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Abstract 

Background:  Knowledge of stenosis in coronary arteries requires an understanding of the cellular and molecular 
processes that occur throughout the leukocyte rolling process. In this study, the roles of miR-125a-5p and miR-495-3p 
were investigated on the adhesion of endothelial cells (ECs) isolated from the human aorta.

Methods:  Human primary endothelial cells were obtained from the aorta of people who had died of brain death. 
Whole blood was used to isolate the monocytes. The miR-125 and miR-495 were predicted and transfected into ECs 
using Poly Ethylene Imine (PEI). The expression levels of adhesion molecules and monocyte recruitment were identi-
fied by the RT-qPCR technique and Leukocyte-Endothelial Adhesion Assay kit, respectively.

Results:  The ICAM-1, ICAM-2 and VCAM-1 expression levels decreased significantly in the miR-495/PEI-transfected 
ECs (P < 0.05) while in the miR-125/PEI-transfected ECs only the ICAM-2 and ITGB-2 expression levels decreased 
significantly (P < 0.05) as compared to the miR-synthetic/PEI-transfected ECs. Furthermore, the monocyte adhesion 
was decreased in the miR-125 and miR-mix/PEI-transfected ECs as compared to the miR-synthetic/PEI-transfected ECs 
(P = 0.01 and P = 0.04, respectively).

Conclusion:  According to the findings, the efficient relations between miR-125 and adhesion molecules may be 
responsible for the inhibition of monocyte rolling.
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Introduction
Atherosclerosis is the leading cause of death from cardio-
vascular diseases (CVD) worldwide [1, 2]. In addition to 
the influence of lifestyle, several artery cellular dysfunc-
tions are linked to the development of atherosclerosis 
[3]. The sub-endothelial macrophages, vascular smooth 
muscle cells (VSMCs), and endothelial cells (ECs) are 
the most important agents involved in the initiation and 
progression of atherosclerotic plaques in the heart arter-
ies [4, 5]. Furthermore, the degree of cellular dysfunction 

is mediated by inflammatory events. The endothelial 
cells of arterial vessels trigger the leukocyte rolling pro-
cess through the adhesion molecules. After the entrance 
of leukocytes mainly monocytes and T lymphocytes, 
immune-attractant and chemo-attractant reactions fol-
low the progressive occurrences for the formation of 
atherosclerotic plaques in vessel sub-endothelial space 
causing the vessel micro-anatomical alterations and 
developing the extracellular matrix remodeling events 
[6]. The thrombotic problems during the progression of 
the atherosclerosis process may arise plaque ruptures 
led to vessel stenosis [7–9]. Many molecular and genetic 
studies have found that certain regulatory abnormali-
ties in cellular signaling pathways lead to atherosclerosis. 
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It is well known that miRNAs regulate the function of 
vascular smooth muscle cells (VSMCs) and modulate 
the inflammatory responses in vascular endothelial cells 
so that these events affect vessel stenosis and restenosis 
[10–13]. Moreover, the miRNAs have been discovered as 
potential therapeutic targets and clinical biomarkers in 
coronary artery diseases [14]. In VSMCs, miRNAs influ-
ence gene expression levels and control cellular signal-
ing pathways [15–22]. A review of the roles of miRNAs 
in endothelial cell homeostasis has been published [23]. 
The miRNAs are also said to have many roles in the func-
tional balance of vascular endothelial cells and circulat-
ing leucocytes via biological pathways and inflammatory 
responses [24].

According to the aforementioned descriptions, adhe-
sion molecules facilitate leukocyte recruitment via the 
rolling process, which is a crucial phase in vascular ste-
nosis and restenosis [25, 26]. Moreover, many stud-
ies also suggested that miRNAs influence the gene 
expression levels of adhesion molecules [27]. Based on 
miRNA-related databases, we projected miR-125a-5p 
and miR-495-3p and examined their impacts on ICAM1, 
ICAM2, VCAM1, and ITGB2 gene expression levels iso-
lated from human aortic endothelial cells.

Materials and methods
Tissue sample
The normal aortic samples were collected postmortem 
from individuals with brain death by a specialist physi-
cian from the Organ Procurement Unit (Masih Danesh-
vari Hospital) (Subjects aged 21-54y were independently 
followed all steps; repeats, 3). The samples were sub-
merged in saline/Amphotericin B (0.25  μg/ml)/Gen-
tamicin (50 mg/ml)/Pen-Strep (%6, Gibco, Lot: 1697549) 
solution [28], and were safely transported into the cen-
tral lab. The aorta’s endothelial cells were quickly isolated 
on ice. The study has been authorized by the university’s 
ethics committee (IR.IUMS.REC 1395.9274).

Human aortic endothelial cell isolation
A saline solution was used to cleanse the inner and outer 
surfaces of the aorta (length 8–10  cm). The two vessel 
sides were clamped after filling the aorta with PBS buffer 
(containing collagenase D 0.2%, Cat. No. C5138-100MG; 
Sigma Aldrich). Then, it was incubated for 30 min (37 °C, 
5% CO2). The inner portion of the aorta was washed with 
free-serum Endothelial Cell Growth Medium MV (EGM-
MV, PromoCell, C-22022) several times and the released 
endothelial cells (ECs) were collected in microtube 
(Fig.  1). The aorta’s endothelial cell pellet was prepared 
by centrifugation technique (2500 rpm, 7 min), and was 
immediately seeded on the serum-EGM-MV medium 
(containing ECG complement, ECGS/H 0.004  ml/ml, 

hEGF 50  μg, HC 500  μg, FCS 5%, Pen-Strep 1% and 
amphotericin B (0.25 μg/ ml)). The endothelial cells (ECs) 
were trypsinized after 7 days. The cellular contents were 
centrifuged (2500  rpm, 5  min), and re-sedimented with 
cold PBS buffer (containing 10% FBS, Gibco™ 10091148). 
The cells were washed twice with cold PBS (5 min) and 

Fig. 1  Isolation of endothelial cells from the human aorta. a The 
filled and clamped vessel with PBS buffer. b Endothelial cells. c 
FITC-miRNA/PEI-transfected complex to endothelial cells
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finally, the CD31+ cells were counted up to 56.7% using 
Flow Cytometry.

LPS treatment
The aorta’s endothelial cells isolated from aortic sam-
ples were quickly cultured on 6-well plates. The cellular 
groups were generally pretreated with 10 µg/ml LPS and 
were passaged three times depending on cell confluency 
(≈ 70%) (Cat. No.: L6529-1MG; Sigma Aldrich, Korea; 
Lipopolysaccharides from Escherichia coli 055:B5) for 6 h 
[29, 30].

Gene and miRNA predictions
The genes implicated in the EC-leukocyte rolling process 
were obtained from network-based reactome (https://​
react​ome.​org) and text-based PubMed. STRING (https://​
string-​db.​org) was used to find the gene relationships 
based on the network edges. The genes were chosen 
through the network topology, high-evidence and high-
express edges (Score > 0.9) obtained by Cytoscape soft-
ware. Then, gene-related miRNAs were predicted from 
miRWalk server (http://​zmf.​umm.​uni-​heide​lberg.​de/​
apps/​zmf/​mirwa​lk2). The database reports were utilized 
as edge scores to hit gene-miRNA relationships.

miRNA/PEI particles
The miRNA transfection was performed using Poly Eth-
ylene Imine (PEI, Cat. No.: BCBS2233V). A solution of 
PEI (20  mg/ml DEPC water) was prepared with shak-
ing at 37  °C. Also, a solution of each miRNA (including 
has-miR125a-5p TCC​CTG​AGA​CCC​TTT​AAC​CTG​
TGA​, has-miR495-3p AAA​CAA​ACA​TGG​TGC​ACT​
TCTT, miRsynthetic CCC​GAG​ACC​CAA​CTG​GTC​
ACC and miR-mix (containing equal amounts from 
miR125, miR495 and miRsynthetic) (100  pM) was  pre-
pared  and  incubated  at  room temperature for  20  min 
[31]. Then, 1 µl of each solution was added to 200 DEPC 
water and finally, the mixture was added into 800 µl cul-
ture medium. Based on the previous studies, the miRNA 
transfection rate was estimated up to 70% [16].

EC transfection
After preheating the cells with LPS, the ECs were trans-
fected with miRNA/PEI particles for 4 h. Finally, the cells 
were washed in PBS and were cultured in the serum-
EGM-MV medium for 20 h.

Monocyte isolation
Human monocytes were isolated using the RosetteSep 
kit (STEMCELL Technologies) [31]. Tetramer antibodies 
were added to the whole blood samples according to the 
producer’s procedure. The mixture was diluted with PBS 
buffer (volume ratio 1:1) and was centrifuged (3000 rpm, 
20  min) with a ficoll gradient after incubation (37  °C, 
20  min). Then, the monocytes were washed in a PBS 
buffer containing 2% fetal bovine serum.

RNA extraction and cDNA synthesis
AccuPrep® Universal RNA Extraction Kit (Bioneer, 
Korea) was used to extract total RNA from PEI/miR-
transfected ECs according to the manufacturer’s instruc-
tions. Briefly, the endothelial cells were washed with 
cold PBS three times and, were harvested in lysis buffer 
(400 μl). After adding other buffers, ultimately the RNA 
sample was extracted and kept at − 80  °C. The cDNA 
synthesis was carried out using cDNA synthesis kit (Cat. 
No.: RR037A; Takara, Japan) according to the producer’s 
instructions.

Real‑time qPCR method
The gene expression levels were measured using AB 
Applied Biosystems stepOne Real-Time PCR systems. 
The gene expression values were determined with SYBER 
Green PCR Kit (Cat. No.: RR820Q, Takara, Japan). In 
each reaction (15  µl), the forward and reverse prim-
ers (each 0.5 μM), cDNA (1 µl), and master mix (10 µl) 
were used to amplify the gene cDNA samples. The prim-
ers were designed using the Primer-BLAST tool. Fur-
thermore, the beta-actin (ACTB) gene was applied as an 
internal reference (Table 1). The reaction cycles (n = 45) 
for all genes were followed after initial incubation at 
94 °C for 2 min, 94 °C for 30 s, 67 °C (ICAM-1, ICAM -2 

Table 1  Primers

Primer Forward-primer Reverse-primer Annealing 
temperature 
(°C)

ICAM-1 CAG​TCA​GTG​TGA​CCG​CAG​AG CGC​CGG​AAA​GCT​GTA​GAT​GG 67

ICAM-2 GTC​AGC​GTG​TAC​CAG​CCT​C TCA​TTG​CCA​CGG​AAC​AGG​AA 67

VCAM-1 TGT​CAA​TGT​TGC​CCC​CAG​A CAC​AGG​ATT​TTC​GGA​GCA​GG 55

ITGB-2 CTG​TCG​AAC​AAC​CCC​GTG​AA CCA​CAC​ACT​CTC​GGC​TCT​C 67

B-ACT​ GCA​AGC​AGG​AGT​ATG​ACG​A CAA​ACA​AAT​AAA​GCC​ATG​CCA​ATC​ 63

https://reactome.org
https://reactome.org
https://string-db.org
https://string-db.org
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2
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and ITGB-2), 63 °C (ACTB) and 55 °C for (VCAM-1) for 
30 s.

Immunofluorescence method
The aorta’s endothelial cells (n = 100,000) were cultured 
for 72 h on 96-well plates. The cells were then pretreated 
with LPS (10 μg/ml, 6 h), washed with PBS (twice), and 
transfected by miRNA/EPI particles (4  h). Afterward, 
the cells were washed with PBS (twice) and were grown 
for 20 h. The ligand/LeukoTracker (No. 12101, Cell Bio-
labs) solution of CytoSelect ™ Leukocyte-Endothelial 
Adhesion Assay Kit (Cat. No.: CBA-210; Cell Biolabs; 
Denmark) was mixed with the isolated monocytes (as 
described in Seciiont 1.7) and was added to the cell cul-
ture for 2  h. Then, the cellular mixture was lysed (No. 
10404, Cell Biolabs), stirred slowly, and finally the surface 
monocyte-EC interacted proteins were measured using a 
fluorescence plate reader (480 nm/520 nm).

Statistical analysis
Data were analyzed statistically using a statistical soft-
ware package (SPSS 24, Chicago). The gene expression 
levels were calculated using 2−ΔΔCT formula. The Kol-
mogorov–Smirnov test was used to examine the data dis-
tribution. The differences between groups were evaluated 

by ANOVA and t-student tests. P values less than 0.05 
were determined to be significant.

Results
miR‑125a‑5p and miR‑495‑3p are predicted for adhesion 
molecule genes
The high-score genes found using STRING and were sub-
jects for the gene networking (node 23, edge 59). Based 
on the network topology, the genes of close together (yel-
low circular nodes, 4) searched to find high-report miR-
NAs. The miRNAs were added to the gene network so 
that the miR-125a-5p and miR-495-3p were chosen on 
the high-score edges (dark edge) (Fig. 2).

miR‑495 decreases ICAM‑1 gene expression
The ICAM-1 gene expression level decreased significantly 
in the miR-495/PEI-transfected ECs as compared to miR-
synthetic/PEI-transfected ECs (p 0.03). The results were 
not significant for miR-125 and miR-mix/PEI-transfected 
ECs (p 0.82 and p 0.39, respectively) (Fig. 3a).

miR‑125 and miR‑495 decrease ICAM‑2 gene expression
The results showed that the ICAM-2 gene expression 
levels decrease significantly in miR-125 and miR-495/
PEI-transfected ECs as compared to miR-synthetic/

Fig. 2  Gene and miRNA prediction. The gene network was drawn using Cytoscape based on reactome and PubMed searches. The high-evidence 
(dark edge) and high-express (yellow) nodes were selected from network. Then, miRNAs were predicted from databases
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PEI-transfected ECs about ten and three times, respec-
tively (p 0.004 and p 0.012, respectively). Furthermore, 
the ICAM-2 gene expression decreased in the miR-mix/
PEI-transfected ECs (p 0.009) (Fig. 3b).

miR‑125 decreases ITGB‑2 gene expression
The ITGB-2 gene expression level decreased in miR-125/
PEI-transfected ECs as compared to miR-synthetic/PEI-
transfected ECs (p 0.001). However, the ITGB-2 gene 
expression level was not decreased significantly in the 
miR-495 and miR-mix/PEI-transfected ECs (p 0.9 and p 
0.20, respectively) (Fig. 3c).

miR‑495 decreases VCAM‑1 gene expression
The results showed that the VCAM-1 gene expression 
level decreases in miR-495/PEI- transfected ECs as com-
pared to miR-synthetic/PEI-transfected ECs (p 0.02) 
(Fig. 3d).

miR‑125 and miR‑mix decrease monocyte‑endothelial cell 
adhesion
miR-495 had no significant effect on the endothelial-
monocyte cell adhesion (p 0.86). The adhesion molecule 
protein values decreased significantly in the miR-125 and 
miR-mix/PEI- transfected ECs (p 0.04 and p 0.01, respec-
tively) as compared to miR-synthetic/PEI-transfected 
ECs (Fig. 4).

Discussion
The cellular responses of the vascular wall during the 
atherosclerosis process relate to the adhesion molecule 
functions, inflammatory events, lipid dysregulation, 
and extracellular remodeling dysfunction. Since the ves-
sel restenosis is known as the most common problem 
following stenting thus studies on the cellular mecha-
nisms involved in this process are of interest. It is well 
known that miRNAs change the extracellular and cel-
lular proteomes via regulation of genes involved in the 

Fig. 3  Effects of miRNA/PEI particles on the gene expression levels. a ICAM1. b ICAM2. c ITGB2. d VCAM1. The data are presented as means ± SD. 
*< 0.05, **< 0.005

Fig. 4  Adhesion molecule protein expression index. The adhesion 
rate between ECs and monocytes reduced for miR-125 and miR-mix 
as compared with miR-synthetic. *< 0.05
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cellular signaling pathways. Since the polarization of 
macrophages and their roles in the progression of ath-
erosclerosis plaques relate to monocyte rolling process 
thus the adhesion molecules presented on the surface of 
ECs are the most important miRNA-regulated gene tar-
gets that effectively affect the entrance of monocytes into 
subendothelial spaces [32–37]. There were the reports on 
circulating miRNAs as potential markers of the mono-
cyte rolling and atherosclerosis events [38–41]. In this 
study, the effects of miR-495 and miR-125 on adhesion 
molecule genes (ICAM-1, ICAM-2, ITGB-2, and VCAM-
1) were examined on the basis of prediction data in aortic 
endothelial cells.

Some studies suggested that miR-125 is expressed in 
ECs and VSMCs, and is closely linked to the activities 
of some cellular signaling pathways. In stroke-prone 
spontaneously hypertensive rats, miR-125 has been pos-
tulated as a key therapeutic component [42]. It was also 
reported as a cellular modulator [43], suppressing miR-
125a-5p, which led to PDGF-induced VSMC prolifera-
tion and migration [44]. Furthermore, other studies have 
found that the miR-125a-5p modulates the PI3K/Akt/
eNOS pathway, as well as apoptosis, inflammation, and 
mediates vasculoprotective effects in the endothelial cells 
[45–47]. Our study showed that the miR-125/PEI-trans-
fected endothelial cells decrease the ICAM-2 and ITGB-2 
expression levels. Furthermore, their ability for adhesion 
into monocytes was decreased, suggesting that adhesion 
molecule expression levels are primarily influenced by 
miR-125.

Furthermore, miR-495 has been shown to suppress 
tumor cell proliferation, migration, and invasion [48–51]. 
It is also important in the development of pluripotent 
stem cells into endothelial cells [52]. According to several 
studies, miR-495 reduces inflammatory events by inhib-
iting the inflammasome signaling pathway [53] and may 
act as a tumor suppressor by directly targeting PIK3R1 
gene in endometrial cancer cells [54]. Moreover, the inhi-
bition of miR-495 improved pulmonary vascular struc-
tural changes in mice [55]. The miR-495 also induced 
potent cardiomyocyte proliferation due to suppression 
of coactivator Cited 2 factor [56]. Furthermore, the miR-
495 suppressed CCL2 expression and inhibited the EC 
proliferation and migration pathways [57–61]. Our study 
showed that the ICAM-1, ICAM-2, and VCAM-1 expres-
sion levels are suppressed in the miR-495/PEI-transfected 
aortic endothelial cells. The EC-monocyte cell adhesion 
levels also changed but not significantly in these cells. 
Based on the results of miR-mix/PEI-transfected aortic 
endothelial cells, this study suggested that the functional 
effect of a miRNA might be related cumulatively to other 
miRNAs in the cells. Furthermore, it is proposed that the 
cellular uptake and clearance of miRNA mixtures may be 

related to the numbers and sequences of delivered miR-
NAs in ex-vivo mRNA expression evaluations.

Conclusion
The ICAM-1, ICAM-2, and VCAM-1 expression levels 
are related to miR-495. There were expression associa-
tions between the ICAM-2, ITGB-2, and miR-125. Fur-
thermore, monocyte adherence to miRNA-transfected 
aortic endothelial cells confirmed the role of miR-125 
and the cumulative effects of miR-495 on cellular adhe-
sion, showing that miRNAs may inversely control leu-
kocyte rolling process. The use of miRNAs may improve 
the effectiveness of drug-based approaches [62] in the 
treatment of vessel stenosis and re-stenosis. These com-
ponents can develop the controlled drug delivery tech-
niques in drug-eluting stents and drug-eluting balloons 
[63]. However, it was better to study the roles of miRNAs 
in vessel scaffolds to improve our understanding from 
diapedesis process.
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