation
runs. The distributions appear symmetrical for all mod-
els and across all parameter estimates. The blue line inside
the boxes show the median of the sampling distribution.
The vertical red lines in the five panels of Fig. 1 represents
the true population value.
As expected, the complete data model returns the least

biased and most precise estimates across the models
(Figs. 1 and 2). Its ESD values agree very closely with
its average model standard errors with percentage dif-
ferences that range between 0.4% and 3.4%, in absolute
terms (Table 3). The complete data model consistently

achieves coverage rates close to the nominal level for all
parameters. These range from 94.3% to 96.1% (Table 4).
The Naive model over-estimates the true value of

all parameters except that for the random coefficients
(Fig. 1). All these biases are considerable and more than
50% of the ESD value of the complete data model, as
highlighted in Table 1. The coverage for the model’s only
unbiased parameter, the random coefficients, is 94.2%
(Table 4).
The weighted model estimates all parameters without

any significant bias (there are no highlighted values in
Table 1). Among the missing data models the weighted
model estimates the random coefficients parameter with
the smallest precision (Fig. 2, random coefficients param-
eter). This does not appear to be the result of a bias in
the estimation of the standard error, since the model’s
standard error and the ESD value for this parameter are
only 0.5 percentage points away from each other (Table 3),
the smallest percentage difference among themissing data
models. The ESD for the random coefficients is 52.8% less
than that of the complete data model, which represents
the largest discrepancy observed among the missing data

Table 2 % increase (decrease) in precision (and Monte Carlo standard error) relative to the complete data model

Fixed intercept Fixed Age R.Intercepts R.Coefficients R.Covariance

Complete . . . . .

Naive -53.9224 (2.0275) -52.2847 (2.1722) -56.3302 (1.8290) -51.3789 (2.1773) -59.2077 (1.7561)

Weighted -42.8771 (2.3390) -56.3795 (2.0384) -48.4894 (2.2415) -52.8240 (2.1576) -55.2589 (2.0031)

PoAux -39.1988 (2.3750) -55.1849 (2.0828) -41.7869 (2.3549) -49.9521 (2.2659) -49.7765 (2.1854)

TPoAux -40.2721 (2.5402) -55.1450 (2.0816) -52.5498 (1.9508) -51.0450 (2.2035) -57.1591 (1.8617)

PoMiss -51.7732 (2.7294) -61.0153 (1.9040) -68.4668 (1.4196) -50.5739 (2.2350) -66.2951 (1.4668)

TPoMiss -61.8300 (1.8261) -60.1179 (1.9233) -63.9754 (1.5789) -51.3581 (2.1897) -63.8080 (1.5764)

NbAux -39.0280 (2.9616) -54.2624 (2.5905) -42.5276 (2.8291) -49.6582 (2.8349) -49.4564 (2.7454)

Values highlighted in red indicate the largest difference from the complete data model by parameter. The models are abbreviated as follows: Complete the complete data
model, Naivemodel 1 fitted to incomplete data,Weighted the Weighted model, PoAux the Poisson auxiliary model, TPoAux the transformed Poisson auxiliary model, PoMiss
the Poisson/missingness model, TPoMiss the transformed Poisson/missingness model, NbAux the negative binomial auxiliary model
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Table 3 Average model standard error (and Monte Carlo standard error) relative to empirical standard deviation

Fixed intercept Fixed Age R.Intercepts R.Coefficients R.Covariance

Complete 0.5694 (2.2505) -0.4001 (2.2288) -0.6407 (2.2251) -1.6948 (2.2007) 3.3954 (2.3145)

Naive 2.1402 (2.2864) -1.3941 (2.2074) 2.6297 (2.3006) -1.6499 (2.2035) -1.0186 (2.2171)

Weighted 8.5475 (2.4301) -2.9089 (2.1738) 0.1789 (2.2503) -0.4633 (2.2335) -1.3902 (2.2119)

PoAux -0.0666 (2.2366) -3.0192 (2.1711) -0.4454 (2.2310) -1.1911 (2.2138) -1.2034 (2.2128)

TPoAux 1.7493 (2.2775) -3.1518 (2.1681) -2.7690 (2.1791) -1.5976 (2.2046) -1.3179 (2.2104)

PoMiss 3.3083 (2.3130) -4.2109 (2.1448) 1.2974 (2.2726) -1.4011 (2.2091) -1.1374 (2.2158)

TPoMiss -3.3571 (2.1646) -4.4398 (2.1396) -4.8465 (2.1341) -1.6610 (2.2033) -1.5355 (2.2064)

NbAux 0.6920 (2.7424) -1.9741 (2.6677) -0.9206 (2.6994) -0.6157 (2.7084) -0.6002 (2.7096)

The higher the value in absolute terms the larger the discrepancy between the model standard error and the empirical standard deviation. The models are abbreviated as
follows: Complete the complete data model, Naivemodel 1 fitted to incomplete data,Weighted the Weighted model, PoAux the Poisson auxiliary model, TPoAux the
transformed Poisson auxiliary model, PoMiss the Poisson/missingness model, TPoMiss the transformed Poisson/missingness model, NbAux the negative binomial auxiliary
model

Table 4 Coverage of model (and Monte Carlo standard error) by parameter

Fixed intercept Fixed Age R.Intercepts R.Coefficients R.Covariance

Complete 94.5 (0.7209) 94.3 (0.7332) 95.1 (0.6826) 95.0 (0.6892) 96.1 (0.6122)

Naive 0.0 (0.0000) 87.3 (1.0529) 57.2 (1.5647) 94.2 (0.7392) 94.6 (0.7147)

Weighted 96.7 (0.5649) 93.4 (0.7851) 94.9 (0.6957) 95.0 (0.6892) 95.1 (0.6826)

PoAux 95.0 (0.6892) 93.4 (0.7851) 95.3 (0.6693) 95.0 (0.6892) 94.8 (0.7021)

TPoAux 92.9 (0.8122) 93.3 (0.7906) 68.2 (1.4726) 94.2 (0.7392) 94.5 (0.7209)

PoMiss 0.0 (0.0000) 87.7 (1.0386) 4.4 (0.6486) 94.7 (0.7085) 90.8 (0.9140)

TPoMiss 0.6 (0.2442) 89.4 (0.9735) 12.4 (1.0422) 94.4 (0.7271) 92.4 (0.8380)

NbAux 94.7 (0.8624) 92.9 (0.9864) 95.3 (0.8156) 94.5 (0.8736) 94.5 (0.8736)

Values highlighted in red represent extremely low rates of coverage. The models are abbreviated as follows: Complete the complete data model, Naivemodel 1 fitted to
incomplete data,Weighted the Weighted model, PoAux the Poisson auxiliary model, TPoAux the transformed Poisson auxiliary model, PoMiss the Poisson/missingness model,
TPoMiss the transformed Poisson/missingness model, NbAux the negative binomial auxiliary model

Fig. 1 Bias: Box-plots of coefficient estimates over 1000 simulations. The vertical red line is positioned on the true population value. The line in the
middle of each box represents the median estimate value over the total number of simulations
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Fig. 2 Precision: Box-plots of standard errors over 1000 simulations. The line in the middle of each box represents the median value of the standard
errors over the total number of simulations

models (Table 2). Table 3 shows that all average model
standard errors for the weighted model are less than 3%
of the corresponding ESD values, except that for the fixed
intercept parameter which is 8.6% more than the corre-
sponding ESD value. Again, this is the largest observed
discrepancy among the missing data models and may
explain the reason behind the somewhat elevated cover-
age rate seen for this parameter in Table 4. Despite this,
the weighted model appears to cover all parameters well.
None of the parameters estimated by the Poisson aux-

iliary model appear biased (Table 1 and Fig. 1). An
examination of the standard errors in Fig. 2 reveals that
the Poisson auxiliary model displays some of the best
behaviours. The model returns some of the most pre-
cise estimates among the missing data models; compared
to the weighted model, in particular, it appears to be
more efficient. This can be seen by inspecting Table 2:
a look at the fixed intercept, for example, shows that
the weighted model is 42.9% less efficient than the com-
plete data model, whereas the Poisson auxiliary model is
39.2% less efficient than the complete data model, and
this is the case for all parameters. Moreover, the model
standard errors appear to be unbiased. The average stan-
dard errors and the ESD values appear to be very close
to each other, with values close to 0 for all parameters
except for the fixed-effect of age (the model standard
error for this parameter is approximately 3.0% less than
its ESD value, as seen in Table 3). This discrepancy, how-
ever, does not seem to be extreme relative to the rest
of the models. The coverage rates achieved by the Pois-
son auxiliary model are close to the nominal level for all
parameters.

The Box-Cox transformation of the Poisson auxiliary
variable did not produce a perfectly Normal variable and
hence the transformed auxiliary model was mis-specified.
The model shows considerable bias for three out of the
five parameters (Table 1). The estimates for the fixed
and random intercepts are 50% larger than the complete
data model’s corresponding ESD values, and the esti-
mate for the random-effects covariance lies between 20
and 50% of the ESD value of the complete data model
for the same parameter. The two unbiased parameters,
i.e. the fixed-effect of age and the random coefficients,
appear to be estimated efficiently with no discernible dif-
ference between the model’s SE and ESD values. Their
coverage is acceptable, with a rate of 93.3% for the
fixed-effect of age and 94.2% for the random-coefficients
of age.
The Poisson/missingness model yields significant bias

for all parameters except for the random coefficients of
age. For the fixed intercept and random intercepts in par-
ticular the model yields some of the most extreme biases
(Fig. 1). The precision of the random coefficients, the only
unbiased parameter, appears to be in line with what is
observed for the rest of the missing data models in Fig. 2,
and there is no large discrepancy between the model’s
standard error and its ESD value for this parameter. In
terms of coverage, all parameters have very poor rates
except for the random coefficients, which achieve a value
of 94.7%.
Aswith the Poisson/missingnessmodel, the transformed

Poisson/missingness model yields significant biases for
all parameters except for the random coefficients of age.
For the fixed- and random-intercepts parameters, this
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model too, seems to completely miss the true population
value, as it can be seen in Fig. 1. The coverage rates for
all but the random-coefficients parameter are suboptimal
(Table 4).
Based on the 677 simulation runs for which the nega-

tive binomial auxiliary model converged, the model does
not appear to produce bias during the estimation of
the parameters, as it can be seen in Table and Fig. 1.
Table 2 shows how the percentage differences in ESD
values between the negative binomial auxiliary and the
complete data model are very similar to the differences
observed between its closely related Poisson auxiliary
model and the complete data model. Inspection of Table 3
reveals that the negative binomial model returns some
of the smallest discrepancies between the average model
standard error and the corresponding ESD values for a
parameter. Compared to the Poisson auxiliary model, the
negative binomial model appears to be faring better for
the fixed-effect of age, random coefficients of age, and the
random-effects covariance in relation to the values seen in
Table 3. In terms of coverage, the model achieves accept-
able rates for all parameters, similar to those observed
for the complete data, weighted, and Poisson auxiliary
models.

Application
We saw that specifying a generalised structural equation
growth model that includes an extra equation in which
a Poisson distributed auxiliary response is predicted by
a random intercept, produces, after allowing the inter-
cept factor to be associated with the slope factor, unbiased
and more efficient parameters than its weighted coun-
terpart. In this section, we fit such a model to SCALES
data and explore its ability to produce population norms
and centile curves analogous to those constructed by the
LMS method in Vamvakas et al. (2019) [2]. We report
and comment on the estimated growth parameters such
as, the current language ability (predicted random inter-
cepts) and the individual velocities (predicted random
coefficients). We illustrate the methods and diagnos-
tics using the Expressive One Word Picture Vocabulary
(Expressive Vocabulary) test, and produce charts for the
Expressive Vocabulary and the Narrative Recall tests.
The input dataset contains information from the screen-
ing stage of SCALES and the three intensively assessed
sub-populations. Our latent-variable model makes use
of all four time-points (screening and three inten-
sive assessments). We deploy graphical means to assess
model fit and examine the efficiency of the norms via
bootstrapping.
At the screening level, we retain information on the chil-

dren’s age and gender, the number of children screened in
each school and the CCC-S test scores. The CCC-S test
is a brief version of the CCC-2 [38]. The CCC-2 has been

shown to be highly effective at discriminating children
with communication difficulties from typically develop-
ing children [38]. The CCC-S includes 13 items from the
CCC-2 General Communication Composite. These items
measure speech, morphology/syntax, semantics, and dis-
course skills in everyday contexts. For SCALES, teachers
were requested to assess how often a range of language
behaviours occur on a 4-point scale: 0 = rarely/never, 1
= occasionally, 2 = regularly; 3 = frequently/always. The
CCC-S ranges from 0 to 39 with higher scores denoting
worse outcomes.
At the intensive assessment level, we retain information

on scores from the Expressive Vocabulary and the Nar-
rative Recall tests and child age. During the Expressive
Vocabulary test, the child is required to look at pictures
and name concepts, objects or actions. The scores on
the Expressive Vocabulary test range from 0 to 190 with
higher values indicating better outcomes. The Cronbach’s
Coefficient Alpha value, a measure of internal consis-
tency, for children aged 5- to 8- years, is between 0.94 and
0.97. Test-retest reliability coefficients for the Expressive
Vocabulary is also very high with values of 0.98 when raw
scores are considered and 0.97 when standard scores are
considered [39]. For the Narrative Recall test [40]) chil-
dren are required to listen to a pre-recorded story about
a monkey in a forest, which is played over headphones
and is accompanied by pictures shown on a laptop screen.
At the end of the story, the child is required to narrate
it back in their own words and is given a mark for each
correctly re-told part. The child’s retelling of the story is
audio recorded. Narrative Recall ranges from 0 to 35 with
higher scores indicating a better outcome. The Cronbach’s
Coefficient Alpha value for children aged 6- to 11-years is
0.73.
Firstly, we fit the Poisson auxiliary model to scores from

the Expressive Vocabulary test and compare its output
with that from the weighted version of model 1. Sam-
pling weights for the weighted model were estimated by
inverting the predicted probability of the logistic model
that included the variables that took part in the selection
of the sample: log[ p(EVi = 1|Si,Ni,Gi)/(1 − p(EVi =
1|Si,Ni,Gi))]= α + β1Si + β2Ni + β3Gi, where EVi
is a binary indicator denoting whether scores from the
Expressive Vocabulary test at school-year 3 are observed
(coded 1) or not (coded 0), Si is a binary indicator of com-
munication difficulties based on the CCC-S test, Ni is the
total number of pupils screened in a school, and Gi is an
indicator for gender.
The Box-Cox transformation (Y λ − 1)/λ was used to

transform the Expressive Vocabulary responses through-
out. The skewness minimisation parameter λ was cho-
sen via maximum likelihood and/or via running model
diagnostics. The ages at screen, and at the three school
years were centred around the mean age of school year
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one. Goodness-of-fit was assessed by plotting the distri-
butions of the level-1 residuals and the predicted values of
the random intercepts and random slopes. We tested for
overdispersion in the CCC-S using the BIC values from
two models that used the screening variable either in a
Poisson regression or in a negative binomial regression.
As an additional test of model fit, we produced Z-scores
from model parameters and compared these scores with
those returned by the LMS method. The Z-scores were
estimated as:

Zji = yji − Xib√
var(yji|Xi)

(6)

where Xi is a matrix that holds the covariates for all the
units j of child i, Xib is the fixed part of the model,
and var(yji|Xi) is the heteroskedastic conditional vari-
ance of the responses, equal to the conditional vari-
ance of the total residual of growth model 1: var(βi0) +
age2ji ∗ var(βi1) + 2ageji ∗ cov(βi0,βi1) + var(εji), where
βi0 denotes the random intercept, βi1 the random slope,
and εji the level-1 residual. Assuming that the response
is Normally distributed across all ages, the percentile
charts were based on centile values calculated for each
age as:

Cage = Xib + K ∗
√
var(yji|Xi) (7)

where K is a value from the inverse cumulative Standard
Normal distribution: for example, for an age-dependent
centile value along the 25th percentileK = −0.68. In order

to present the charts on the original scale, equation 7 was
back-transformed using: (Cage × λ + 1)1/λ.
In an attempt to estimate the precision of the indi-

vidual percentiles we used bootstrapping. We chose to
obtain the bootstrapped standard error for the median,
the interquartile range percentiles, and the 3rd and 97th
percentiles that lie on the extreme ends of the cumulative
distribution. Each one of these percentiles was estimated
for a given age. Three ages were chosen based on the
25th, 50th, and 75th percentiles of the age distribution of
the intensively assessed sample and correspond to a 74-
, 93- and 127-month old child. The original dataset was
bootstrapped 500 times. The weights and the λ parame-
ter of the Box-Cox transformation were adapted to each
bootstrapped dataset and each resample used a new set of
weights and a new value for λ.

Application results
While fitting the Poisson auxiliary model, we found evi-
dence of over-dispersion in the CCC-S score, which vio-
lates the equi-dispersion assumption of the Poisson distri-
bution. The BIC values from the Poisson and the negative
binomial auxiliary models were 49682.55 and 48292.4,
respectively. As a result, all subsequent analyses of the
SCALES data utilise the negative binomial auxiliarymodel
shown in Fig. 3.
In Table 5, we present the parameter values that were

obtained after fitting the weighted model and the neg-
ative binomial auxiliary model (NbAux) to scores from
the Expressive Vocabulary test. Age is in months and is
centred at its mean from the first wave of data so that

Fig. 3 The negative binomial auxiliary model. Boxes represent observed variables and circles represent latent variables. As in a typical growth model,
the continuous variable Age affects the partially observed repeated measurements language score variable. The random intercepts factor, which
represents current ability, is predicting the responses, the auxiliary variable and the random coefficients factor which represents the individual
velocities. The association between the two factors is captured by allowing the random intercepts to predict the random coefficients
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Table 5 Growth parameter estimates from the growth model that uses weights and from the negative binomial auxiliary model
(NbAux) that utilises the auxiliary variable CCC-S

Weightedmodel coef. (st.error) NbAux coef. (st.error)

Fixed intercept 33.3329 (0.5661) 29.8971 (0.4674)

Fixed Age (months) 0.7078 (0.0161) 0.6751 (0.0119)

Variance of current ability 65.1521 (6.8122) 70.5858 (6.5967)

Variance of individual velocities 0.0368 (0.0059) 0.0336 (0.0042)

Current ability and velocities covariance 0.4432 (0.1753) 0.5431 (0.1192)

Level-1 residual 35.2039 (4.2362) 38.2550 (2.6831)

Both models were fitted to 1,289 observations from the Expressive Vocabulary test. The NbAux model utilised an additional 6,411 observations from the CCC-S test

the fixed intercept corresponds to an expected Expressive
Vocabulary score of a 72-month old child. NbAux esti-
mates this value to be 30 whereas the weighted model 33.
The variance of the Expressive Vocabulary scores at age
72 months is higher for the NbAux model than for the
weighted model, but the variance of the individual veloci-
ties appears very similar. Both models estimate a positive
correlation between current ability and individual veloc-
ities, indicating that higher Expressive Vocabulary scores
at age 72months are generally associated with higher rates
of improvement.
The distribution of the (level-1) residuals from the

weighted and the negative binomial auxiliary models are
displayed in the left panel of Fig. 4. The right panel of

Fig. 4 displays distributions of Expressive Vocabulary Z-
scores, calculated from the negative binomial auxiliary
model, the weighted model, and the LMS method. It can
be seen that while the distribution of the residuals from
the weighted model exhibit a sharper peak relative to that
from the negative binomial auxiliary model, the resem-
blance of the Z-score distributions across the models in
the right panel is striking and in agreement with the
theoretical probability density function of the Standard
Normal distribution.
Figure 5 shows the bivariate distributions of the pre-

dicted current language ability and language velocities
produced by the negative binomial auxiliary model. For
comparison, an analogous graph was created for the

Fig. 4Model residuals (left) and Expressive Vocabulary Z-scores (right) as calculated by parameters of the negative binomial auxiliary model (NBAM),
weighted, and LMS models based on 1,289 observations. The theoretical shape of the Standard Normal distribution is also superimposed (Standard
Normal probability density function (pdf))
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Fig. 5 Scatterplot and histograms of predicted random intercepts and slopes from the negative binomial auxiliary model (NBAM) that utilises the
auxiliary variable CCC-S

weighted model. This can be seen in Fig. 6. The distri-
butions from the negative binomial auxiliary model look
Normal although the distribution of the predicted veloc-
ities is not centred entirely around zero. This is because
the graph includes children who have an outcome obser-

vation at the final time-point only. If we were to include
all children in the graph we would end up with a large
number of children for whom we had no data other
than their CCC-S scores. Having incomplete data, the
empirical Bayes estimates for these children are naturally

Fig. 6 Scatterplot and histograms of predicted random intercepts and slopes from the Weighted model



Vamvakas et al. BMCMedical ResearchMethodology          (2021) 21:173 Page 14 of 18

shrunk towards themean of their prior distribution, which
is zero.
Figure 7 displays the distance chart for the Expressive

Vocabulary test based on parameter values from the neg-
ative binomial auxiliary model shown in Table 5. It can be
seen that the general trend shifts upwards, demonstrat-
ing that vocabulary improves with age, as expected. To
be placed on the 75th percentile, a 90-month old child is
expected to achieve a score of about 100 in the Expres-
sive Vocabulary test, and then again a score of about 125
if they wish to maintain the same position on the chart
35 months later. A more subtle feature of the chart is
that the curves are not equidistant nor are they parallel to
each other; for example, the gap between the 3rd and the
10th centile-curves is bigger than the gap between the 90th
and the 97th percentiles. This makes the child’s improve-
ment required to maintain their population percentile, in
terms of vocabulary growth, dependent on their initial
placement on the chart.
In Fig. 8 we illustrate the ability of the growth model to

adapt to the data patterns in a similar fashion to the way
the ‘tuning’ parameters, L, M, and S control the smooth-
ness of the curves in the LMSmethod (see Cole and Green
[3] for details). Here, data come from the Narrative Recall
test. All panels of Fig. 8 are built by the negative bino-
mial auxiliary model. The top left panel used a 3rd degree
polynomial in age, the top-right panel used a 5th degree
polynomial, the bottom-left panel a 6th degree polyno-

mial, and the bottom-right panel a 7th degree polynomial.
It can be seen that the higher the degree of the polyno-
mial, the less smooth the lines becomes, in an analogous
way to the LMSmethod. Quite often, the choice regarding
the level of smoothness is made by eye. This, however, can
be aided by formal tests. Since the models here are nested,
the likelihood ratio test can be used to strengthen our
choice. A comparison between the likelihood of the mod-
els that used a 3rd and a 5th degree polynomial favoured
the model with the 5th polynomial (p<0.001). The likeli-
hood tests between the models that contained a 5th and a
6th degree polynomial and those that contained a 5th and
a 7th degree polynomial were not significant (p=0.4153
and p=0.0989, respectively) pointing towards a preference
for the 5th polynomial. Regarding goodness-of-fit, it is
worth noting that after examination, the distributions of
the level-1 and level-2 (predicted random effects) residu-
als were almost impervious to the choice of a polynomial
power.
Table 6 shows the results from the bootstrap exercise.

Besides the 3rd percentile of a 74 month old child, the
bootstrapped standard errors returned by the weighted
model are consistently larger than those returned by the
negative binomial auxiliary model (NbAux).

Discussion
Generally, the objective of statistical analyses is to make
inferences that apply to the population targeted by the

Fig. 7 Centile-curves for the Expressive Vocabulary test, based on the whole population (n=6,411). The bold curve in the middle depicts median
centile values across age. The thin lines represent the 3rd, 10th, 25th, 75th, 90th and 97th centile-curves
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Fig. 8 Centile-curves for the Narrative Recall test based on the whole population (n=6,411). The bold curve in the middle depicts median centile
values across age. The thin lines are the 3rd, 10th, 25th, 75th, 90th and 97th centile-curves. The top left panel represents a 3nd degree polynomial in
age. The top-right, bottom-left and bottom-right panels use a 5th , a 6th , and a 7th degree polynomial, respectively

complete sample. With stratified surveys, where data are
mainly missing by design, the aim remains the same but
the methodology is complicated by the requirement to
compensate for the missing data. This is because if selec-
tion into the sample depends on the values of certain
variables, which can be related to the response variable,
the distribution of the sample data can be very differ-
ent from the distribution which holds in the population if
these variables do not inform the statistical model in some
way.

Typically, weighted estimators have been used in the
analysis of surveys. The basic idea behind weighting is
that by considering a weighted unit as representative of a
number of population units, then the sum of all weights
equals the size of the target population, and the distribu-
tion of the weighted data match the distribution of the
population. The closer the weighted unit resembles the
population units the closer the matching of the two distri-
butions. Weighted estimation, however, is inefficient and
its use in multi-level modelling hampered by lack of clear

Table 6 Standard errors from 500 bootstrapped datasets for the weighted and the negative binomial auxiliary (NbAux) models, by age
and percentile

Percentile Weightedmodel Observed coef. Weightedmodel Standard error NbAuxObserved coef. NbAux Standard error

127 month old 97th 146.1794 1.493828 143.6447 1.404568

75th 129.0548 .894502 125.0589 .7733639

50th 119.6728 .813757 114.9004 .6862632

25th 110.4371 .9443838 104.9204 .8322449

3rd 94.30761 1.428025 87.54849 1.346387

93 month old 97th 120.0104 .9901348 118.3175 .8779767

75th 104.4008 .6579751 100.753 .5575749

50th 95.87027 .6524922 91.18928 .5381976

25th 87.49048 .7577963 81.82425 .6444512

3rd 72.90685 1.084865 65.61384 1.051341

74 month old 97th 107.284 .9212999 105.8401 .7348498

75th 91.59992 .6564309 88.07831 .5309773

50th 83.0562 .6694443 78.44596 .5517361

25th 74.68662 .7841305 69.04718 .7010522

3rd 60.18923 1.153478 52.8808 1.243136
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methodology at the lowest level of data. Incorporation of
Normally distributed auxiliary variables into maximum
likelihood estimators has been shown in the literature to
be as unbiased and more efficient than weighted estima-
tion. Broadly, auxiliary variables are (fully observed) vari-
ables that hold information on the study design (or equiv-
alently, on the missingness mechanism), and are related to
the (partially observed) response variable of interest. Use
of non-Normal auxiliary information in studies that suffer
from “design missingness” is under-explored.
To explore the effect of auxiliary information on the

estimation of model parameters when data are miss-
ing by design, we created artificial data that mimic the
two-stage design of the SCALES population survey. We
simulated Poisson data to serve as our auxiliary vari-
able, copying the role of CCC-S in SCALES. Then, we
simulated repeated measurements of a Normally dis-
tributed response and deleted approximately half of it.
Deletion of data was based on the auxiliary variable.
We tested a number of growth models that incorporate
information on the study design either in the form of
weights or in the form of an additional variable. The
models that contained the additional variable, were struc-
tural equation models that were primarily made up of
an equation for the growth model and an equation for
the additional, or auxiliary, variable. The auxiliary vari-
able was predicted by a random intercept factor and was
fitted assuming either a Poisson or a negative binomial
distribution, arguably the two most common choices for
the analysis of count data. In an extra set of structural
equation models we added an equation where the proba-
bility of a value being missing was predicted by a constant
and the random intercept factor. We also fitted the two
structural equation models pretending the auxiliary vari-
able was Normally distributed after a skew-minimising
transformation.
The results of our simulation study showed that the

best performing models were the Poisson and the nega-
tive binomial auxiliary models shown in equation 2 and
in Fig. 3, respectively. Our results showed that none of
the parameters estimated by the two models contained
any significant bias. The standard errors associated with
each examined parameter were on average very close to
their corresponding empirical standard deviation indicat-
ing the lack of bias in the estimation of the standard errors.
In terms of coverage, all rates were close to the nominal
level.
No significant biases were detected with the weighted

growth model during parameter estimation. In line with
the literature, our simulation results, too, showed a reduc-
tion in the efficiency of the parameters when compared
to the best performing auxiliary models. For the ran-
dom coefficients parameter, the weightedmodel produced
the largest, on average, standard errors among the con-

tested models. We found that the standard error for the
fixed intercept parameter was over-estimated compared
to its empirical standard deviation by 8.5% on average,
the largest percentage difference observed for this param-
eter. Coverage rates were all very close to the nominal
level.
None of the other models fared well in terms of bias,

efficiency and coverage; coverage dropped considerably
for some biased parameters. The models that included the
probability ofmissingness as an extra equation performed,
at times, even worse than the naive model, which did
not include any auxiliary information even though it was
fitted on incomplete data. Although Normality was not
achieved after transforming the auxiliary variable, it was
nonetheless used as the outcome of simple linear regres-
sion. The bad performance of the models that made use of
the transformed auxiliary variable reveals the pernicious
effects ofmodelmisspecification and highlights the neces-
sity to respect the distributional assumptions about the
data generating mechanism.
We also presented an application of our best perform-

ing model on actual SCALES data. We deployed language
test scores to estimate model parameters, used these as
a means to compare the method to established statistical
techniques for the analysis of survey data, assess model fit,
and produce distance norms and charts.
To this end, we used the negative binomial auxiliary

variable model and compared it primarily with a weighted
growth model. We chose the negative binomial distri-
bution to model our auxiliary variable because it fitted
our data better. The results from this section showed
that model fit (assessed through the graphical compari-
son of the distributions of the residuals and the predicted
random effects) for the auxiliary variable model appears
as satisfactory as its weighted competitor and that both
models produce very similar empirical growth param-
eters. In terms of Z-scores, our model produced very
similar values to LMS, one of the most popular meth-
ods for the production of standardised scores. We also
provided evidence, after conducting a bootstrap exer-
cise, that use of an auxiliary variable yields more efficient
percentile norms than the use of weights, especially in
regions of the distribution where the main bulk of the
data lies.

Limitations
Variables can be used as auxiliary variables if they are
observed for the whole population targeted by the analy-
sis, and are highly correlated with the incomplete variable
of interest. As such, these variables are often not avail-
able or are themselves fraught withmissing values, making
the MAR assumption about the data less likely to be met.
In SCALES, the CCC-S questionnaire was the dominant
selection criterion, and hence a single auxiliary variable
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was sufficient. When there is more than one selection cri-
teria, use of multiple auxiliary variables can make model
estimation cumbersome. On these occasions, a weighted
approach may be preferable since weights can easily allow
for complex sample selection.

Conclusions
In this study, we compared an auxiliary variable model
with a model that utilises weights in terms of bias and
efficiency of their estimators. Both methods can easily
incorporate information on the sampling design of the
study and help retrieve lost information.We chose to test a
Poisson distributed variable as auxiliary and showed how
easily this variable can be incorporated into a structural
equation model. We found that the auxiliary model is not
only as unbiased as its weighted counterpart, it also offers
additional gains in efficiency.
Whenever plausible, we recommend the use of aux-

iliary variables over the use of weights. Besides yield-
ing estimates with reduced efficiency, the weights are
not well suited to longitudinal data with incomplete and
only partially overlapping waves. No mainstream method
allows for the use of weights at the response level, and
researchers who wish to conduct longitudinal analyses
resort to complicated methods regarding how best to han-
dle the different missing data mechanisms operating at
different time points. The use of auxiliary variables does
not suffer from this.
The ability of our model to use not only the Poisson but

also the negative binomial distribution makes our method
amenable to a wide range of disciplines, such as psy-
chopathology and chronic disease, in which overdispersed
counts arise very commonly from screening question-
naires.
The auxiliary variable approach also has an advantage

over the LMS method, in that it can estimate, as well as
population percentiles, velocities that we can make addi-
tional use of, for example, in assessing the speed of a child’s
language or cognitive improvement.
We finally saw how parameters from the auxiliary vari-

able model can readily be used not only for estimation
and inference but also for the production of growth charts
without the need to use weights.
In this study, we tested the effect of one discrete aux-

iliary variable. Future research can test the estimation
performance of models that host more than one auxiliary
variable. This would be beneficial, for example, in surveys
where more than one selection criterion exists. The extra
auxiliary variables can be incorporated either as predic-
tors of the random intercept factor or form responses in
additional equations similar to those used in this paper.
Finally, the effects of different types of auxiliary data can
also be explored. Here we chose to work with count data
due to SCALES. Testing the estimation performance of

models after the incorporation of binary auxiliary data, for
example, would be of great interest.
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