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Abstract 

Background:  Delay discounting has been proposed as a behavioral marker of substance use disorders. Innovative 
analytic approaches that integrate information from multiple neuroimaging modalities can provide new insights 
into the complex effects of drug use on the brain. This study implemented a supervised multimodal fusion approach 
to reveal neural networks associated with delay discounting that distinguish persons with and without cocaine use 
disorder (CUD).

Methods:  Adults with (n = 35) and without (n = 37) CUD completed a magnetic resonance imaging (MRI) scan to 
acquire high-resolution anatomical, resting-state functional, and diffusion-weighted images. Pre-computed features 
from each data modality included whole-brain voxel-wise maps for gray matter volume, fractional anisotropy, and 
regional homogeneity, respectively. With delay discounting as the reference, multimodal canonical component analy-
sis plus joint independent component analysis was used to identify co-alterations in brain structure and function.

Results:  The sample was 58% male and 78% African–American. As expected, participants with CUD had higher 
delay discounting compared to those without CUD. One joint component was identified that correlated with delay 
discounting across all modalities, involving regions in the thalamus, dorsal striatum, frontopolar cortex, occipital lobe, 
and corpus callosum. The components were negatively correlated with delay discounting, such that weaker loadings 
were associated with higher discounting. The component loadings were lower in persons with CUD, meaning the 
component was expressed less strongly.

Conclusions:  Our findings reveal structural and functional co-alterations linked to delay discounting, particularly in 
brain regions involved in reward salience, executive control, and visual attention and connecting white matter tracts. 
Importantly, these multimodal networks were weaker in persons with CUD, indicating less cognitive control that may 
contribute to impulsive behaviors.
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Introduction
Cocaine use continues to be a significant global health 
problem. In the United States, an estimated 5.5 million 
people used cocaine in 2018, and nearly 1 million peo-
ple had a cocaine use disorder (CUD) [1]. Substance use 
disorders are characterized by persistent neurobiological 
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changes in brain networks that regulate reward salience, 
decision making, and inhibitory control [2–4]. As sub-
stance use progresses to addiction, mesostriatal networks 
become sensitized to drug cues and desensitized to non-
drug rewards [5, 6], while cognitive control networks 
become hijacked by drug reinforcement [7, 8]. CUD is 
also associated with deficits in reward-based decision 
making that are often associated with impulsive behav-
iors [9], and which may contribute to adverse outcomes, 
such as infectious disease, criminal behaviors, and vio-
lence [10, 11].

Delay discounting, the universal tendency to devalue 
rewards that are delayed in time [12, 13], has been pro-
posed as a behavioral marker of drug addiction [14]. 
Delay discounting is a complex cognitive process that 
involves the mental representation of two reward 
options with different delays and a subjective evalua-
tion of their values relative to one another [15]. Per-
sons who use drugs consistently demonstrate steeper 
discounting compared to those who do not use drugs, 
with the largest effects observed for cocaine and other 
stimulants [16]. This exaggerated preference for smaller, 
immediate rewards over larger, delayed rewards has 
been linked to all stages of drug addiction from initia-
tion of use to addiction severity and treatment outcome 
[17–19]. Steeper discounting is also predictive of other 
maladaptive behaviors, such as gambling, risky sex, and 
overeating [20–22], suggesting that it may represent a 
trans-disease process [23]. Multiple brain regions across 
several large-scale neural networks are implicated in 
delay discounting, likely involving recursive interactions 
across networks [24, 25]. In non-clinical samples, brain 
morphology has also been linked to steeper discounting, 
including lower cortical and higher subcortical gray mat-
ter volume (GMV) [26, 27], reduced white mater integ-
rity in brainstem, association, and commissural tracts 
[28], and lower white matter connectivity between fron-
tal-striatal regions [29]. These neural underpinnings of 
delay discounting overlap with functional and structural 
brain alterations identified in CUD.

Magnetic resonance imaging (MRI) studies have pro-
vided insight into the neuroanatomical substrates of 
cocaine and other drug use disorders. Structural MRI 
studies that quantify gray matter morphology generally 
find that persons who use cocaine have lower GMV in 
prefrontal cortices relative to controls, with less consist-
ent reductions in temporal, hippocampal, and cerebel-
lar regions [30–36], along with increased striatal GMV 
[32]. Resting-state functional MRI (rs-fMRI) studies, 
which measure the temporal correlation of spontaneous 
changes in blood flow across spatially distributed regions 
to identify functional networks, have reported aberrant 
connectivity in dopamine-rich limbic and subcortical 

regions involved in reward processing and associative 
learning, and in fronto-parietal cortical regions that con-
trol executive function [37]. Diffusion-weighted imaging 
(DWI), which characterizes white matter integrity by 
mapping the movement of water molecules, has shown 
notable reductions in fractional anisotropy (FA) in the 
corpus callosum and frontal fiber tracts in persons with 
CUD compared to controls [38, 39].

While MRI studies have generated vital insights into 
the long-term effects of chronic cocaine use on the brain, 
this literature has been dominated by unimodal analy-
ses. Each type of MRI provides unique information on 
the neural basis of neuropsychiatric disease. Innovative 
MRI fusion approaches that integrate the information 
from multiple imaging modalities can unify disparate 
findings from unimodal analyses, revealing covariation 
across imaging and clinical measures [40]. Specifically, 
MCCAR + jICA (multi-site canonical correlation analysis 
with reference + joint independent component analysis) 
is a supervised fusion technique that maximizes corre-
lations between the identified brain regions with a ref-
erence of interest [41], which might be missed by blind 
fusion approaches [42–44]. While MCCAR + jICA has 
been utilized to examine cognitive dysfunction related 
to a range of psychiatric disorders, such as schizophre-
nia, major depression, and autism [45–48], this analytic 
strategy has not yet been used to investigate co-varying 
functional and structural brain alterations associated 
with CUD or other substance use disorders.

This study aimed to identify multimodal networks 
linked to delay discounting that distinguish persons with 
and without CUD. Existing fMRI studies demonstrate 
that differences in neural activation and functional con-
nectivity in persons with addictive disorders relate to 
delay discounting, but there have been too few studies to 
draw conclusions related to brain structure [49]. Moreo-
ver, no studies to date have been designed to identify co-
variations in functional and structural brain systems in 
CUD. To achieve this goal, we implemented a supervised 
3-way MRI fusion analysis with delay discounting as the 
reference. We expected to identify multimodal compo-
nents comprised of regions implicated in reward pro-
cessing and cognitive control, and we hypothesized that 
persons with CUD would have weaker component load-
ings indicative of alterations in these brain systems.

Methods and materials
Sampling
We collected data as part of three protocols that inves-
tigated the effects of substance abuse and HIV infec-
tion on neural activation during decision making tasks 
[50–52]. These protocols had shared procedures to facili-
tate data harmonization. The present analysis includes 
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72 HIV-negative adults aged 28–55 years who currently 
used cocaine (COC+) or had no history of cocaine abuse 
(COC-). The eligibility criteria have been described else-
where [36, 53]. Participants in the COC + group met the 
following criteria: current cocaine dependence, regu-
lar cocaine use for ≥ 1 year, recurrent cocaine use in the 
past 30  days, and cocaine as a principal drug of abuse. 
Participants in the COC− group met the following cri-
teria: no lifetime CUD (abuse or dependence), no his-
tory of regular cocaine use, no cocaine use in the past 
year, and a cocaine-negative drug screen. Alcohol, mari-
juana, and nicotine use were permitted in all groups. For 
other drugs, individuals were excluded for any history 
of dependence, lifetime regular use for > 2  years, regu-
lar use in the past year, and any use in the past 30 days. 
Additional exclusion criteria were: English non-fluency 
or illiteracy; < 8th grade education; severe learning dis-
ability; unresolved neurological disorders or history of 
neuroinfections; severe head trauma with loss of con-
sciousness > 30  min and persistent functional decline; 
lifetime bipolar I or psychotic disorder; acute psychiatric 
symptoms interfering with functioning; MRI contraindi-
cations; and/or impaired mental status.

Procedures
The sample was recruited through posted advertisements 
in local publications and flyers in nonprofit organizations 
in Durham, North Carolina and the surrounding area. 
After a brief telephone interview to assess preliminary 
eligibility (e.g., no clear MRI contraindication), individu-
als completed a formal eligibility screening that assessed 
medical, psychiatric, and substance abuse histories. Par-
ticipants provided written informed consent prior to 
enrollment. A rapid HIV test (OraSure ADVANCE® 
HIV-1/2) was conducted as part of the screen; all partici-
pants in this analysis had a non-reactive result. Eligible 
participants then completed an MRI brain scan and addi-
tional assessments.

Screening measures
The screening visit included several structured clinical 
interviews. The Addiction Severity Index-Lite assessed 
functioning across multiple domains, including substance 
use, psychiatric status, and medical history [54]. The Mini 
International Neuropsychiatric Interview assessed DSM-
IV mood and psychotic disorders [55], while Module E of 
the Structured Clinical Interview for DSM-IV assessed 
substance use disorders [56]. An onsite urine toxicology 
screen was used to identify recent use of amphetamine, 
barbiturates, benzodiazepines, cannabis, cocaine, metha-
done, methamphetamine, opioids, and oxycodone. Prior 
to MRI scan, all participants of childbearing potential 
also had a urine pregnancy test to ensure MRI safety. The 

study team also reviewed medical records to verify the 
absence of any exclusionary substance abuse, psychiatric, 
or medical conditions.

Behavioral measures
Substance abuse
On the day of the MRI, participants had to have a blood 
alcohol level of 0.00. Timeline follow-back methodology 
was used to capture past 90-day use of cocaine and other 
substances [57]. Another urine toxicology screen was 
used to assess for presence of cocaine, cannabis, meth-
amphetamine, opioid, and benzodiazepine metabolites. 
Cocaine craving was measured a 3-item scale that utilizes 
a visual analog scale [58].

Delayed reward discounting
Participants completed the 36-item version of the Mon-
etary Choice Questionnaire (MCQ) [59, 60]. Participants 
are asked to choose between a series of smaller, immedi-
ate rewards ($7–80) and larger, delayed rewards ($7–80 
at delays of 1–186 days). The fixed set of items was pre-
sented in random order across participants. The task was 
programed using ePrime (Psychology Software Tools, 
Inc.; http://​www.​pstnet.​com). Standard scoring proce-
dures were used to compute k-values (MCQ scores), 
which ranged from 0.00016 to 4.00 [60]. Prior to analyses, 
the MCQ scores were natural log transformed.

MRI data acquisition and processing
The MRI data acquisition and processing protocols have 
been described in detail in a prior report [53]. All scans 
were conducted on a single 3T GE Discovery MR750 
scanner and an 8-channel head coil. In brief, high-reso-
lution T1-weighted (T1w) images were recorded using 
a spoiled echo sequence (1  mm3 voxels, 1  mm inter-
leaved slices). Diffusion-weighted images (DWI) were 
acquired in the axial plane using a diffusion sensitized 
parallel echo-planar sequence (2  mm3 voxel size, 2  mm 
interleaved slices), with 30 diffusion-encoding directions 
included in analyses. Finally, whole-brain blood oxygena-
tion level dependent (BOLD) images were collected while 
participants fixated on a crosshair using T2*-weighted 
echo-planar imaging (3.75 ×  3.75 ×  3.8  mm voxel size, 
3.8  mm interleaved slices), with 148 volumes included. 
All analyses included protocol as a covariate of no 
interest.

Pre-processing was primarily implemented in FMRIB 
Software Library (FSL) version 5.0.9 [61]. The T1w 
images were pre-processed using standard methods 
[62, 63], and then participant-level maps of GMV were 
created using voxel-based morphometry [64, 65]. The 
DWI data were denoised [66], motion and eddy-cor-
rected using DTIPrep [67], and then preprocessed using 

http://www.pstnet.com
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standard FSL tools [61]. FA was calculated within all 
white matter voxels. The rs-fMRI data were preproc-
essed and denoised using a standard pipeline in FSL [63, 
68, 69]. Regional homogeneity (ReHo), which assesses 
the similarity of the fMRI timeseries for each voxel to its 
3-dimensional 27-voxel neighborhood, was calculated 
using the AFNI tool 3dReHo [70]. ReHo, a voxel-based 
measure of neural activity, uses Kendall’s coefficient of 
concordance to identify functional clusters with synchro-
nized timeseries [71].

Multimodal data fusion
Images were re-sampled to 3 mm and spatially smoothed 
using a Gaussian kernel with a full width at half maxi-
mum of 6  mm. The three-dimensional images of each 
participant were reshaped into a 1-dimensional vector 
and stacked, forming a matrix ( Nparticipant ×Nvoxel ) for each modality. 
These matrices were normalized to have the same aver-
age sum-of-squares (computed across participants and 
voxels). Multivariate analysis of covariance (MANCOVA) 
was performed on the feature of each voxel to regress out 
the potential effects of age, gender, and protocol.

The preprocessed MRI features were fed into the 
MCCAR + jICA pipeline, a data-driven fusion method 
(Fusion ICA Toolbox; http://​trend​scent​er.​org/​softw​
are/​fit), as described previously [53]. MCQ scores were 
entered as the a priori reference measure, and analyses 
were conducted agnostic to group label. The MCCAR 
analysis resulted in canonical variants (CVs) that were 
most correlated across participants between modali-
ties. The joint ICA was then applied to the concatenated 
spatial maps of all CVs using the Infomax algorithm to 
retain modality linkage while maximizing the spatial 
independence of the components. Using the minimum 
description length criterion [72], 17 components were 
estimated with corresponding participant-wise loadings 
derived from each modality. We defined independent 

components (ICs) from the same index across all three 
modalities as joint ICs. Pearson correlations were used 
to examine the strength of the relationship between the 
component loadings and the MCQ score. MANOVA 
was used to compare the COC+ and COC− groups on 
the component loadings. The final joint ICs were selected 
based on both: (1) loadings that correlated significantly 
with the reference across all three modalities at p < 0.05, 
and (2) group differences between COC+ and COC− 
were significant at p < 0.05 in at least one modality. The 
brain regions contributing to the joint IC were identified 
using the Harvard–Oxford Atlas for GMV and ReHo and 
the IIT Human Brain Atlas for FA [73, 74]. In secondary 
analyses, Pearson correlations and independent samples 
t-tests were used to examine the strength of the rela-
tionship between the component loadings and cocaine-
related clinical measures.

Results
Participant characteristics
The sample of 35 COC + and 37 COC− participants was 
predominantly male (58%) and African–American (78%) 
with a mean age of 44.18 years (SD = 7.06) (Table 1). The 
groups were well matched on gender, race, and age, but 
COC + had significantly fewer years of education than 
COC−. Participants in both groups reported past month 
use of nicotine (50%), alcohol (69%), and marijuana 
(36%), but COC+ were significantly more likely to have 
used nicotine and alcohol.

Participants in the COC + group reported 
using cocaine regularly for longer than a decade 
(M = 17.43  years, SD = 8.43). They had used cocaine 
an average of 9.94  days (SD = 6.39) in the 30  days prior 
to the screening visit, and smoking was by far the most 
common primary route of administration (92%). On the 
day of the scan, the majority (79%) tested positive for 
cocaine on the urine toxicology screen and reported use 

Table 1  Sample characteristics by COC group

COC+ 
N = 35

COC−
N = 37

Statistic p-value

Demographics

 Age in years, M (SD) 45.40 (6.45) 43.03 (7.50) t(70) = 1.44 0.156

 Male gender, n (%) 21 (60%) 21 (57%) χ(1)2 = 0.08 0.780

 African-American race, n (%) 28 (80%) 28(76%) χ(1)2 = 0.20 0.659

 Education in years, M (SD) 12.54 (2.58) 13.97 (2.03) t(70) = 2.62 0.011

Other substance use in past 30 days

 Daily nicotine, n (%) 21 (60%) 12 (32%) χ(1)2 = 5.51 0.019

 Any alcohol, n (%) 30 (86%) 20 (54%) χ(1)2 = 8.50 0.004

 Any marijuana, n (%) 16 (46%) 10 (27%) χ(1)2 = 2.72 0.099

 Number of substances used, M (SD) 2.00 (0.77) 1.14 (1.06) t(70) = 3.95  < 0.001

http://trendscenter.org/software/fit
http://trendscenter.org/software/fit
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within the past 3 days (74%). The median number of days 
since last use was 2 (IQR = 1,4).

Performance on the monetary choice questionnaire
As expected, MCQ scores (natural log transformed) were 
significantly higher in the COC + group (M = −  2.46, 
SD = 1.19) compared to the COC− group (M = −  3.63, 
SD = 1.79; t(70) = 3.25, p = 0.002), indicating that they 
discount delayed rewards more steeply. In monetary 
terms, when considering a delayed reward of $50 in 
7 days, the average COC− participant was approximately 
indifferent when the immediate reward was $31, whereas 
the average COC + participant was approximately indif-
ferent when the immediate reward was $25.

Group‑discriminating joint components
One joint component (IC6) was correlated with MCQ 
score across all three modalities. The component load-
ings for each modality were negatively correlated with 
MCQ scores, indicating that higher loadings were associ-
ated with lower delay discounting. There were significant 
group differences in the component loadings of all three 
modalities [F (3,68) = 5.10, p = 0.003; Wilk’s Λ = 0.82], 
which were lower in COC+ compared to COC− 
(Table  2), meaning that the component was expressed 
less strongly in persons with CUD. Additional compo-
nents differed across groups, but did not meet the defini-
tion of a joint component.

Figure  1 displays representative spatial maps for IC6. 
This component was characterized by GMV in bilateral 
occipital regions (occipital fusiform, occipital pole, intra-
calcarine and supracalcarine cortices, and lingual gyrus), 
posterior cingulate cortex, precuneus, and left dorsolat-
eral prefrontal cortex, along with FA throughout bilat-
eral parietopontine, frontopontine, corticospinal, frontal 
aslant, parietal aslant, superior longitudinal fasciculus, 
corpus callosum, and arcuate fasciculus. These structural 
components correlated positively with ReHo in subcorti-
cal clusters including thalamus and dorsal striatum and 
negatively with bilateral frontal pole. Table 3 details the 
identified clusters.

Within the COC+ group, we examined the asso-
ciation between IC6 component loadings and cocaine-
related clinical factors. For each modality, there were no 

significant correlations for years of regular cocaine use, 
days of cocaine use in the past 90, and cocaine craving 
on the day of the MRI. There were also no significant dif-
ferences in the component loadings based on urine drug 
screen result for cocaine on the day of the MRI. While 
the use of nicotine, alcohol, and marijuana was prevalent 
in both groups, COC+ participants were more likely than 
COC− participants to be using these substances. The 
group differences in the component loadings remained 
significant when controlling for the number of substances 
used [F (3, 67) = 3.13, p = 0.031; Wilk’s Λ = 0.87], with 
COC + having lower scores for GMV [F (1, 69) = 4.14, 
p = 0.046], FA [F (1, 69) = 4.88, p = 0.030], and ReHo [F 
(1, 69) = 5.09, p = 0.027].

Discussion
The goal of the present study was to compare persons 
with and without CUD on multimodal neural patterns 
linked to the transdiagnostic index of delay discount-
ing. Unlike single modality analyses, multimodal fusion 
can reveal latent information that covaries across MRI 
modalities. Using MCCAR + jICA, we identified one 
joint component that correlated with delay discounting 
across all three modalities. These components included 
gray matter nodes involved in reward salience, executive 
control, and visual attention and white matter tracts con-
necting these relevant regions. This component was also 
group discriminating, such that the component scores 
were lower in persons with CUD compared to those 
without CUD. Our results support linkages between 
structural alterations and neuronal function in CUD that 
may have relevance for impulsive decision making.

The joint component included regions involved in 
reward valuation and visual processing. Specifically, it 
was characterized by positive neural activity in the thala-
mus and dorsal striatum, and negative neural activity in 
the frontopolar cortex. In non-clinical samples (75, 76), 
steeper discounting is associated with increased activity 
in the ventral and dorsal striatum, coupled with reduced 
activity in the medial prefrontal cortex [77]. The rostral 
portion of the medial prefrontal cortex is believed to rep-
resent delayed rewards [78, 79], while the nucleus accum-
bens is activated in response to positive subjective value 
[80]. Recent models of delay discounting suggest that 

Table 2  Group comparison on IC6 loadings

COC−
(N = 37)

COC+ 
(N = 35)

Statistic p-value

Gray matter volume, M (SD) 0.097 (0.016) 0.088 (0.013) F(1, 70) = 6.621 0.012

Fractional anisotropy, M (SD) 0.031 (0.016) 0.021 (0.013) F(1, 70) = 6.957 0.010

Regional homogeneity, M (SD) − 0.059 (0.015) − 0.069 (0.015) F(1, 70) = 9.356 0.003
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thalamic-cortical circuits are critical for supporting inter-
actions between multiple neural systems [24]. Thus, our 
identified neuroimaging components extend prior find-
ings from multiple unimodal studies by demonstrating 
linkages between brain function and structure in relation 
to delay discounting.

Furthermore, we found that neural activation pat-
terns were linked to GMV broadly throughout primary 
and extra-striate networks and association areas, essen-
tial parts of the visual attention network [81], suggest-
ing that visual processing has its role in reward [82]. It 
may be that aberrant visual processing in CUD contrib-
utes to dysfunctional attentional processing of compet-
ing rewards. Specifically, we found that GMV reductions 
in visual cortex were significantly correlated with higher 
discounting. This is consistent with a recent analysis from 
the Human Connectome Project that found higher dis-
counting to be associated with reduced surface area and 
volume across multiple cortical regions, including bilat-
eral lingual gyrus [28]. Furthermore, this component 

indicated linkage between GMV and white matter integ-
rity in the splenium of the corpus callosum, parietopon-
tine, frontopontine, and frontal aslant tracts. Alterations 
in white matter integrity may disrupt the processing 
of competing options, resulting in higher discounting 
of delayed rewards. In sum, our results support the rel-
evance of the visual cortex, likely mediated by attentional 
processing, to delay discounting.

A key finding of our study is that persons with CUD 
had lower component loadings for all three modali-
ties in the joint component related to delay discounting. 
This suggests that CUD is associated with hyperactivity 
in the thalamus and dorsal striatum but hypoactivity in 
the prefrontal cortex, as well as altered morphology in 
linked gray matter regions and white matter tracts. Prior 
studies conducted across different addictions support the 
relevance of frontal-striatal circuitry to delay discount-
ing, with higher delay discounting being associated with 
activation in the thalamus and midbrain regions and 
deactivation in the frontopolar cortex [49, 83]. While 

Fig. 1   Multimodal group-discriminating IC6. For each modality, spatial maps are shown at a threshold of |Z| ≥ 2.5. For gray matter volume (GMV) 
and fractional anisotropy (FA), the component loadings are positive. Positive Z-values (red regions) means that COC− have higher GMV and FA 
compared to COC+. For regional homogeneity (ReHo), the components loadings are negative. Positive Z-values (red regions) means that COC− 
have lower connectivity compared to COC+, while negative Z-values (blue regions) means that COC− have higher values compared to COC+. The 
scatter plots on the right show the relationship of the component loadings to delay discounting
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alterations in gray and white matter structure are consist-
ently observed in persons with CUD [30, 32, 36], there 
has been insufficient research to draw conclusions about 
how these morphological differences relate to delay dis-
counting [49]. The current study suggests that alterations 
in attentional networks, coupled with reduced integrity 
in linked white matter tracts, may contribute to the exag-
gerated discounting often observed in persons with CUD 
and other addictions.

While the multimodal component associated with 
delay discounting was expressed more weakly in per-
sons with CUD compared to controls, the component 
loadings were unrelated to cocaine-related variables. 
The CUD group was characterized by chronic cocaine 
use, with a mean of 17 years of regular use, and all par-
ticipants met criteria for cocaine dependence. Moreo-
ver, the sample was defined by current cocaine use, with 
a relatively high frequency of use in the past month and 
most having used within 3  days of the MRI scan. The 
low variability in cocaine characteristics likely limited 
our ability to identify correlations with the identified 
component. A larger and more heterogeneous sample 
is needed to determine the extent to which CUD sever-
ity and cumulative cocaine exposure may drive reduc-
tions in multimodal brain systems, and longitudinal 

designs are needed to verify the temporal relationship 
of cocaine use to structural and functional changes in 
the brain related to delay discounting.

Despite the innovative analytic approach and insight-
ful results, there are several limitations to highlight. 
First, while we selected MRI features that reflect com-
plementary views of brain structure and function, dif-
ferent imaging techniques may provide additional 
perspectives. Future studies might consider the inclu-
sion of alternative features, such as functional network 
connectivity and task-evoked neural activation. Second, 
ReHo characterizes the local functional connectivity 
between a given voxel and its nearest neighbors, which 
is one possible index for describing the importance of a 
voxel in a network [84]. While ReHo features tend to be 
more tractable for interpreting linkage, future studies 
should examine the contribution of long distance con-
nectivity to delay discounting. Third, our analyses iden-
tified only one multimodal component that correlated 
with delay discounting that differed between groups. 
It is common for MCCAR + jICA to reveal just one or 
two components relevant to the construct of interest 
because MCCAR is optimized to achieve a single com-
ponent that is most correlated with the reference meas-
ure. Finally, given the modest sample size, replication 

Table 3  Regions in joint IC6 at Z ≥|2.5|

a Indicates regions at max

Anatomical region(s) in cluster MNI coordinates at max 
(x, y, z)

Number of voxels Max z-score

Gray matter volume

 Positive

  B. occipital fusiform gyrusa, lingual gyrus, occipital pole 27, − 78, − 15 277 4.49

  L. middle frontal gyrusa − 36, 18, 33 31 4.37

  R. precuneusa, intracalcarine and supracalcarine cortices, lingual gyrus 18, − 57, 6 87 4.32

  L. precuneusa, intracalcarine and supracalcarine cortices, lingual gyrus − 15, − 60, 9 97 3.92

  B. precuneusa, posterior cingulate cortex 9, − 51, 33 146 3.86

Fractional anisotropy

 Positive

  R. parietopontinea, frontopontine, corticospinal, frontal aslant, arcuate fasciculus, 
corpus callosum (body and splenium), superior longitudinal fasciculus

24, − 21, 21 247 4.70

  L. frontopontinea, parietopontine, corticospinal, frontal aslant, arcuate fasciculus, 
corpus callosum (body and splenium), superior longitudinal fasciculus

− 24, − 24, 21 142 4.66

  L. frontopontinea, parietopontine, corticospinal, frontal aslant − 18, − 24, 60 84 3.61

Regional homogeneity

 Positive

  B. thalamusa, caudate, putamen 0, 0, 3 478 3.61

  R. inferior lateral occipital cortexa, occipital pole 42, − 90, − 9 62 3.19

Negative

  R. superior lateral occipital cortexa 18, − 72, 54 35 3.27

  B. frontal polea − 3, 66, 0 120 3.04



Page 8 of 10Meade et al. BMC Neurosci           (2021) 22:51 

results with an independent dataset is needed to 
strengthen the interpretability of our findings.

In summary, we applied supervised data fusion to 
reveal linked structural and functional neural patterns 
related to delay discounting that distinguished persons 
with and without CUD. While other methodologies 
rely on a direct morphologic connection to link brain 
regions, multimodal fusion is capable of identifying 
linked alterations in spatially distinct brain regions, 
which is a major strength of this approach. Building 
upon unimodal MRI studies, our results reaffirm that 
delay discounting is a complex cognitive process that 
involves interactions among multiple structural and 
functional networks [49]. Importantly, we found that 
persons with CUD had lower component scores across 
modalities, suggesting that alterations in functional 
networks, cortical and subcortical regions, and con-
necting white matter tracts contribute to the exagger-
ated discounting that is characteristic of addiction and 
other psychiatric disorders. This innovative multimodal 
fusion analysis has the potential to uncover biomarkers 
of CUD, and an exciting future direction is to incorpo-
rate longitudinal multimodal imaging and clinical data 
into the fusion model. By expanding the toolkits avail-
able for CUD research, it may be possible to develop 
biomarkers capable of diagnostic performance.
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