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Abstract

Background: Randomised controlled trials in reproductive medicine are often subject to outcome truncation,
where the study outcomes are only defined in a subset of the randomised cohort. Examples include birthweight
(measurable only in the subgroup of participants who give birth) and miscarriage (which can only occur in
participants who become pregnant). These outcomes are typically analysed by making a comparison between
treatment arms within the subgroup (for example, comparing birthweights in the subgroup who gave birth or
miscarriages in the subgroup who became pregnant). However, this approach does not represent a randomised
comparison when treatment influences the probability of being observed (i.e. survival). The practical implications of
this for the design and interpretation of reproductive trials are unclear however.

Methods: We developed a simulation platform to investigate the implications of outcome truncation for
reproductive medicine trials. We used this to perform a simulation study, in which we considered the bias, type 1
error, coverage, and precision of standard statistical analyses for truncated continuous and binary outcomes.
Simulation settings were informed by published assisted reproduction trials.

Results: Increasing treatment effect on the intermediate variable, strength of confounding between the
intermediate and outcome variables, and the presence of an interaction between treatment and confounder were
found to adversely affect performance. However, within parameter ranges we would consider to be more realistic,
the adverse effects were generally not drastic. For binary outcomes, the study highlighted that outcome truncation
could cause separation in smaller studies, where none or all of the participants in a study arm experience the
outcome event. This was found to have severe consequences for inferences.

Conclusion: We have provided a simulation platform that can be used by researchers in the design and
interpretation of reproductive medicine trials subject to outcome truncation and have used this to conduct a
simulation study. The study highlights several key factors which trialists in the field should consider carefully to
protect against erroneous inferences. Standard analyses of truncated binary outcomes in small studies may be
highly biassed, and it remains to identify suitable approaches for analysing data in this context.
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Background
Outcome data are usually unavailable for some partici-
pants in a randomised controlled trial (RCT). Most fre-
quently, this is due to the loss to follow-up or patient
withdrawal from the study. However, in many repro-
ductive medicine trials, the availability of a participant’s
outcome data depends on their status in relation to an
intermediate response variable. For example, trials of
assisted reproductive technologies (ART) are generally
conducted in individuals trying to become pregnant and
have babies. In these trials, pregnancy outcomes such as
miscarriage (occurring only in the subset of women who
become pregnant) and infant outcomes such as birth-
weight (measurable only in participants who have births)
are often of interest. These outcomes cannot be col-
lected in all participants, even if there is no loss to
follow-up, as they are not observable for everyone in the
cohort. This phenomenon has been described as ‘trunca-
tion (or censoring) due to death’ [1], because it often
arises in studies where mortality precludes measurement
of the outcome variable [2]. However, since this form of
missing data also occurs in populations where mortality
is not a material concern, we use the more general term
‘outcome truncation’.
In reproductive medicine trials, outcome data subject

to truncation are frequently analysed by comparing
study arms in the subset of participants who were not
truncated. This is typically done by calculating standard
measures of treatment effect (such as an unadjusted
mean difference or odds ratio) and performing standard
statistical tests (such as a t-test or chi-squared test).
These approaches would be valid if the treatment had
no effect on the intermediate (censoring) variable.
Otherwise, various authors have pointed out that stand-
ard analyses of truncated outcome data are subject to a
form of selection bias, whereby selecting on intermediate
outcomes breaks randomisation and therefore biases
treatment effect estimates [2–7]. Figure 1 shows the con-
ditions under which selection bias due to outcome trun-
cation will, in principle, arise. Outcome truncation also
reduces the sample size compared to the entire rando-
mised cohort, which is anticipated to impact the preci-
sion of the effect estimate [4, 8]. Such loss in precision
would need to be accounted for during the study design
stage to ensure adequately powered studies are pursued.
Some authors have nonetheless argued that a compari-

son of outcomes in the observable study participants is
the correct analysis, since this captures the effect in the
only group of relevance—those who are at risk [9]. This
argument misses that, to the extent that the observed
difference is caused by selection-induced confounding
rather than by a causal effect of treatment, the transport-
ability [10] of the estimate will be restricted to popula-
tions with the same distribution of confounders. As a

result, there is a concern that the standard approaches
for analysing truncated outcomes might be misleading.
Crucially, important findings in reproductive medicine
hinge on analyses of this sort. For example, a recent
RCT found that the choice of embryo culture medium
used in IVF affected the birthweight of babies born from
the treatment [11]. However, if the culture media affect
conception or miscarriage rates differently, then the
mean observed birthweights correspond to two different
populations which may differ with respect to exposures
such as smoking. This might be problematic when ap-
plying these trial findings to other populations for which
this selection does not exist or differs—e.g. if an adjuvant
therapy improves conception rates for all subjects, ob-
served differences between media might no longer be
applicable. Further examples can be found in systematic
reviews published in Cochrane Gynaecology and Fertil-
ity, which sometimes report miscarriage rates for trials
in which individuals were randomised prior to concep-
tion, using the number of women who became pregnant
as the denominator [12–14].
Outcome truncation due to pregnancy loss has been

studied in the context of harmful exposures in preg-
nancy and long-term outcomes of children, using simu-
lation [3, 8] and heuristic argument [15]. The impact on
the study of congenital abnormalities has also recently
been considered, using analysis of observational data
[16]. Although these examples are informative, they are
tailored to the investigation of epidemiological questions,
and the scenarios they describe are likely to be less rele-
vant for trialists working in ART, since various key pa-
rameters (magnitude of intervention effects, event rates,
strength of confounding) materially differ in the latter
compared to the former context. Moreover, while the
relevance of treatment-confounder interactions to out-
come truncation has been described [15], their import-
ance has not been empirically evaluated in existing
simulation studies. As a result, it is not currently clear
whether outcome truncation substantively affects the
findings of ART RCTs or their clinical interpretations. A
greater understanding of the consequences of outcome
truncation would assist in the design of ART RCTs and
the reinterpretation of published trials where outcomes
were compared in the uncensored subgroup. Addition-
ally, a characterisation of outcome truncation would be
useful for researchers developing analytic methods in
this area.
To address this need, we developed a simulation plat-

form in R which reproductive medicine trialists can use
to inform study design and interpretation in the pres-
ence of outcome truncation. We used this platform to
investigate the impact of outcome truncation on typical
statistical analyses used in assisted reproduction RCTs.
We investigated both continuous (e.g. birthweight) and
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binary (e.g. miscarriage) outcomes subject to truncation,
using plausible ranges of parameter values informed by
published ART studies.

Methods
Simulation study
We developed a simulation platform in R to investigate
outcome truncation in two-arm trials where treatment is
administered on a single occasion (as opposed to an on-
going regimen), an intervening selection event occurs
(e.g. conception or live birth), and the study outcome is
measured at a single point in time. This reflects the situ-
ation found in many reproductive medicine trials. We
then used this to conduct a simulation study. The pri-
mary aim of this study was to characterise outcome
truncation in relation to bias, coverage, and type 1 error
of standard analyses, in realistic scenarios corresponding
to ART RCTs. Code to reproduce the study, or conduct
novel investigations of outcome truncation, is available
at https://osf.io/gzqbr/.
We evaluated both a binary and a continuous outcome

and, in the core study, considered two sets of simula-
tions for each. In set 1, we considered a simple, additive
data-generating process, without interaction terms (as
depicted in Fig. 1). In set 2, we considered the impact of
including an interaction between the treatment effect on
the intermediate and an unmeasured confounder in the

data generating process. Parameter values were informed
by several ART RCTs [11, 17] and a recent review of
power, precision, and sample size in reproductive medi-
cine studies [18]. Table 1 summarises the simulation
parameters.

Set 1
Simulation of intermediate response
For both continuous and binary outcomes, let i = 1,…, n
index the ith participant with treatment allocation Ri = 1
(treatment) or 0 (control) and intermediate response
variable Si = 0 or 1. We simulated trials with n partici-
pants, with n taking the values of 100, 200, 500, and
1000, divided equally between two study arms. Each pa-
tient’s probability of having a positive intermediate re-
sponse was simulated using a logistic model, log(πi/(1 −
πi)) = log(0.2) + αRRi + αUui, and the response was then
drawn from a Bernoulli(πi) distribution. The intercept
value was selected to correspond to a control group
event rate of 17%, which represents a typical live birth
rate in an IVF RCT with an unselected population. The
treatment effect on the intermediate response variable
took values ranging from no effect (exp(αR) = 1) to very
large (exp(αR) = 2), with the odds ratio (OR) increasing
in increments of 0.05. Based on recent work which
looked at the estimated effect sizes in reproductive
medicine meta-analyses [18], we would consider odds

Fig. 1 Causal diagram showing conditions that will result in survival bias in an RCT. R = treatment, S = binary intermediate response (e.g.
pregnancy, live birth), U = uncontrolled or unmeasured baseline variables, and Y = study outcome. Arrows depict causal relationships. For
parsimony of presentation, we label the paths with the corresponding parameters from the data generating model used in a simulation study. A
box drawn around S = 1 indicates that we are conditioning on the intermediate variable: the analysis set includes only participants with S = 1.
Bias will occur whenever αR, αU, and βU are all nonzero
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ratios larger than 1.2 to be reasonably exceptional. How-
ever, we included values larger than this in the simula-
tion study in order to characterise the phenomenon
further up to a value of exp(αR) = 5, corresponding to an
implausibly high (in a trial context) effect of treatment
on conception or survival probability. This extreme set-
ting was included to provide intuition regarding a plaus-
ible upper bound to problems caused by outcome
truncation. In particular, we reasoned that if the impact
was negligible even in such an extreme scenario, then
this would provide some reassurance in relation to real
studies.
The patient-specific variable ui represents the prog-

nostic baseline characteristics influencing both the inter-
mediate response variable and the study outcome
variable Yi and was drawn from a normal (0,1) distribu-
tion. We set exp(αU) equal to 0.8, such that higher
values of the prognostic index resulted in reduced prob-
ability of the intermediate response and therefore re-
duced probability of having the outcome observed.
In this context, the magnitude of the effect on the

intermediate response variable determines the size and
degree of size imbalance of the uncensored cohort, and
this was anticipated to affect the performance of stand-
ard analyses. We purposefully did not correct this since
this is part of the phenomenon under study.

Continuous outcomes
For the study of continuous outcomes, we simulated Yi

from a normal (μi, 580
2) distribution, with μi = 3300 +

βRRi + βUui. The values for the standard deviation (SD)
and intercept were based on the point estimates for the
SD and the mean for birthweight (in grammes) in a re-
cent trial of embryo culture media [10]. We set βU to −
116, corresponding to − 0.2 standard deviations in the
outcome. This represents lower outcome values (e.g. re-
duced birthweight) for participants with higher values of
the confounder ui. The coefficient βR corresponds to the
effect of treatment allocation on the outcome, excluding
any selection effects arising due to a treatment effect on
the intermediate response. We considered values for βR
ranging from 0 to 2 SDs in increments of 0.1 SDs, with
an additional setting of 5 SDs representing an extreme
test case. The outcome measurements for the uncen-
sored cohort were then selected by excluding partici-
pants who had Si = 0.

Binary outcomes
For the study of binary outcomes, we simulated pi =
Pr(Yi = 1) using a logistic model, log(pi/(1 − pi)) =
log(0.1) + βRRi + βuui, and then drew Yi from a Bernoul-
li(pi) distribution. We set exp(βu) = 1.2, so that a higher
value of the confounder ui corresponded to an increased
chance of having the outcome. Recall that we set in-
creasing values of the prognostic index to result in a
lower probability of the intermediate response occur-
ring—this scenario was chosen to reflect the case where
the intermediate response is pregnancy, and the out-
come is an adverse pregnancy outcome, such as miscar-
riage. There may be patient characteristics which make

Table 1 Summary of parameter values used in the core simulation study

Parameter description Notation Values

Total number of randomised participants n 100, 200, 500, 1000

Set 1

Generation of intermediate variable

Intercept (log(odds) of the event in the control group) loge(0.2)

Treatment effect on the intermediate variable αR loge(1, 1.05, 1.1,…2, 5)

Effect of unmeasured confounding on intermediate variable αu loge(0.8)

Generation of outcome variable—continuous outcome study

Intercept (control group mean) 3300

Treatment effect on the outcome βR 0, 0.1, 0.2,…,2,5 SDs

Effect of unmeasured confounding on the outcome variable βu − 0.2 SDs

Generation of outcome variable—binary outcome study

Intercept (log(odds) of the event in the control group) loge(0.1)

Treatment effect on the outcome βR loge(1, 1.05, 1.1,…2, 5)

Effect of unmeasured confounding on the outcome variable βu loge(1.2)

Set 2 (differences from set 1)

Generation of intermediate variable

Interaction between treatment and unmeasured confounding αRU loge(0.8)
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pregnancy less likely, while also reducing the chance that
the pregnancy will be carried to term (meaning that mis-
carriage occurs). The intercept corresponds to an event
rate of 9%. The treatment effect βR took values ranging
from no effect (exp(βR) = 1) to very large (exp(βR) = 2),
increasing in increments of 0.05 on the OR scale. A
value of 5 was included as a test case. Once again, the
outcome measurements for the uncensored cohort were
then selected by excluding participants who had Si = 0.

Set 2
Set 2 was as for set 1, but with an interaction term αRU
between treatment and ui in the data generating model
for the intermediate variable. For both the continuous
and binary outcome studies, we simulated Si from a Ber-
noulli(πi) distribution with log(πi/(1 − πi)) = log(0.2) +
αRRi + αUui + αRURiui, with exp(αRU) = 0.8.
The simulations were computationally cheap, allowing

us to simulate and analyse a relatively large number of
datasets corresponding to each tested scenario. The
number of iterations per scenario was set to 10,000. Sim-
ulations were conducted in R [19], and ggplot2 [20],
ggpubr [21], and ggthemes [22] were used for visualisa-
tion. Random seeds were obtained from random.org.

Sensitivity analyses
We conducted a number of sensitivity analyses, each
of which involved making a uniform change to both
sets 1 and 2. These explored the impact of (A) increas-
ing the strength of confounding between the inter-
mediate and outcome variables, (B) changing the
direction of the treatment effect on the intermediate
variable, and (C) increasing event rates for the inter-
mediate and binary outcome. In (A), we increased the
strength of the effect of the confounder ui on the
intermediate variable to αu = log(0.5). We increased
the effect of the confounder on the continuous out-
come to βU = −1SD and the effect of the confounder
on the binary outcome to be βU = log(1.5). In (B), we
considered αR = 1/loge(1, 1.05, 1.1,…2, 5). This was
done to check that different influences were not oper-
ating in opposing directions, cancelling each other
out, and obfuscating performance issues. In (C), we in-
creased the intercepts in the intermediate and binary
outcome submodels to be log [1], corresponding to a
substantially elevated event rate of 50%.

Estimand
In this context, several estimands could be consid-
ered. We compared estimates to βR, representing the
effect of treatment on the outcome variable, in the
hypothetical case where no censoring would occur (a
hypothetical estimand, in the terminology of recent
guidance on estimands in clinical trials) [23]. We

selected this because this corresponds to a common
interpretation given to analyses in this context. For
example, in a recent trial investigating embryo culture
media, a relative decrease in birthweight associated
with one medium was interpreted as demonstrating a
physiological effect on the embryo and foetus [11], ra-
ther than support for the hypothesis that any increase
in live birth rate might be associated with worse peri-
natal outcomes due to selection effects. We explore
this point in more detail in the discussion.

Analysis methods
In the continuous outcome study, we evaluated the dif-
ference in the means and associated standard inferential
methods (two-sample equal variance t-test and 95% con-
fidence intervals based on the t distribution). In the bin-
ary outcome study, we evaluated the sample odds ratio
and 95% confidence interval based on the profile likeli-
hood following a logistic regression fit [24]. We also
evaluated three statistical tests: a chi-squared test, an ad-
justed ‘N−1’ chi-squared test [25], and Fisher’s exact test.
The adjusted chi-squared test involves multiplying the
test statistic by (N−1)/N, with N the overall sample size
(in this case, the total sample size in the subgroup with
outcome data available for analysis) and has been sug-
gested to perform well in small samples [26].

Performance measures
In the continuous outcome study, we evaluated bias,
coverage, type 1 error, model standard error (SE), and em-
pirical SE [27] for the unadjusted difference in the means.
In the binary outcome study, we evaluated bias of the
log(OR), model SE, empirical SE, and coverage. We also
calculated the type 1 error of the chi-squared test, adjusted
chi-squared test, and Fisher’s exact test. For binary out-
comes, we removed separated instances (those where no
participants in a treatment arm experienced the outcome
event) before calculating the performance measure, includ-
ing these in the total counts of instances of missing data.

Results
A summary of the simulation results is presented in
Table 2.

Continuous outcome study
Missing data due to the inability to compute estimates
from simulated datasets did not prove to be a material
problem in the continuous outcome study as the greatest
amount of missing data in any scenario was 0.05%.

Bias
In the core scenarios, bias was present but very small
when there was no interaction between treatment and
the intermediate variable (set 1, Fig. 2). In set 1, bias
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Table 2 Summary of simulation results

Measure Continuous outcomes Binary outcomes

Inability to
perform
analysis

Rarely occurs for the estimation of the unadjusted mean
difference or for conducting a t-test, even for trials including as
few as 100 participants.

Estimation of odds ratio and calculation of the chi-squared test are
frequently prohibited at small sample sizes due to zero events in
at least one arm, unless incidence of intermediate response is
high.

Bias Not materially impacted by sample size, nor by the size of the
treatment effect on outcome.
Bias increases with strength of unmeasured confounding between
intermediate and outcome, although not substantial for typical
treatment effects on the intermediate response variable, unless
there is an interaction between this effect and confounding
variables.
Bias is reduced when the incidence of the intermediate response
variable increases.

Substantial impact on bias for small trial sizes, unless incidence of
intermediate response is high. Impacted by the size of treatment
effect on the outcome.
At larger sample sizes, bias is impacted by the magnitude of
confounding between intermediate and outcome but is not
substantial.

Coverage Close to the nominal level, unless there is strong confounding
between the intermediate and outcome variables, in which case
coverage may be related to treatment effects on the intermediate,
particularly for larger sample sizes.

Coverage is generally too high for smaller sample sizes due to
missing data (model SE exceeds empirical SE of the computable
estimates), unless incidence of intermediate response variable is
high.

Type 1 error Notably affected when there is an interaction between treatment
effect on the intermediate response variable and confounding
variables, for large sample size.
Affected when confounding between intermediate response
variable and confounding is strong, particularly for larger
treatment effects on the intermediate.

Chi-squared tests perform poorly at smaller trial sizes but are close
to a nominal level for larger trial sizes. Fisher’s test performs
consistently poorly.

Fig. 2 Bias of a simple difference in the means in the continuous outcome simulation study (core scenarios), in standard deviations of the
outcome. Colour indicates treatment effect on the outcome variable (SDs): red = 0, green = 0.2, blue = 1, and purple = 5
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increased as the treatment effect on the intermediate
variable increased, but remained negligible even when
this effect became implausibly large; Fig. 2 shows this for
an OR as large as 2, but in an extreme test case (OR =
5), the bias still did not exceed − 0.02SDs. In set 2 by
contrast, which included an interaction between treat-
ment and the unmeasured confounder in the generation
of the intermediate variable, bias can be seen to decrease
with increasing treatment effect on the intermediate up
to an OR of 2 and was very close to zero for an OR of 5.
Neither sample size (columns in Fig. 2) nor the magni-
tude of the effect of treatment on the outcome (colours
in Fig. 2) influenced bias.
Sensitivity analysis A however demonstrated that in-

creasing confounding between the intermediate and the
outcome variable modified the impact of the treatment
effect on the intermediate variable (slopes steeper in
Additional File 1, S Figure 1 compared to Figure 2), such
that even in the absence of interactions (set 1), notice-
able bias could arise for larger values of the OR. The bias
was still reasonably modest for these larger OR values in

set 1, however (below 0.1 SDs), and small for more real-
istic values of the parameter (below 0.05 SDs for OR <
1.2). In the presence of an interaction (set 2), bias was
substantial for these realistic OR values however.
Changing the direction of the treatment effect on the

intermediate in sensitivity analysis B showed that nega-
tive ORs did not result in qualitative changes to the rela-
tionship with bias (Additional File 1, S Figure 2).
Increasing the incidence of the intermediate variable in
sensitivity analysis C reduced bias for the set with an
interaction (set 2), since this meant that a reduced pro-
portion of the cohort was subject to outcome truncation
(Additional File 1, S Figure 3).

Coverage
Figure 3 shows that coverage was essentially at the nom-
inal level in both core scenarios. This remained true in
sensitivity analysis B, where the sign of the treatment ef-
fect on the intermediate was changed (Additional File 1,
S Figure 5), in sensitivity analysis C, where the incidence
of intermediate events was increased (Additional File 1,

Fig. 3 Coverage of a 95% confidence interval corresponding to a simple difference in the means in the continuous outcome simulation study
(core scenarios). Colour indicates treatment effect on the outcome variable (SDs): red = 0, green = 0.2, blue = 1, and purple = 5
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S Figure 6), and for set 1 in sensitivity analysis A, where
confounding was increased (Additional File 1, S Figure
4). However, in the increased confounding scenario,
coverage was reduced for set 2 with increasing sample
size, and this was modified by the size of the treatment
effect on the intermediate.

Type 1 error
In core scenarios, type 1 error was not adversely af-
fected in set 1 but was noticeably increased with an
interaction present (set 2) and a large sample size
(Fig. 4). In sensitivity analysis A, with increased con-
founding, type 1 error was inflated as treatment ef-
fect on the intermediate increased in the no
interaction set [1] but remained close to the nominal
value for lower, more plausible values (Additional
File 1, S Figure 7). By contrast, in set 2 (interaction
between treatment and ui), type 1 error was in-
creased when the treatment effect on the intermedi-
ate was absent or small. The inflation increased with
sample size, almost doubling for n = 1000. Sensitiv-
ity analyses B and C showed that neither changing
the sign of the effect on the intermediate nor in-
creasing the event rate substantially altered the re-
sults compared to the core simulations—type 1 error
remained at the nominal level in set 1 and became
elevated at larger sample sizes in set 2 (Additional
File 1, S Figures 8 and 9).

Empirical and model SE
Additional File 1, S Figures 10 to 17 show empirical and
model SEs in the core and all sensitivity scenarios. Em-
pirical and model SEs were similar (to each other) in any
given scenario. SE decreased with increasing treatment
effect on the intermediate variable, since this corre-
sponded to more participants in the analysis subgroup
overall (in the treatment arm). The impact of increasing
treatment effect on precision was least when the inter-
mediate event rate was increased (Additional File 1, S
Figures 13 and 17).

Binary outcome study
For smaller sample sizes (n = 100, 200), there were sub-
stantial amounts of missing data arising due to iterations
where the treatment effect was inestimable (OR), be-
cause the tested scenarios frequently result in small
numbers of participants with truncated outcome data,
and so there are frequently zero outcome events in at
least one arm (Additional File 1, S Figure 18). Clearly,
the proportion of missing data depends on the size of
the treatment effect (and so is informative), which im-
mediately suggests that the routine analysis of truncated
endpoints in smaller (really, typical) trials might be
problematic. The only sensitivity analysis for which this
differed was C, which increased event rates, such that it
was rare for no events to occur (Additional File 1, S
Figures 19-21).

Fig. 4 Type 1 error of a t-test in the continuous outcome simulation study at a 5% significance level (core scenarios). Colour indicates the total
starting sample size in each simulated trial (light green = 100, orange = 200, dark green = 500, pink = 1000). The horizontal line indicates the
nominal level
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The amount of missing data caused by an inability to
calculate a test statistic was much lower than the
amount caused by the inability to estimate a treatment
effect (excepting sensitivity analysis C) but remained
very high (in the region of 20%) for small sample sizes
and modest/realistic treatment effects and was clearly re-
lated to the magnitude of the treatment effect on out-
come (Additional File 1, S Figures 22-25).

Bias
Bias, expressed as a ROR, fell below 1, substantially so
for most of the tested treatment effect sizes, for sample
sizes of 100 and 200 in both sets (Fig. 5). As noted
above, the smaller sample sizes were subject to inform-
ative missing data, offering one explanation for the dif-
ference between the smaller and larger trials, for which
the bias was much smaller, and in the opposite direc-
tion (ratios in the region of 1 to 1.05, or in the region
of 1.08 when looking at the implausibly large treatment
effect on the outcome, OR = 5). A comparison of the
first two columns between Additional File 1, S Figure
18 and Figure 5 actually show that missingness is nega-
tively correlated with the size of the bias (the scenarios
with less missing data have a ratio further from unity).
However, sensitivity analysis B, where the effect of the
treatment on the intermediate is reversed, shows that

this is due to the fact that the influence of missing data
(causing overestimation of the odds ratio) and of the
treatment effect on the intermediate (causing underesti-
mation of the odds ratio) act in opposite directions in
the core scenarios (Additional File 1, S Figure 27).
Moreover, increasing the event rate, thereby eliminat-
ing the missing data issue (sensitivity analysis C) essen-
tially removed the problem (Additional File 1, S Figure
28). For trial sizes of 500 and 1000, increasing the treat-
ment effect on the intermediate variable to an extreme
value (OR of 5) did result in substantial bias even in the
absence of interactions; ratios around 1.35 and 1.2 were
observed for sample sizes of 500 and 1000, respectively.
Increasing confounding in sensitivity analysis A modi-
fied the relationship between treatment effect on the
intermediate variable and bias for the larger sample
sizes (steeper slope in Additional File 1, S Figure 26
compared to Figure 5), although the bias remained
modest for plausible parameter values.

Coverage and SE
The coverage level was too high at all effect sizes for
smaller trials (Fig. 6). This was at least partially attribut-
able to missing data; the model SE was greater than the
empirical SE of the computable estimates in the pres-
ence of missing data (Additional File 1, S Figures 32 and

Fig. 5 Bias expressed as ratio of estimated to true odds ratio (ROR) in the binary outcome study (core scenarios). Colour indicates treatment
effect on the outcome (ORs) (purple = 1, blue = 1.2, dark pink = 2, light pink = 5)
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36). This was true in sensitivity analyses A and B (Add-
itional File 1, S Figures 29 and 30), but not C where
rates of missingness were minimised due to an increased
event rate. For larger trial sizes, estimated coverage
levels were generally close to, if not identical to, the
nominal level, although discrepancies of several percent-
age points were apparent for large negative treatment ef-
fects on the intermediate (sensitivity analysis B,
Additional File 1, S Figure 30).

Type 1 error of statistical tests
The rejection rate of both chi-squared tests were essen-
tially equivalent, and Fisher’s test performed consistently
poorly. For trial sizes of 100 and 200, both subject to
substantial amounts of missing data, type 1 error fell
below the nominal level for all three methods (Fig. 7).
The chi-squared tests achieved the nominal level for lar-
ger sample sizes in both sets, however, regardless of the
size of treatment effect on the intermediate variable.
Increasing confounding (sensitivity analysis A) and

changing sign of the treatment effect on the

intermediate (sensitivity analysis B) did not change
things—appropriate type 1 error was observed for the
chi-squared tests for larger trial sizes, but not for smaller
trial sizes (Additional File 1, S Figures 40 and 41). In-
creasing the event rate (sensitivity analysis C) resulted in
appropriate type 1 error rates for chi-squared tests at all
trial sizes and an improvement in the performance of
Fisher’s test (Additional File 1, S Figure 42) suggesting
that issues in the performance of the methods are pri-
marily linked to informative missingness of calculated
test statistics.

Discussion
In the present study, we have created a simulation plat-
form for studying the effects of outcome truncation in
reproductive medicine trials. Using this platform, we
present here a simulation study to characterise the
phenomenon in scenarios resembling ART RCTs, al-
though we believe the platform may also be of use for
reproductive medicine trials beyond infertility, with simi-
lar structure (for example, the study of the effect of iron

Fig. 6 Coverage of 95% confidence interval obtained using logistic regression in the binary outcome study (core scenarios). Colour indicates
treatment effect on the outcome (ORs) (purple = 1, blue = 1.2, dark pink = 2, light pink = 5)
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supplementation prior to pregnancy on perinatal out-
comes [28], where treatment precedes the intermediate
variable and outcomes are truncated).
We aimed to quantify the magnitude of the problems

introduced by outcome truncation in practice, by using
both comparative effectiveness and meta-epidemiological
research in reproductive medicine to inform the simula-
tion parameters. Our findings in this regard are therefore
contingent upon the representativeness of the parameter
values [29], and so we begin our discussion by briefly
reviewing the motivations for the tested values and our
confidence in these selections.
We opted to consider treatment effects on both the inter-

mediate variable and the outcome variable that ranged from
no effect up to implausibly large (an OR of 5 or difference
in means of 5 SDs), in order to cover all bases with respect
to these parameters. We note that we probably expect typ-
ical effects on the intermediate variable (for example, clin-
ical pregnancy or live birth) to be less than ~ 1.2 when
expressed as an OR. Typical treatment effects on live birth
in Cochrane meta-analyses of infertility therapies were in

the region of a few percentage points in a recent review
[18], with larger estimates tending to arise from meta-
analyses containing fewer study participants (generally
representing less precise estimates). Moreover, these effect
estimates are expected to be inflated to an unknown
degree by publication bias. These considerations sug-
gest that modest effects on the intermediate variables
are to be expected. Typical effects on outcome variables
subject to truncation are harder to establish, in part
precisely because they are obscured by the censoring
phenomenon under scrutiny in the present study. We
have considered an expansive range of values for this
parameter, and have found that its magnitude appears
to relate to the performance of standard methods for
the analysis of truncated binary outcomes. Trialists
using the platform to assist in the design of new studies
are advised to consider a range of plausible values for
this parameter, where plausibility is established in con-
junction with clinical experts.
The magnitude of unmeasured confounding between

the intermediate and outcome variables may turn out to

Fig. 7 Type 1 error of statistical tests in the binary outcome study (core scenarios). Fisher’s exact test = blue, chi-squared test = pink, and
adjusted chi-squared test = yellow
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be an important parameter. Increasing the strength of
confounding in a sensitivity analysis modified the impact
of increasing the treatment-on-intermediate effect, al-
though neither the modification nor the consequences
for performance were dramatic, for either continuous or
binary outcomes. By contrast, an earlier study of preg-
nancy exposures and truncated continuous long-term
health outcomes in children indicated substantial prob-
lems with naive approaches to analysis [8], and our own
attempts to replicate that study suggest that this was be-
cause the tested scenarios implied stronger confounding
between the intermediate and outcome variable than we
have considered here. If we have understated the plaus-
ible strength of confounding to a significant degree, we
may have undersold the implications of outcome trunca-
tion. Speculating about the possible extent of unmeas-
ured confounding between two variables is challenging,
and in this case, the correlation between the two cannot
be directly observed (since the outcome is defined condi-
tionally on the intermediate taking a particular value).
Considering the total unexplained variation in each vari-
able might be one way to start building intuition here, as
might identification of known shared prognostic factors
in the literature. This too is complicated by potential
causal dependency between the intermediate and out-
come variables, however, as well as by the potential for
distortion by the censoring phenomenon. In RCTs, it is
likely that confounding will often be reduced through
trial exclusion criteria. For example, restrictions are
often placed on smoking and maternal BMI, which are
associated with birthweight [30, 31]. These restrictions
will not eliminate confounding altogether however. For
example, in the case of smoking, recent quitters and
never smokers might still differ with respect to chances
of conception and live birth in addition to birthweight.
The potential for confounding might be strong in trials
in populations with heterogeneous causes of infertility,
where there might be underlying, unmeasured genetic,
endocrine, immunological, or metabolic disease in some
participants. Where knowledge of the other structural
parameters is relatively strong, one use of the simulation
platform presented here might be to investigate the
strength of unmeasured confounding that would be re-
quired to introduce substantial problems or to investi-
gate the robustness of the study design in the event that
confounding is strong.
A second function of the simulation study presented

here was to elucidate the factors which affect the per-
formance of the standard analyses used in this context,
and to the extent that we have allowed these factors to
independently vary, these findings might not be so con-
tingent on the particular parameter values used.
The present study is subject to other potential limita-

tions. We have considered the situation where treatment

is delivered on a single occasion, and the outcome is
established at a single time point. These conditions are
commonplace in ART studies, but studies evaluating cu-
mulative outcomes over extended courses of treatment
exist and are becoming more popular, since it is now
recognised that outcomes after repeated attempts to
conceive are particularly relevant to subfertile patients
[32, 33]. The present study is not directly relevant to
these scenarios.
Another point to consider is that we have evaluated

methods against a particular estimand, corresponding to
the effect on outcome in the (hypothetical) absence of
censoring. We selected this on the grounds that it
aligned with a common interpretation given to ART tri-
als subject to outcome truncation, e.g. [11], and that it
frequently has clinical relevance in this context. Taking
the effect of embryo culture medium on birthweight as
an example, it would be useful for a clinician to know if
a particular advantageous medium (in terms of live birth
rate) resulted in reduced birthweights by adversely af-
fecting foetal development, or else if reduced birth-
weights were an inevitable consequence of improving
live birth rates in the population. This knowledge might
influence the decision-making process undertaken by pa-
tients and clinicians. For instance, the potential harms to
offspring might be considered unacceptable, or the avail-
ability of a co-intervention known to improve live birth
rate might make an alternative less effective (live birth)
but safer (birthweight) medium a more attractive choice.
We would stress however that analysis of trial outcome
data alone is unlikely to provide sufficient insight into
this sort of mechanistic hypothesis and must be consid-
ered alongside biological evidence.
Other estimands have been described in the context of

competing risks however [34, 35], and each of these
might be more or less attractive depending on the par-
ticulars of the research question under evaluation and
the assumptions the study team are willing to make.
Proposals include (what has been described as) a total ef-
fect of treatment, in which a composite outcome is de-
fined for everyone regardless of their status with respect
to the intermediate variable; anyone not experiencing
the intermediate event is classified as not having the out-
come [34, 36] see also the treatment policy strategy in
[23, 37]. For example, any participants who did not be-
come pregnant would be considered not to have had a
miscarriage. Under this definition, a treatment could re-
duce the miscarriage rate by reducing the pregnancy
rate, which does not conform to any intuitive notion of
therapeutic benefit. Furthermore, this definition cannot
be extended to continuous outcomes. Another potential
hypothetical estimand is the survivor average causal ef-
fect, the effect in patients who would have had the inter-
mediate event under either treatment allocation [6],
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which raises questions about relevance to real patients.
Another proposal is to consider direct and indirect sep-
arable effects, which require the analyst to postulate dis-
tinct causal pathways including and excluding the
intermediate [35]. This requires the intermediate vari-
able to be construed as a mediator. We largely agree
with the commentary of Snowden and colleagues [38]
however, which clarifies the role of the intermediate
variable in this context; the intermediate does not medi-
ate the effect of treatment, so much as determine
whether the outcome variable is defined. In light of the
conceptual difficulty of interpreting the intermediate as
a mediator, we have not considered a causal path from
the intermediate to the outcome in the present study,
but have included the option to do so in the simulation
platform we provide. We have also not considered the
potential role of an interaction between treatment effect
on the outcome (rather than on the intermediate) and
confounding factors here. We include the option to do
so in the simulation code, but urge the user to consider
whether an alternative estimand might be more appro-
priate in the presence of such an interaction.
With these considerations in place, we turn to the

findings of the simulation study. In the continuous out-
come study, the impact of outcome truncation on simple
analyses based on the observed difference in means was
less severe than had perhaps been anticipated, with rea-
sonable bias, coverage, and type 1 error rates for more
realistic treatment effects, except in the scenario with in-
creased confounding, when performance was notably af-
fected in the presence of an interaction between
treatment and the unmeasured confounder. These re-
sults might therefore be seen as relatively reassuring in
relation to continuous outcome measures, depending on
the plausible extent of unmeasured confounding and
scope for interaction effects for the particular research
question at hand. In particular, these results appear sup-
portive of the finding in [11] that choice of embryo cul-
ture medium can influence the birthweight of offspring
born from ART.
The situation with binary outcomes appears somewhat

more nuanced. For larger trial sizes of 500 or 1000, the
bias of the odds ratio was present but was relatively
modest, and coverage was close to the nominal level,
again provided that no interaction between treatment
and the intermediate was present. These findings held
when we increased the level of confounding and when
we changed the direction of the treatment effect on the
intermediate variable, to rule out the possibility of effects
in opposing directions concealing problems. For these
larger trial sizes then, our results appear to be qualita-
tively concordant with the conclusions of previous au-
thors, e.g. [3, 15], at least in the sense that bias was
caused by outcome truncation, and was affected by

increasing treatment effect on the intermediate variable,
strength of unmeasured confounding, and presence of
interactions. Quantitatively, however, we find that,
within the parameters considered here, outcome trunca-
tion might not be so great a cause for concern (at least
for large trials) as has previously been suggested. Indeed,
close inspection of previous simulation results suggests
that substantive performance issues have been observed
only under parameter settings that would be quite ex-
treme in the context of ART trials, e.g. large effects of
exposure on intermediate [3]. The type 1 error rates for
two variants of a chi-squared test were also close to the
nominal level for larger trial sizes. Fisher’s test per-
formed poorly in this context, which may be attributable
to the violation of the assumption of fixed margins, and
this was presumably caused by varying numbers of par-
ticipants entering the analysis set across simulated data-
sets within any given scenario.
For smaller trial sizes (n = 100, 200), outcome trunca-

tion creates serious challenges for the study of binary
outcomes, and this appears to be attributable to separ-
ation (studies in which all or none of the analysable par-
ticipants in a study arm have the outcome event). The
current study highlights the fact that the likelihood of
obtaining an effect estimate is related to the effect of the
treatment on both the intermediate and outcome vari-
ables. As such, the subset of studies in which an effect
estimate is calculable will not produce an unbiassed
sample for the purpose of estimation. Notably, small
studies in ART are commonplace [18]. Although small
studies are unlikely to use a truncated response variable
as a primary outcome, they may still be reported as sec-
ondary outcomes. There may be implications for system-
atic reviews here, since truncated binary secondary (as
opposed to primary) outcomes, analysed in the post-
randomisation subgroup, often appear in meta-analysis
[12–14]. By design, meta-analyses incorporate all studies,
including the smaller ones. Pooled estimates are there-
fore likely to be based on an informative selection
process, leading to bias. This situation is subject to add-
itional complexities compared to the usual case of meta-
analysis of sparse events and appears to warrant further
investigation. In the interim, it is recommended to fol-
low the advice set out in the Cochrane Handbook, which
is to avoid meta-analysis of truncated outcomes wher-
ever possible [5].
Comparisons of outcomes in the subgroup, e.g. [39],

cited in [38] have been endorsed on the grounds that
this represents the population at risk. A problem with
this proposal in principle is that the observed difference
in a trial, not representing an effect of treatment per se,
will not apply wherever confounding or the effect on the
intermediate (for example, due to differences in other as-
pects of the ART treatment protocol) differ. It may
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however be a useful quantity to consider from a public
health perspective, provided it is based on a representa-
tive sample, and the present study suggests that simple
analyses will yield reasonable answers in many cases.
Nonetheless, it remains reasonable to seek alternative
analytic methods that will be robust to outcome trunca-
tion under a broader range of data-generating models.
We note that unadjusted analyses, as are commonly per-
formed in the field and as considered here, are unlikely
to be optimal regardless of outcome truncation, since
adjusting for prognostic covariates in a trial will improve
precision [40–42]. To the extent that the adjustment
variables coincide with the confounders of the
intermediate-outcome relationship, it is possible that
performance might be improved compared to the un-
adjusted approach in the truncated outcome scenario, al-
though with small samples and binary outcomes, it is
possible that covariate adjustment might exacerbate is-
sues relating to sparse data and separation [43]. It re-
mains to examine this empirically, as well as the most
suitable approach for adjustment (e.g. regression versus
inverse probability weighting approaches) and the impli-
cations for interpretation. In the presence of separation,
Firth’s logistic regression correction [44] has been rec-
ommended [45–47], and the performance of this ap-
proach for truncated binary outcome data warrants
investigation. Methods to estimate the survivor average
causal effect have been described [6, 7], as have sensitiv-
ity analyses designed for this context [48–50]. Another
proposal would be to consider a joint model of the inter-
mediate and outcome variables, although it is not clear
that this would be estimable in a point treatment setting.
Methods for meta-analysis of truncated outcomes with
small studies appears to be another avenue for future
research.

Conclusions
In general, proposed approaches to analysis in the pres-
ence of outcome truncation require substantial assump-
tions and relevant data (notably on sufficient
confounding sets) to restore unbiased effects and statis-
tical inferences with the correct operating characteris-
tics. Our simulation platform provides a rapid
assessment of the implications of outcome truncation
given user-input parameters and can be used to assist in
the design and interpretation of reproductive medicine
trials, particularly in the case of small trials for binary
primary outcomes or where there are expected to be
strong confounders related to selection (conception or
live birth) or interactions with treatment thereof. In rela-
tion to design, the simulation platform provides a way to
estimate the power implied by the study parameters,
which can be used to inform sample size for future trials.
It can also inform trialists as to whether outcome

truncation is likely to pose a material threat to study val-
idity. For the interpretation of published studies, it is of
course not possible to determine whether the results of
any individual study are attributable to error or bias.
Examining the operating characteristics of studies sub-
ject to outcome truncation may nonetheless allow re-
searchers to understand the risks of these errors. We
stress that we are not yet able to recommend an optimal
analytic strategy for handling outcome truncation
however.
Finally, since the code is freely available for modifica-

tion, we hope that it may serve as a platform for future
methodological research in the area.
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