
Bodaghi et al. Advances in Difference Equations        (2021) 2021:380 
https://doi.org/10.1186/s13662-021-03541-3

R E S E A R C H Open Access

Characterization and stability analysis of
advanced multi-quadratic functional
equations
Abasalt Bodaghi1* , Hossein Moshtagh2 and Hemen Dutta3

*Correspondence:
abasalt.bodaghi@gmail.com
1Department of Mathematics,
Garmsar Branch, Islamic Azad
University, Garmsar, Iran
Full list of author information is
available at the end of the article

Abstract
In this paper, we introduce a new quadratic functional equation and, motivated by
this equation, we investigate n-variables mappings which are quadratic in each
variable. We show that such mappings can be unified as an equation, namely,
multi-quadratic functional equation. We also apply a fixed point technique to study
the stability for the multi-quadratic functional equations. Furthermore, we present an
example and a few corollaries corresponding to the stability and hyperstability
outcomes.
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1 Introduction
The stability problem for functional equations was raised by Ulam [1] and answered by
Hyers [2]. Later, it was developed as Hyers–Ulam stability by Aoki [3], Rassias [4], Rassias
[5], and Găvruţa [6]. Next, some related stability on mappings associated with additive and
linear functional equations with miscellaneous applications was studied by the authors;
see for example [7–9], and [10].

Throughout this paper, for two nonempty sets X and Y , the set of all mappings from X

to Y is denoted by Y X . We also denote
n–times

︷ ︸︸ ︷

X × X × · · · × X by Xn. We recall the definitions
of stability and hyperstability of functional equations from [11] as follows. Suppose that
A is a nonempty set, (X, d) is a metric space, E ⊂ F ⊂ R

An
+ is nonempty, F is an operator

mapping F into R
An
+ , and F1, F2 are operators mapping a nonempty set D ⊂ XA into XAn .

An operator equation

F1ϕ(a1, . . . , an) = F2ϕ(a1, . . . , an) (1.1)

is said to be (E,F)-stable if for each χ ∈ E and ϕ0 ∈ D with

d
(

F1ϕ0(a1, . . . , an),F2ϕ0(a1, . . . , an)
) ≤ χ (a1, . . . , an), a1, . . . , an ∈ A, (1.2)
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there exists a solution ϕ ∈ D of (1.1) such that

d
(

ϕ(a),ϕ0(a)
) ≤Fχ (a), a ∈ A. (1.3)

In other words, the (E,F)-stability of (1.1) means that every approximate (in the sense of
(1.2)) solution of (1.1) is always close (in the sense of (1.3)) to an exact solution of (1.1).
Moreover, for χ ∈ R

An
+ , we say that operator equation (1.1) is χ -hyperstable provided every

ϕ0 ∈ D satisfying (1.2) fulfills (1.1). Indeed, a functional equation F is hyperstable if any
mapping f satisfying the equation F approximately is an exact solution of F .

The stability problem for the quadratic functional equation

Q(x + y) + Q(x – y) = 2Q(x) + 2Q(y) (1.4)

has been studied in normed spaces by Skof [12] with constant bound. Thereafter, Czerwik
[13] proved the Hyers–Ulam stability of the quadratic functional equation with noncon-
stant bound. More details of quadratic functional equations are available in [14]. Here,
we remember that the generalized Hyers–Ulam stability of different functional equations
in various normed spaces has been studied in many papers and books by a number of
authors; see for instance [15–23] and the references therein.

In the sequel, N stands for the set of all positive integers and N0 := N∪{0}. For any l ∈N0,
m ∈N, t = (t1, . . . , tm) ∈ {–1, 1}m, and x = (x1, . . . , xm) ∈ V m, we write lx := (lx1, . . . , lxm) and
tx := (t1x1, . . . , tmxm), where ra stands, as usual, for the rth power of an element a of the
commutative group V .

Let V be a commutative group, W be a linear space, and n ≥ 2 be an integer. Recall from
[24] that a mapping f : V n −→ W is called multi-quadratic if it is quadratic (satisfying
quadratic functional equation (1.4)) in each component. It was shown in [25] that the
system of functional equations defining a multi-quadratic mappings can be unified as a
single equation. In fact, Zhao et al. [25] proved that the mentioned mapping f is multi-
quadratic if and only if

∑

s∈{–1,1}n

f (x1 + sx2) = 2n
∑

j1,j2,...,jn∈{1,2}
f (x1j1 , x2j2 , . . . , xnjn ) (1.5)

holds, where xj = (x1j, x2j, . . . , xnj) ∈ V n with j ∈ {1, 2}. In the last decade Ulam stability
problem has been extended and studied for some special several variables mappings such
as multi-(additive, quadratic, cubic, quartic) mappings. Some of them are multi-additive
and multi-quadratic mappings which are introduced and investigated for instance in [26–
29], and [30].

In this paper, we consider the quadratic functional equation

Q(ax + by) + Q(ax – by) = Q(x + y) + Q(x – y) + K1Q(x) + K2Q(y), (1.6)

where a, b are fixed integers with a, b �= 0,±1, in which

K1 = 2
(

a2 – 1
)

and K2 = 2
(

b2 – 1
)

. (1.7)

Then, according to (1.6), we introduce the multi-quadratic mappings which are different
from those defined in [27, 29], and [30]. Moreover, we include a characterization of such
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mappings. Indeed, we prove that every multi-quadratic mapping can be shown a single
functional equation and vice versa (under some extra conditions). In addition, by using a
fixed point theorem, we establish the Hyers–Ulam stability for the multi-quadratic func-
tional equations; for more applications of this technique to prove the Hyers–Ulam stability
of several variables mappings, we refer to [31–36], and [37].

2 Characterization of multi-quadratic mappings
In this chapter, we introduce the multi-quadratic mappings and then characterize them.
Here and subsequently, V and W are vector spaces over the rational numbers unless oth-
erwise stated explicitly. Here, we indicate an elementary result as follows.

Proposition 2.1 For a mapping Q : V −→ W , the following assertions are equivalent:
(i) Q satisfies equation (1.4);

(ii) Q fulfills the equation

Q(ax + y) + Q(ax – y) = Q(x + y) + Q(x – y) + 2
(

a2 – 1
)

Q(x), (2.1)

where a is a fixed integer with a �= 0,±1;
(iii) Q satisfies equation (1.6).

Proof (i) ⇒ (ii) Assume that Q satisfies (1.4). It is easy to check that Q(0) = 0, and so
Q(2x) = 4Q(x) for all x ∈ V . It is also routine to show that Q(ax) = a2Q(x) for all x ∈ V .
Replacing x with ax in (1.4), we have

Q(ax + y) + Q(ax – y) = 2Q(ax) + 2Q(y)

= 2a2Q(x) + 2Q(y)

= 2Q(x) + 2Q(y) + 2
(

a2 – 1
)

Q(x)

= Q(x + y) + Q(x – y) + 2
(

a2 – 1
)

Q(x).

Therefore, Q satisfies (2.1).
(ii) ⇒ (iii) Putting y = 0 in (2.1), we find Q(ax) = a2Q(x) for all x ∈ V . On the other hand,

Q(–ax) = (–a)2Q(x) = a2Q(x) = Q(ax), and so Q(–x) = Q(x). This means that Q is even.
Replacing y with by and using the evenness property, we have

Q(ax + by) + Q(ax – by)

= Q(x + by) + Q(x – by) + 2
(

a2 – 1
)

Q(x)

= Q(by + x) + Q(by – x) + 2
(

a2 – 1
)

Q(x)

= Q(x + y) + Q(x – y) + 2
(

a2 – 1
)

Q(x) + 2
(

b2 – 1
)

Q(y).

(iii) ⇒ (i) Similar to the previous implication, one can show that Q(0) = 0, Q(ax) = a2Q(x),
Q(bx) = b2Q(x) for all x ∈ V and Q is an even mapping. Hence, Q(abx + aby) = a2b2Q(x + y)
and Q(abx – aby) = a2b2Q(x – y) for all x, y ∈ V . Replacing (x, y) with (bx, ay) in (1.6) and
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using the mentioned properties, we get

a2b2Q(x + y) + a2b2Q(x – y)

= Q(abx + aby) + Q(abx – aby)

= Q(bx + ay) + Q(bx – ay) + 2
(

a2 – 1
)

Q(bx) + 2
(

b2 – 1
)

Q(ay)

= Q(x + y) + Q(x – y) + 2
(

a2 – 1
)

Q(y) + 2
(

b2 – 1
)

Q(x)

+ 2
(

a2 – 1
)

b2Q(x) + 2
(

b2 – 1
)

a2Q(y)

for all x, y ∈ V . Comparing the first and the last terms of the above relation, we have

Q(x + y) + Q(x – y) = 2Q(x) + 2Q(y).

Therefore, Q satisfies equation (1.4). �

Let n ∈ N with n ≥ 2 and xn
i = (xi1, xi2, . . . , xin) ∈ V n, where i ∈ {1, 2}. We shall denote xn

i

by xi if there is no risk of ambiguity. For x1, x2 ∈ V n and pi ∈ N0 with 0 ≤ pi ≤ n, put A =
{(A1, A2, . . . , An)|Aj ∈ {x1j ± x2j, x1j, x2j}}, where j ∈ {1, . . . , n}. Consider the subset An

(p1,p2) of
A as follows:

A
n
(p1,p2) :=

{

An = (A1, A2, . . . , An) ∈A|Card{Aj : Aj = xij} = pi, i ∈ {1, 2}}.

Definition 2.2 A mapping f : V n −→ W is said to be n-multi-quadratic or multi-
quadratic if f is quadratic in each variable (see equation (1.6)).

In the sequel, for a multi-quadratic mapping f , we use the following notations:

f
(

A
n
(p1,p2)

)

:=
∑

An∈An
(p1,p2)

f (An),

f
(

A
n
(p1,p2), z

)

:=
∑

An∈An
(p1,p2)

f (An, z) (z ∈ V ).

For each x1, x2 ∈ V n, we consider the equation

∑

t∈{–1,1}n

f (ax1 + tbx2) =
n

∑

p1=0

n–p1
∑

p2=0

Kp1
1 Kp2

2 f
(

A
n
(p1,p2)

)

, (2.2)

where a, b are fixed integers with a, b �= 0,±1, K1, K2 are defined in (1.7). Next, we shall
show that every multi-quadratic mapping satisfies equation (2.2).

Proposition 2.3 Let a mapping f : V n −→ W be multi-quadratic. Then it satisfies equa-
tion (2.2).
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Proof We argue the proof by induction on n. For n = 1, it is obvious that f fulfills equation
(1.6). Suppose that (2.2) holds for some positive integer n > 1. In other words, we have

∑

t∈{–1,1}n

f (ax1 + tbx2, z) =
n

∑

p1=0

n–p1
∑

p2=0

Kp1
1 Kp2

2 f
(

A
n
(p1,p2), z

)

(z ∈ V ). (2.3)

Using (2.3), we have

∑

t∈{–1,1}n+1

f
(

axn+1
1 + tbxn+1

2
)

=
∑

t∈{–1,1}n

f
(

axn
1 + tbxn

2, x1,n+1 + x2,n+1
)

+
∑

t∈{–1,1}n

f
(

axn
1 + tbxn

2, x1,n+1 – x2,n+1
)

+ K1
∑

t∈{–1,1}n

f
(

axn
1 + tbxn

2, x1,n+1
)

+ K2
∑

t∈{–1,1}n

f
(

axn
1 + tbxn

2, x2,n+1
)

=
n

∑

p1=0

n–p1
∑

p2=0

∑

t∈{–1,1}
Kp1

1 Kp2
2 f

(

A
n
(p1,p2), x1,n+1 + tx2,n+1

)

+ K1

n
∑

p1=0

n–p1
∑

p2=0

Kp1
1 Kp2

2 f
(

A
n
(p1,p2), x1,n+1

)

+ K2

n
∑

p1=0

n–p1
∑

p2=0

Kp1
1 Kp2

2 f
(

A
n
(p1,p2), x2,n+1

)

.

The above equalities show that

∑

t∈{–1,1}n+1

f
(

axn+1
1 + tbxn+1

2
)

=
n+1
∑

p1=0

n+1–p1
∑

p2=0

Kp1
1 Kp2

2 f
(

A
n+1
(p1,p2)

)

.

This means that (2.2) holds for n + 1, and thus the proof is finished. �

One can check that the mapping f (z1, . . . , zn) =
∏n

j=1 z2
j is multi-quadratic, and so Propo-

sition 2.3 implies that f satisfies equation (2.2). Therefore, this equation is said to be multi-
quadratic functional equation.

Let a be as in (1.6). We say a mapping f : V n −→ W
(i) satisfies (has) the quadratic condition in the jth variable if

f (z1, . . . , zj–1, azj, zj+1, . . . , zn) = a2f (z1, . . . , zj–1, zj, zj+1, . . . , zn)

for all z1, . . . , zn ∈ V n;
(ii) is even in the jth variable if

f (z1, . . . , zj–1, –zj, zj+1, . . . , zn) = f (z1, . . . , zj–1, zj, zj+1, . . . , zn)

for all z1, . . . , zn ∈ V n;
(iii) has zero condition if f (x) = 0 for any x ∈ V n with at least one component which is

equal to zero.
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It is easily checked that if f is a multi-quadratic mapping (and so satisfies equation (2.2)
by Proposition 2.3), then it has the quadratic condition in each variable. But the converse
is not valid in general. Let (A,‖ · ‖) be a normed algebra. Fix the vector z0 in A. Consider
the mapping ϕ : An −→A defined by ϕ(z1, . . . , zn) = (

∏n
j=1 ‖zj‖2)z0 for any z1, . . . , zn ∈A. It

is clear that ϕ has the quadratic condition in all variables, while it is not a multi-quadratic
mapping even for n = 1.

Put n := {1, . . . , n}, n ∈ N. For a subset T = {j1, . . . , ji} of n with 1 ≤ j1 < · · · < ji ≤ n and
x = (x1, . . . , xn) ∈ V n,

T x := (0, . . . , 0, xj1 , 0, . . . , 0, xji , 0, . . . , 0) ∈ V n

denotes the vector which coincides with x in exactly those components which are indexed
by the elements of T and whose other components are set equal to zero. Note that 0x = 0,
nx = x.

For a mapping f : V n −→ W , we consider the following hypotheses:
(H1) f has the quadratic condition in each variable,
(H2) f is even in all variables.
From now on,

( n
k
)

is the binomial coefficient defined for all n, k ∈ N0 with n ≥ k by
n!/(k!(n – k)!). Some properties of degenerate complete and partial Bell polynomials are
studied in [38]. Here, we have the next basic result. We wish to show that if a mapping
f : V n −→ W satisfies equation (2.2), then it is multi-quadratic. To reach our main result
in this section, we need the upcoming lemma.

Lemma 2.4 Suppose that a mapping f : V n −→ W fulfills equation (2.2). Under one of the
hypotheses (H1) and (H2), f has zero condition.

Proof (i) Let f satisfy (H1). We firstly note that

(

n – k
n – k – p1 – p2

)(

p1 + p2

p1

)

=

(

n – k
p1

)(

n – k – p1

p2

)

(2.4)

for 0 ≤ k ≤ n – 1. We argue by induction on k that, for each kx ∈Kk , f (kx) = 0 for 0 ≤ k ≤
n – 1. Let k = 0. Putting x1 = x2 =0 x in (2.2) and using (2.4), we have

2nf (0x) =
n

∑

p1=0

n–p1
∑

p2=0

(

n
n – p1 – p2

)(

p1 + p2

p2

)

Kp1
1 Kp2

2 2n–p1–p2 f (0x)

=

⎡

⎣

n
∑

p1=0

(

n
p1

)

2n–p1 Kp1
1

n–p1
∑

p2=0

(

n – p1

p2

)

1n–p1–p2
(

b2 – 1
)p2

⎤

⎦ f (0x)

=

⎡

⎣

n
∑

p1=0

(

n
p1

)

2n–p1 Kp1
1

(

b2)n–p1

⎤

⎦ f (0x)

= 2n(a2 + b2 – 1
)nf (0x). (2.5)

Since a, b �= ±1, relation (2.5) implies that f (0x) = 0. Assume that, for each k–1x ∈ Kk–1,
f (k–1x) = 0. We portray that if kx ∈ Kk , then f (kx) = 0. Without loss of generality, it is as-
sumed that kx1 = (x11, . . . , x1k , 0, . . . , 0). By our assumption, replacing (x1, x2) with (kx1, 0)
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in equation (2.2), we get

2na2kf (kx)

=
n–k
∑

p1=0

n–k–p1
∑

p2=0

(

n – k
n – k – p1 – p2

)(

p1 + p2

p2

)

Kp1
1 Kp2

2 2n–p1–p2 f (kx)

= 2k

⎡

⎣

n–k
∑

p1=0

(

n – k
p1

)

2n–k–p1 Kp1
1

n–k–p1
∑

p2=0

(

n – k – p1

p2

)

1n–k–p1–p2
(

b2 – 1
)p2

⎤

⎦ f (kx)

= 2k

⎡

⎣

n
∑

p1=0

(

n – k
p1

)

2n–k–p1 Kp1
1

(

b2)n–k–p1

⎤

⎦ f (kx)

= 2n(a2 + b2 – 1
)n–kf (kx).

Hence, f (kx) = 0. This shows that f has zero condition. Now, assume that f satisfies (H2).
Similar to part (i), we have f (0x) = 0. Replacing (x1, x2) with (x2, x1) and using the assump-
tion, one can show that 2na2kf (kx) = 2n(a2 + b2 – 1)n–kf (kx) for all 0 ≤ k ≤ n – 1. This
finishes the proof. �

Theorem 2.5 Suppose that a mapping f : V n −→ W fulfills equation (2.2). Under one of
the hypotheses (H1) and (H2), f is multi-quadratic.

Proof Assume that f satisfies (H1). Fix j ∈ {1, . . . , n}. Set

f ∗(x1j, x2j) := f (x11, . . . , x1,j–1, x1,j + x2j, x1,j+1, . . . , x1n)

+ f (x11, . . . , x1,j–1, x1j – x2j, x1,j+1, . . . , x1n),

and f ∗(x1j) := f (x1) = f (x11, . . . , x1n), f ∗(x2j) := f (x11, . . . , x1,j–1, x2j, x1,j+1, . . . , x1n). Putting
x2k = 0 for all k ∈ {1, . . . , n}\{j} in (2.2), applying the assumption, we obtain

2n–1 × a2(n–1)[f (x11, . . . , x1,j–1, ax1j + bx2j, x1,j+1, . . . , x1n)

+ f (x11, . . . , x1,j–1, ax1j – bx2j, x1,j+1, . . . , x1n)
]

= 2n–1[f (ax11, . . . , ax1,j–1, ax1j + bx2j, ax1,j+1, . . . , ax1n)

+ f (ax11, . . . , ax1,j–1, ax1j – bx2j, ax1,j+1, . . . , ax1n)
]

=
n–1
∑

p1=0

[(

n – 1
p1

)

Kp1
1 2n–1–p1

]

f ∗(x1j, x2j)

+
n

∑

p1=1

[(

n – 1
p1 – 1

)

K14p1 2n–p1

]

f ∗(x1j)

+ K2

n
∑

p1=1

[(

n – 1
p1 – 1

)

Kp1–1
1 2n–p1

]

f ∗(x2j)

=
(

a2)n–1f ∗(x1j, x2j)
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+ K1

n–1
∑

p1=0

[(

n – 1
p1

)

Kp1
1 2n–p1–1

]

f ∗(x1j)

+ K2

n–1
∑

p1=0

[(

n – 1
p1

)

Kp1
1 2n–p1–1

]

f ∗(x2j)

= a2(n–1)f ∗(x1j, x2j) + K1a2(n–1)f ∗(x1j) + K2a2(n–1)f ∗(x2j). (2.6)

Comparing the first and last terms of (2.6), we get

f (x11, . . . , x1,j–1, ax1j + bx2j, x1,j+1, . . . , x1n) + f (x11, . . . , x1,j–1, ax1j – bx2j, x1,j+1, . . . , x1n)

= f ∗(x1j, x2j) + K1f ∗(x1j) + K2f ∗(x2j).

The last equality shows that f is quadratic in the jth variable. Since j is arbitrary, we obtain
the result. Now, assume that f satisfies (H2). Fix j ∈ {1, . . . , n}. Replacing (x1k , x2k) with
(0, x1k) for all k ∈ {1, . . . , n}\{j} in (2.2) and using assumption, we have

b2(n–1)[f (x11, . . . , x1,j–1, ax1j + bx2j, x1,j+1, . . . , x1n)

+ f (x11, . . . , x1,j–1, ax1j – bx2j, x1,j+1, . . . , x1n)
]

=
n–1
∑

p2=0

[(

n – 1
p2

)

Kp2
2 2n–1–p2

]

f ∗(x1j, x2j)

+ K1

n
∑

p2=1

[(

n – 1
p2 – 1

)

Kp2–1
2 2n–p2

]

f ∗(x1j)

+
n

∑

p2=1

[(

n – 1
p2 – 1

)

4n–p2 (–6)p2 2n–p2

]

f ∗(x2j)

= b2(n–1)f ∗(x1j, x2j)

+ K1

n–1
∑

p2=0

[(

n – 1
p2

)

Kp2
2 2n–p2–1

]

f ∗(x1j)

+ K2

n–1
∑

p2=0

[(

n – 1
p2

)

Kp2
2 2n–p2–1

]

f ∗(x2j)

= b2(n–1)f ∗(x1j, x2j) + K1b2(n–1)f ∗(x1j) + K2b2(n–1)f ∗(x2j). (2.7)

It follows from (2.7) that f is quadratic in the jth variable. �

Corollary 2.6 If a mapping f : V n −→ W satisfies equation (1.5), then it fulfills (2.2). The
converse is true if one of the hypotheses (H1) and (H2) holds.

Proof The result follows from [25, Theorem 3], Proposition 2.3, and Theorem 2.5. �

3 Stability results for multi-quadratic functional equations
In this section, we prove the Hyers–Ulam stability of equation (2.2) by a fixed point result
(Theorem 3.1) in Banach spaces. Here, we indicate this fixed point method which was
presented in [39, Theorem 1].
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Theorem 3.1 Let the following hypotheses hold.
(A1) Y is a Banach space, S is a nonempty set, j ∈N, g1, . . . , gj : S −→ S , and

L1, . . . , Lj : S −→R+;
(A2) T : YS −→ YS is an operator satisfying the inequality

∥

∥T λ(x) – T μ(x)
∥

∥ ≤
j

∑

i=1

Li(x)
∥

∥λ
(

gi(x)
)

– μ
(

gi(x)
)∥

∥, λ,μ ∈ YS , x ∈ S ;

(A3) � : RS
+ −→R

S
+ is an operator defined by

�δ(x) :=
j

∑

i=1

Li(x)δ
(

gi(x)
)

δ ∈R
S
+ , x ∈ S .

Suppose that a function θ : S −→ R+ and a mapping φ : S −→ Y fulfill the following two
conditions:

∥

∥T φ(x) – φ(x)
∥

∥ ≤ θ (x), θ∗(x) :=
∞

∑

l=0

�lθ (x) < ∞ (x ∈ S).

Then there exists a unique fixed point ψ of T such that

∥

∥φ(x) – ψ(x)
∥

∥ ≤ θ∗(x) (x ∈ S).

Moreover, ψ(x) = liml→∞ T lφ(x) for all x ∈ S .

In what follows, for a mapping f : V n −→ W , we consider the difference operator Df :
V n × V n −→ W by

Df (x1, x2) :=
∑

t∈{–1,1}n

f (ax1 + tbx2) –
n

∑

p1=0

n–p1
∑

p2=0

Kp1
1 Kp2

2 f
(

A
n
(p1,p2)

)

,

where a, b are fixed integers with a, b �= 0,±1, and K1, K2 are defined in (1.7). We have the
following stability result for equation (2.2).

Theorem 3.2 Let β ∈ {–1, 1}. Let also V be a linear space and W be a Banach space.
Suppose that φ : V n × V n −→ R+ is a mapping satisfying

lim
l→∞

(

1
a2nβ

)l

φ
(

aβlx1, aβlx2
)

= 0 (3.1)

for all x1, x2 ∈ V n and

�(x) =
1

2naβ+1

∞
∑

l=0

(

1
a2nβ

)l

φ
(

aβl+ β–1
2 x, 0

)

< ∞ (3.2)

for all x ∈ V n. Assume also that f : V n −→ W is a mapping satisfying the zero condition
and the inequality

∥

∥Df (x1, x2)
∥

∥ ≤ φ(x1, x2) (3.3)
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for all x1, x2 ∈ V n. Then there exists a solution Q : V n −→ W of (2.2) such that

∥

∥f (x) – Q(x)
∥

∥ ≤ �(x) (3.4)

for all x ∈ V n. Moreover, if Q satisfies (H1), then it is a unique multi-quadratic mapping.

Proof Putting x = x1 and x2 = 0 in (3.3) and using the assumptions, we get

∥

∥

∥

∥

∥

∥

2nf (ax) –
n

∑

p1=0

(

n
p1

)

Kp1
1 2n–p1 f (x)

∥

∥

∥

∥

∥

∥

≤ φ(x, 0)

for all x ∈ V n, where K1 is defined in (1.7). Hence,

∥

∥2nf (ax) – 2na2nf (x)
∥

∥ ≤ φ(x, 0) (3.5)

for all x ∈ V n. Inequality (3.5) implies that

∥

∥

∥

∥
f (x) –

1
a2n f (ax)

∥

∥

∥

∥
≤ 1

2na2n φ(x, 0) (3.6)

for all x ∈ V n. Set ξ (x) := 1
2naβ+1 φ(a

β–1
2 x, 0) and T ξ (x) := 1

a2nβ ξ (aβx) for all ξ ∈ W V n . Hence,
inequality (3.6) can be rewritten as follows:

∥

∥f (x) – T f (x)
∥

∥ ≤ ξ (x)
(

x ∈ V n). (3.7)

Define �η(x) := 1
a2nβ η(aβx) for all η ∈ R

V n
+ , x ∈ V n. It is easily seen that � has the form

described in (A3) with S = V n, g1(x) = aβx, and L1(x) = 1
a2nβ for all x ∈ V n. In addition, we

have

∥

∥T λ(x) – T μ(x)
∥

∥ =
∥

∥

∥

∥

1
a2nβ

[

λ
(

aβx
)

– μ
(

aβx
)]

∥

∥

∥

∥
≤ L1(x)

∥

∥λ
(

g1(x)
)

– μ
(

g1(x)
)∥

∥

for each λ,μ ∈ W V n and x ∈ V n. The last relation shows that hypothesis (A2) holds. It is
easily verified by induction on l that, for any l ∈ N0,

�lξ (x) :=
(

1
a2nβ

)l

ξ
(

aβlx
)

=
1

2naβ+1

(

1
a2nβ

)l

φ
(

aβl+ β–1
2 x, 0

)

(3.8)

for all x ∈ V n. In light of Theorem 3.1, by (3.2), (3.7), and (3.8), there exists a mapping
Q : V n −→ W such that

Q(x) = lim
l→∞

(

T lf
)

(x) =
1

a2nβ
Q

(

aβx
) (

x ∈ V n),

and also (3.4) holds. For l ∈ N0, by induction on l, we wish to prove that

∥

∥D
(

T lf
)

(x1, x2)
∥

∥ ≤
(

1
a2nβ

)l

φ
(

aβlx1, aβlx2
)

(3.9)
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for all x1, x2 ∈ V n. Clearly, (3.9) is valid for l = 0 by (3.3). Assume that (3.9) is true for l ∈N0.
Then

∥

∥D
(

T l+1f
)

(x1, x2)
∥

∥

=

∥

∥

∥

∥

∥

∑

t∈{–1,1}n

(

T l+1f
)

(ax1 + tbx2) –
n

∑

p1=0

n–p1
∑

p2=0

Kp1
1 Kp2

2
(

T l+1f
)(

A
n
(p1,p2)

)

∥

∥

∥

∥

∥

=
1

a2nβ

∥

∥

∥

∥

∥

∑

t∈{–1,1}n

(

T lf
)(

aβ (ax1 + tbx2)
)

–
n

∑

p1=0

n–p1
∑

p2=0

Kp1
1 Kp2

2
(

T lf
)(

aβ
A

n
(p1,p2)

)

∥

∥

∥

∥

∥

=
1

a2nβ

∥

∥D
(

T lf
)(

aβx1, aβx2
)∥

∥ ≤
(

1
a2nβ

)l+1

φ
(

aβ(l+1)x1, aβ(l+1)x2
)

for all x1, x2 ∈ V n. Letting l → ∞ in (3.9) and applying (3.1), we arrive at DQ(x1, x2) = 0 for
all x1, x2 ∈ V n. Therefore, the mapping Q satisfies equation (2.2). Lastly, let Q′ : V n −→ W
be another multi-quadratic mapping satisfying equation (2.2) and inequality (3.4) which
has the (H1) property. Fix x ∈ V n, j ∈N. Using the assumptions, we have

∥

∥Q(x) – Q′(x)
∥

∥

=
∥

∥

∥

∥

1
a2βj Q

(

aβjx
)

–
1

a2βj Q
′(aβjx

)

∥

∥

∥

∥

≤ 1
a2βj

(∥

∥Q
(

aβjx
)

– f
(

aβjx
)∥

∥ +
∥

∥Q′(aβjx
)

– f
(

aβjx
)∥

∥

)

≤ 2
a2βj �

(

aβjx
) ≤ 1

2n–1aβ+1

∞
∑

l=j

(

1
a2β

)l

φ
(

aβl+ β–1
2 x, 0

)

.

Consequently, letting j → ∞ and using the fact that series (3.2) is convergent for all x ∈ V n,
we obtain Q(x) = Q′(x) for all x ∈ V n. This completes the proof. �

Under some conditions, equation (2.2) can be hyperstable as follows.

Corollary 3.3 Let δ > 0. Suppose that pij ∈ R+ for i ∈ {1, 2}, j ∈ {1, . . . , n} such that
∑2

i=1
∑n

j=1 pij �= 2n. For a normed space V and a Banach space W , if f : V n −→ W is a
mapping satisfying the zero condition and the inequality

∥

∥Df (x1, x2)
∥

∥ ≤
2

∏

i=1

n
∏

j=1

‖xij‖pijδ

for all x1, x2 ∈ V n, then it satisfies (2.2). In particular, if f has (H1), then it is a multi-
quadratic mapping.

Proof The result follows from Theorem 3.2 by putting φ(x1, x2) =
∏2

i=1
∏n

j=1 ‖xij‖pijδ for all
x1, x2 ∈ V n. �

In the next corollaries which are the direct consequences of Theorem 3.2, we show that
equation (2.2) is stable when ‖Df (x1, x2)‖ is controlled either by a small positive number
or the summation of components norms of x1 and x2.
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Corollary 3.4 Given δ > 0. Let V be a normed space and W be a Banach space. If f : V n −→
W is a mapping satisfying the zero condition and the inequality

∥

∥Df (x1, x2)
∥

∥ ≤ δ

for all x1, x2 ∈ V n, then there exists a solution Q : V n −→ W of (2.2) such that

∥

∥f (x) – Q(x)
∥

∥ ≤ δ

2n(a2n – 1)

for all x ∈ V n. In addition, if Q satisfies (H1), then it is a unique multi-quadratic mapping.

Proof Setting the constant function φ(x1, x2) = δ for all x1, x2 ∈ V n in the case β = 1 of
Theorem 3.2, we obtain the desired result. �

We bring a concrete example regarding Corollary 3.4.

Example 3.5 Let δ > 0 and ε = δ

2n((a2+b2–1)n–1) . Consider the mapping f : Rn −→ R defined
by

f (r1, . . . , rn) =

⎧

⎨

⎩

∏n
j=1 r2

j + ε ∀rj �= 0,

0 otherwise.

It can be checked that ‖Df (x1, x2)‖ ≤ δ for all x1, x2 ∈R
n (note that ε is taken from relation

(2.5)). Therefore, it follows from Corollary 3.4 that there exists a solution Q : V n −→ W
of (2.2) such that

∥

∥f (x) – Q(x)
∥

∥ ≤ δ

2n(a2n – 1)

for all x ∈ R
n. If also Q satisfies (H1), then it is a unique multi-quadratic mapping. Note

that if we consider Q defined by Q(r1, . . . , rn) =
∏n

j=1 r2
j for all rj ∈R, then ‖f (x)–Q(x)‖ ≤ ε.

Moreover, in the case that n = 2, we have ε = δ

4(a2+b2)(a2+b2–2) . For instance, set δ = 0.01,
a = 3, and b = 5. Then ε = 2.297794118.10–6, and thus we have Figs. 1 and 2 for f and Q,
in this case on interval [–0.033, 0.033] × [–0.033, 0.033].

Figure 1 (Main figure)
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Figure 2 (Image on yz-plan)

Corollary 3.6 Suppose that p ∈ R such that p �= 2n. Let V be a normed space and W be a
Banach space. If f : V n −→ W is a mapping satisfying the zero condition and the inequality

∥

∥Df (x1, x2)
∥

∥ ≤
2

∑

i=1

n
∑

j=1

‖xij‖p

for all x1, x2 ∈ V n, then there exists a solution Q : V n −→ W of (2.2) such that

∥

∥f (x) – Q(x)
∥

∥ ≤ 1
2n|a2n – ap|

for all x ∈ V n. If also Q has (H1), then it is a unique multi-quadratic mapping.

Proof Putting φ(x1, x2) =
∑2

i=1
∑n

j=1 ‖xij‖pij in Theorem 3.2, one can achieve the re-
sult. �

4 Conclusion
In the current work, the authors introduced a new quadratic functional equation, and us-
ing this equation, they defined a new form of multi-quadratic mappings. They also char-
acterized the structure of such mappings. Moreover, they applied a fixed point theorem
to the investigation of the Hyers–Ulam stability for the multi-quadratic functional equa-
tions. Finally, they indicated an example and a few known corollaries corresponding to the
stability and hyperstability results.
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39. Brzdȩk, J., Chudziak, J., Palés, Z.: A fixed point approach to stability of functional equations. Nonlinear Anal. 74,
6728–6732 (2011)


	Characterization and stability analysis of advanced multi-quadratic functional equations
	Abstract
	MSC
	Keywords

	Introduction
	Characterization of multi-quadratic mappings
	Stability results for multi-quadratic functional equations
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


