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Background: The global inhomogeneity (GI) index is a functional  electrical impedance tomography 
(EIT) parameter which is used clinically to assess ventilation distribution. However, GI may underestimate 
the actual heterogeneity when the size of lung regions is underestimated. We propose a novel method to use 
anatomical information to correct the GI index calculation. 
Methods: EIT measurements were performed at the level of the fifth intercostal space in six patients 
with acute respiratory distress syndrome. The thorax and lungs were segmented automatically from serial 
individual CT scans. The anatomically derived lung regions were calculated in EIT images from simulating 
a homogeneous ventilation distribution in a finite element model. The conventional approach (GImeas,func), 
analyzes images in functionally-defined lung regions, while our proposed measure (GImeas,anat) is based 
on analysis in anatomically-defined regions. We additionally define a simulated comparison (GIsim,anat) to 
determine the lower limit of the GI measure for a homogenous distribution of ventilation.
Results: As expected, the conventional GImeas,func [0.382 (0.088), median (interquartile range)] were 
significantly lower than the proposed GImeas,anat [0.823 (0.152), P<0.05], and were much closer to the lower 
limit GIsim,anat [0.343 (0.039)]. Both GImeas,anat and GImeas,func were strongly correlated with arterial oxygen partial 
pressure to fractional inspired oxygen ratio (R=−0.88, P<0.05), whereas GIsim,anat (R=0.23) was not. GImeas,anat 
had a linear-regression slope 3.2 times that of GImeas,func suggesting a higher sensitivity to the changes in lung 
condition. 
Conclusions: The proposed GImeas,anat (or shortened as GIanat) is an improved measure of ventilation 
inhomogeneity over GI, and better reflects portion of non-ventilated regions due to alveolar collapse or 
overdistension. 
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Introduction

Alveoli in gravity-dependent lung regions may collapse 
under general anesthesia during mechanical ventilation. 
In the presence of lung injury such as acute respiratory 
distress syndrome (ARDS), gravity-dependent lung regions 
are poorly aerated while non-dependent regions remain 
partially aerated (1). Inappropriate setting of ventilator 
may introduce both collapse of the dependent regions and 
overinflation of the non-dependent ones and increase the 
risk of ventilator-induced lung injury (VILI) (2). 

Bedside monitoring tools for ventilation distribution 
and identification of regional collapse and overinflation are 
missing. The information provided by global parameters of 
lung function, such as blood gasses and respiratory system 
mechanics, does not consider regional heterogeneity of 
the lungs, and therefore may be misleading (3). Computed 
tomography (CT) may provide primarily morphological 
data. CT-based methods to assess ventilation [such as 
proposed by Sharifi et al. (4)] have limited application for 
bedside monitoring due to radiation exposure and complex 
handling.

Chest electrical impedance tomography (EIT) is a 
functional radiation-free imaging technique (5). It measures 
regional lung ventilation and aeration distribution by 
means of changes in electrical potentials measured on chest 
electrodes during breathing. It allows continuous adjustment 
of ventilator settings and minimizes the deleterious effects 
of mechanical ventilation. A recent consensus statement 
described the clinical use of EIT in detail (5). A typical EIT 
scan delivers 20–50 images per second with a resolution of 
32×32 pixels. To analyze the data and summarize regional 
information, many EIT-based measures were developed (5). 

One widely used functional EIT parameter to classify 
the heterogeneity of lung ventilation is the “global 
inhomogeneity” (GI) index (6-12), proposed a decade 
ago by some of us. A recent survey suggested that the GI 
index is well-accepted and considered clinically useful (13). 
The GI index quantifies the tidal ventilation distribution 
typically within the lung regions identified in functional 
EIT images (14). Such a functional image is the tidal EIT 
image, showing the differences in impedances between end-
inspiration and end-expiration. The GI index is calculated 
from the tidal EIT images according to Eq. [1]. 
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where DI denotes the value of the differential impedance in 
the tidal images; DIxy is the pixel in the identified lung area; 
DIlung are all the pixels representing the lung area. High GI 
index implies high variations among pixel tidal impedance 
values and is then used as an indicator of heterogeneous 
ventilation.

As pointed out in the original paper introducing this 
EIT parameter (15), the identification of the lung area 
is a prerequisite for the GI calculation. Any incorrect 
identification of the lung area, and omitting some sections 
of the lungs that are poorly or non-ventilated, will decrease 
apparent heterogeneity. This will lead to a reduced ability 
of GI to distinguish “true” heterogeneity from the apparent 
effect due to the incorrect lung regions. For titration of 
positive end-expiratory pressure (PEEP) in lung-healthy 
patients under surgery (16) or highly recruitable subjects (17),  
GI index could be a useful tool, since most lung regions 
can be identified in EIT images during the incremental 
or decremental PEEP trial. If the recruitment is limited 
(e.g., in a non-recruitable patient, or during periods such 
as weaning), the absolute value of GI index is not reliable 
and should not be used for inter-subject comparison or 
diagnosis purposes. 

Given the fact that most of the ICU patients have CT 
scans (but may not be measured at a time point close to 
EIT measurement), the “true” lung regions in the EIT 
images can be determined with help of CT. In the present 
study, we propose a method to improve the value of the GI 
index using an enhanced approach for identification of such 
anatomically derived lung regions. The new parameter is 
called GImeas,anat (or shortened as GIanat), and was evaluated in 
six ARDS patients. 

Methods

This section is organized in two parts: in the first part, 
the method was described, including (I) automatic 
CT segmentation, (II) establishment and solution of 
forward problem and inverse problem, (III) EIT image 
reconstruction and GI index calculation. In the second part, 
evaluation of six ARDS patients was described. 

CT segmentation

The CT data sets (DICOM format) consisted of slices with 
resolution of 512×512 pixels. The CT segmentation process 
included segmentation of the thorax and lung contours.
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Segmentation of the thorax contour
CT images from the same cross-sectional plane between 
the fourth and the fifth rib as EIT electrodes were analyzed. 
The thorax contour was determined automatically by 
thresholding as well as erosion and dilation filtering (18) 
and described as follow. 
	Step 1. The image thresholding technique was used 

to process the CT image I(x,y) with a threshold value 
of 800 Hounsfield units (HU) (Figure 1A) and the 
binary image B(x,y) can be obtained,
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where x and y indicate the position of the pixels.
	Step 2. The binary image B is then eroded by a 3×3 

rectangle R

{ }| zBe B R z R B= ⊆ 	 [3]

where z is the set of pixel locations; Rz denotes the 
translation of R by the vector z. So for each pixel in 
B superimpose the center of R, if R is completely 
contained by B the pixel is retained, else deleted 
from the pixel set of potential thorax region. 

	Step 3. Small connected areas with less than 200 pixels 
in the resulting image Be are removed using connected 
component analysis (8-neighborhood connectivity), 
producing another binary image Be,o. Further, the 
image Be,o is dilated by a disk D (radius=5)

{ }∅≠=⊕= oezoedoe BDzDBB ,,,, )ˆ(|  	 [4]

where D̂  represents the reflection of disk D. So z are 
the locus of pixels covered by D when the center of 
D moves inside Be,o. At the end, the thorax contour 
is defined as the outer boundary of the resultant 
pattern in Be,o,d. (Figure 1B) and segmented thorax 
contour with larger than 800 mm2 is accepted. 

Segmentation of the lungs including non-ventilated 
lung tissue
In order to segment the lungs including non-ventilated lung 
tissue, a novel segmentation strategy was proposed. The 
main steps of lung segmentation are the identification of 
thoracic cavity, and elimination of organs other than lung 
tissue from the thoracic cavity, such as heart and vertebrae.
Identification of thoracic cavity
Wiener filtering was first applied to the CT images to 

remove noise. Subsequently the HU of the CT images 
were rescaled to a range between 0 and 1. The ribs were 
segmented based on a threshold value of 0.85 since bones 
have higher density values than other structures. The 
following morphological operations were further performed 
to obtain ribs. First, to exclude noise and other non-
rib structures, small connected areas with less than 200 
pixels are removed using connected component analysis 
(connectivity=8). Second, to enhance the rib regions, a 
morphological dilation with a 3×3 disk-shaped structuring 
element was applied. Third, to form complete rib regions, 
the holes stemming inside all rib regions were filled by a 
hole-filling algorithm. Finally, the ribs in one CT image 
were identified clearly (Figure 1C).

To determine the thoracic cavity, a number of consecutive 
CT scans near the plane of EIT electrodes were merged 
after having been processed by the above operations (Figure 
1D). Depending on the thickness of CT slices, the number 
of merging can be varied from 7–15 CT scans. Exploiting 
the advantage of anatomic knowledge, the 120×120 pixels in 
the central area of the image (which mainly consist of heart 
and trachea) were masked as non-rib areas. Further, small 
connected areas with less than 900 pixels were eliminated 
using connected component analysis (connectivity=8) to 
remove non-rib areas inside and outside the thoracic cavity. 
Next, morphological closing with a radius of 30 pixels disk-
shaped structuring element is employed to fill the small 
holes within the rib areas, closing the gaps between the 
unclosed rib areas and smooth the edge of rib area, and 
then the image C only containing rib circle was obtained. 
Finally, the identification of thoracic cavity was achieved by 
subtracting the image Cfe after performing morphological 
filling and erosion (3×3 rectangle) for image C from the 
image Ce after applying performing erosion (3×3 rectangle) 
to image C. Further, the contour of the thoracic cavity 
was determined by using morphological edge detection 
algorithm for binary images. 
Eliminating organs other than lung tissue within thoracic 
cavity
HU of the original CT image on the EIT electrodes plane 
were rescaled to a range between 0 and 1. The organs other 
than lung tissue in the thoracic cavity were identified based 
on a threshold value of 0.75 of the rescaled HU. In order 
to avoid classifying collapsed lung tissue into removed 
organs, the identification process was constricted to the 
central region of the thoracic cavity. According to the 
anatomical information and the statistical results of our 
previous segmentation, the area with 192×212 was selected 
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Figure 1 Automatic segmentation of the thorax and lungs. (A) Serial CT images around the height of EIT electrode plane; (B) identified 
thorax contour; (C) ribs identified from one CT image; (D) ribs identified from a serial of CT images; (E) segmented lungs; (F) contours of 
thorax and lungs for further reconstruction. 
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to segment organs other than lung tissue, such as heart, 
bronchi and trachea. After thresholding, the morphological 
operation of removing H-connected pixels was applied to 
separate different areas because there are many bronchial 
structures in this selected area. Subsequently, connected 
areas with less than 100 pixels were removed using 
connected component analysis (connectivity=8) because 
these small areas often correspond to the bronchi. Further, 
the holes stemming close to the center of the thoracic cavity 
were filled by a hole-filling algorithm because these holes 
are often caused by the trachea. At the end, these organs 
other than tissue were eliminated by subtracting them 
from the segmented thoracic cavity and the lung regions 
were identified (Figure 1E). The contours of the lungs 
were determined by using morphological edge detection 
algorithm (Figure 1F).

EIT forward problem and image reconstruction

The goal of EIT modelling is to create a simulated EIT 
image with the correct lung regions for the patient, based 
on the CT images. Next, regions of interest from these 
images are used to improve the GI calculation.

Forward problem
The forward problem consisted in calculating the boundary 
voltages ν on the electrodes from knowledge of conductivity 
distribution σ inside the body and boundary conditions. To 
use the segmented thorax structure, the forward problem 
was completed by establishing EIT forward model and 
solving EIT forward problem.

The establishment of EIT forward model using the 
segmented thorax structure was realized from the following 
aspects. 
	 Finite element forward model. The segmented 

thorax and lung contours were sampled to create 
extruded forward model (Figure 2) (19). The 
size of the thorax and lungs were normalized. 
The triangular meshing of the forward model is 
performed by Netgen software in order to obtain 
the finite element forward model. To ensure 
the accuracy of simulation, the number of finite 
elements of the forward model for all patients is 
larger than 20,000.

	 Electrode placement. The 16 electrodes with a 
diameter of 1cm were set to the surface of thorax 
contour, and their positions and distances are 

Figure 2 Illustration of GI calculations. (A) CT image from an individual patient; (B) segmentation of the thorax and lungs, and the 
corresponding forward model; (C) reconstructed image of an ideal homogeneous ventilation distribution of simulated data (B); (D) the 
corresponding identified lung regions based on (C); (E) reconstructed image of measured ventilation distribution. F, the corresponding 
functionally identified lung regions based on E. The GI calculations are according to Eq. 1 in the text. GIsim,anat is based on the simulated 
image (C) and the lung regions D; GImeas,func is based on measured image (E) and the lung regions (F); GImeas,anat is based on measured image (E) 
and the lung regions (D).
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corresponding to the real measurement. 
	 Conductivity simulation. Image reconstruction 

uses a sensitivity (Jacobian) matrix representing the 
“background” conductivity against which changes 
occur. We used a model which was uniform except 
for setting of the lung tissue to a multiple of 1.5 
times the background conductivity.

In this study, the adjacent excitation/adjacent measure 
pattern was adopted. The established finite element forward 
model is employed to obtain the boundary voltages on all 
electrodes through the calculation of the forward problem 
by using finite element method to solve the following 
partial differential equations: 

( ) 0∇⋅ ∇ =σ u 	 [5]

where σ denotes the conductivity distribution inside the 
forward model and u represents the potential distribution 
inside the forward model.

Inverse problem
The inverse problem consisted in calculating the conductivity 
distribution σ inside the body from boundary voltages ν on 
the electrodes knowledge of and boundary conditions. So far, 
there are many linear and non-linear algorithms to solve EIT 
inverse problem. In this study, the GREIT (Graz consensus 
Reconstruction algorithm for EIT) method was adopted (20).  
The purpose of GREIT is to optimize a linear image 
reconstruction matrix RGREIT to desired performance measures 
by using learning strategy, which minimizes an error e2 

through a set of “training target”.

22 ( ) ( )= −∑ w
σ vk k

k
e R 	 [6]

where the sum k is over all training measurement and noise 
samples, σ(k) denotes the desired reconstructed image, ν(k) 

represents the boundary voltages of the “training target”, 
w is the weight matrix which was defined to adjust the 
condition of the target.

The inverse problem was solved by GREIT approach 
with EIDORS toolbox (20). The parameters settings 
were as follows: Distribution of training points was fixed 
and uniform. Number of training points was 500. Size of 
simulated targets as proportion of mesh radius was 0.05. 
The noise figure to achieve was 0.5. The default values were 
used for other parameters.

EIT image reconstruction and enhanced GI index calculation

Relative impedance changes of a breath were simulated 
by assigning different conductivities to the lungs in the 
forward model (Figure 2B). Two sets of boundary voltages 
were calculated, one for homogeneous background and 
one for highlighted lungs. The homogeneous ventilation 
distribution was reconstructed with the inverse model 
and the anatomically derived lung regions (Figure 2D) 
were identified with a threshold of 20% of the maximum 
impedance change (21). The corresponding GI index 
value GIsim,anat was calculated accordingly. With GIsim,anat 
we determined the lower limit of the GI measure for a 
homogenous distribution of ventilation.

Patient EIT measured data were reconstructed with 
inverse model and the functionally defined lung regions 
were identified (Figure 2F). The GI index was calculated 
based on the anatomically derived lung regions (GImeas,anat), 
which is the enhanced measure, and functionally derived 
lung regions (GImeas,func), which is the conventional approach.

Patients and protocol

A total of six mechanically ventilated patients with ARDS 
were examined retrospectively (3 men, 3 women; age  
63±9 years; height 172±8 cm; weight 75±6 kg; mean ± 
SD). Exclusion criteria were: age <18 years, pregnancy and 
lactation period, and any contraindication to the use of EIT 
(pacemaker, automatic implantable cardioverter defibrillator, 
and implantable pumps). The study was approved by 
the Ethics Committee of the University Medical Center 
Schleswig-Holstein, Campus Kiel, Germany. Written 
informed consent was obtained from all patients or their 
legal representatives prior to the study. 

The patients were examined by EIT (Goe-MF II 
device, CareFusion, Höchberg, Germany) during ongoing 
mechanical ventilation without any special maneuvers. 
Sixteen electrocardiogram electrodes (Blue Sensor L-00-S; 
Ambu, Ballerup, Denmark) were placed around the thorax 
in the fifth intercostal space for the EIT examination. The 
thorax and lung contours were determined from routine CT 
scans (Brilliance CT 64 channel scanner, Philips, Andover, 
USA) which were obtained in the patients for clinical 
reasons independent from the study during their stay in the 
ICU of University Medical Centre of Schleswig-Holstein.

Statistical analysis

Data processing was performed using MATLAB R2015a 
(The MathWorks Inc., Natick, MA, USA). Due to the 
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limited number of tested subjects, the data were presented 
as median (interquartile range). Wilcoxon signed rank 
test was used to compare various types of GI indices. We 
estimated the average value of GImeas,anat would be 0.75 with 
0.25 variation, and the GImeas,func would be 0.35. Hence 6 
subjects would be sufficient to reach a statistic power of 
80% at α=0.05. The correlation between various GI and 
arterial oxygen partial pressure to fractional inspired oxygen 
ratio (PaO2/FiO2) were assessed with Pearson’s linear 
correlation. Significance levels were corrected for multiple 
comparisons using Holm’s sequential Bonferroni method.

Results

The patients were ventilated under bilevel positive airway 
pressure mode (low pressure level ranged from 7 to  

14 cmH2O and high pressure level from 10 to 15 cmH2O 
decided by the responded physicians) and average PaO2/
FiO2 was 152±50 mmHg.

Figure 2C and D shows the reconstructed image of the 
simulated homogeneous ventilation distribution of one 
patient, and the corresponding anatomically derived lung 
region. The reconstructed ventilation amplitude was not 
equaled between left and right lungs although the same 
amplitude was assigned to both lungs in the forward model 
(Figure 2C). The reconstructed image of the measured 
patient’s ventilation distribution and the corresponding 
functionally defined lung region could be found in Figure 
2E and F. Non-ventilated regions could not be identified as 
lung regions using the latter approach. The sampling results 
of the thorax and lung contours from all patients are shown 
in Figure 3.

Figure 3 CT images from all 6 patients and the corresponding sampling of the thorax (yellow) and the right (red) and left (blue) lung 
contours. X and Y axes were pixels corresponding to the individual CT images.
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Three types of GI indices were summarized in Table 1 
as well as Figure 4. The GImeas,anat was significantly higher 
than GIsim,anat and GImeas,func from the same patients. Besides, 
GImeas,anat was strongly correlated with PaO2/FiO2 (R=−0.88, 
P<0.05). GImeas,func was also correlated with PaO2/FiO2 
(R=−0.88, P<0.05), but, compared to GImeas,anat, the slope of 
linear regression GImeas,func was 3.2 times higher (Figure 4B). 

Discussion

GI may underestimate the actual heterogeneity when the 

size of lung regions is not correctly identified and too low 
because of missed non-ventilated regions. In the present 
study, we have proposed a novel method to calculate the 
GImeas,anat, using an EIT region of interest created from EIT 
simulations based on CT images. The thorax and lung 
regions (including non-ventilated lung tissue due to alveolar 
collapse or overdistension) were segmented automatically 
from individual CT scans. The corresponding measure 
GImeas,anat showed significant correlation with oxygenation 
level and more sensitive to changes in lung condition than 
the original GI index. 

Figure 4 (A) Comparison of GI values calculated with three different approaches (GIsim,anat, GI calculated from simulated homogeneous 
distribution with anatomically derived lung regions. GImeas,func, GI calculated from measured data with functional derived lung regions. 
GImeas,anat, GI calculated from measured data with anatomically derived lung regions.). On each box, the central mark is the median, the edges 
of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points that are not considered as outliers. (B) 
Correlation between various GI and PaO2/FiO2, arterial oxygen partial pressure to fractional inspired oxygen ratio.
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Table 1 Summary of different types of GI indices 

Patient number GIsim,anat GImeas,func GImeas,anat

1 0.338 0.431 0.877

2 0.329 0.373 0.730

3 0.342 0.430 0.882

4 0.328 0.390 0.920

5 0.348 0.342 0.562

6 0.368 0.333 0.768

Median (IQR) 0.343 (0.039) 0.382 (0.088) 0.823 (0.152)*

GIsim,anat, GI calculated from simulated homogeneous distribution with anatomically derived lung regions. GImeas,func, GI calculated from  
measured data with functionally derived lung regions. GImeas,anat, GI calculated from measured data with anatomically derived lung regions. 
IQR, interquartile range. *P<0.05 compared to the other GI indices respectively.
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Although the GI index is widely accepted and used in 
EIT clinical applications (13), it has two innate limitations 
in its original calculations: (I) the GI index assesses only 
tidal distribution of air, namely the differences between 
end-inspiration and end-expiration. What occurs during 
inspiration or expiration is not be taken into consideration. 
Tidal recruitment/derecruitment caused by large tidal 
volume might lead to a lower GI value compared to a 
less harmful smaller tidal volume setting (22). (II) The 
calculation of GI is based on lung regions identified in 
functional tidal EIT image, which could be underestimated 
when collapse or overdistension is present (23). Although 
some efforts have been taken to identify collapsed lung 
regions [e.g., (14)], the GI index might be incorrectly 
estimated in non-recruitable patients (23). 

To avoid the first limitation, the GI index should 
not be used to titrate tidal volume if tidal recruitment/
derecruitment could be detected [e.g., with regional 
ventilation delay (24)]. Inter- as well as intra-patient 
comparison of GI requires careful interpretation if tidal 
volumes are widely different. To solve the second limitation, 
the proposed method in the current study is preferable. 
Another EIT-based index called silent spaces was proposed 
previously (25), where lung regions were also identified 
from CT scans. However, the lung regions identification 
process was not described in detail so that we cannot 
reproduce the result or compare it with our method. The 
index “silent spaces” calculates the number of pixels with 
impedance changes < 10% of the maximal impedance 
change (25), which is different from the GI index covering 
the whole lung regions. The CT scans used in the silent 
spaces calculation were not from individual patients, but 
selected from a database according to patients’ height and 
weight. Since most of the ICU patients have CT scans 
available regardless of the measurement dates, our proposed 
individual segmentation method posed no extra radiation 
or cost on patients. The collapsed lung tissue has similar 
HU to other organs within the thoracic cavity, which makes 
the CT segmentation much harder. Based on the fact that 
most of the atelectasis is occurring in the gravity-dependent 
regions, we decided to capture them with the help of the 
ribs' location. No extra workload was required, given the 
thorax and lung regions segmentations were performed 
automatically. For the simulated data, it is observed that 
even when the simulated ventilation distribution was 
absolutely homogeneous (Figure 2B), the reconstructed 
distribution was not homogeneous between the left and 
right lungs due to the selected reconstruction method, the 

size and location of the lungs (Figure 2C). Therefore, we 
advise to take these influencing factors into consideration 
when identifying the lung regions. 

Previous studies suggested that GI index could be used to 
distinguish patients with weaning failure and re-intubation 
risks (26,27). Due to the lung regions identification 
issue discussed in the present study, we consider that 
our proposed method could improve the sensitivity and 
specificity for the risk patients’ separation. Up to now, EIT 
measurements have been been used more as a monitoring 
tool than diagnosis tool, since the reconstructed impedance 
is relative time-difference value (5). With the anatomically 
derived lung regions, the GImeas,anat has the potential to 
diagnose the absolute degree of non-ventilated regions. Due 
to the limited number of patients examined in the current 
study, the findings were only preliminary. Further studies 
are warranted to establish the predicted values of GImeas,anat 
for various patient groups. Both the GImeas,anat and GImeas,func 
were correlated to PaO2/FiO2 but the range of GImeas,func 
was much smaller than GImeas,anat, so that the sensitivity and 
the ability to distinguish lung status would be much lower 
(Figure 4A).

As a limitation of the present study, the accuracy of the 
thorax and lungs segmentation was not examined. Since the 
spatial resolution of CT is much higher than EIT, small 
segmentation errors would have little influence on EIT 
reconstruction. The influence of reconstruction methods 
and lung regions identification methods on the GI values 
was not tested. A threshold of 20% of the maximum 
impedance change was used for lung regions of interest, as 
suggested in a previous study (21). Increasing the threshold 
would lead to smaller lung regions and therefore decrease 
the GI values (15). For future evaluation and clinical use, we 
propose to use 20% as threshold unless concrete evidence 
shows otherwise. The influence of reconstruction methods 
on EIT linear analysis was evaluated previously (19,28). It 
was found that EIT-based indices that were validated for 
images with one reconstruction algorithm were also valid 
for other reconstruction algorithms. 

Conclusions

The GImeas,anat (or shortened as GIanat) calculated within 
anatomically derived lung regions using individual patient 
CT scans reflects the portion of non-ventilated regions due 
to alveolar collapse or overdistension. It may be a useful 
EIT-based diagnosis index for various patient groups and 
clinical purposes. 
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