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Abstract: The properties of unstable large-scale hydrodynamic (HD) modes of oscillations in the gaseous disk of a flat
galaxy with a rotation curve having a velocity jump in the inner region of the disk are numerically investigated. It is
shown that some of these modes can form a regular pseudo-ring, and others can generate a spiral structure in a model
galactic disk, with the rotation curve that can approximate the observed rotation curves in nearby massive spiral galax-
ies (such as M31, M81). The characteristic time of formation of the regular structure turns out to be . (1 − 2) GY, the
corotation is located in the region of the velocity jump (on the radius∼ 2 − 4 kpc). The properties of the generated den-
sitywaves are determinedby the parameters of the velocity jumpon the rotation curve (relative amplitude and steepness
of the velocity profile decrease), as well as the temperature (velocity dispersion) of the gas in the disk. For the first time,
it was investigated how the global HD modes and the spiral structures formed by them will change in the case of the
presence of a jump in the profile of the equilibrium surface density. This model profile was set in the form of a slightly
smeared falling density step. Main results were obtained for two-arm m = 2 azimuthal harmonic.
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1 Introduction
Modern observational data indicate that many massive
disk (spiral) galaxies have not experienced merging and
strong interactions with their neighbors during the last
few billion years, see, for example, (Weinzirl et al. 2009).
Such galaxies (conditionally called solitary) for times from
z ∼ 1 to z = 0 passed through a stage of slow and smooth
evolution, the so-called secular evolution (Combes 2007;
Kormendy & Kennicutt 2004; Kormendy 2013)¹. An im-
portant role in the evolution of such solitary galaxies is
played by large-scale collective processes of formation in
the galactic disk of global structures – bars, spirals and
rings (Freeman 2008; van der Kruit & Freeman 2011; Zasov
& Sil’chenko 2010; Kormendy 2013).

It is generally accepted that the formation of regu-
lar large-scale structures in the galactic disks is due to
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the development of a different kind of gravitational in-
stability (Safronov 1960; Toomre 1964, 1981; Lin & Shu
1964, 1966; Goldreich & Lynden-Bell 1965; Polyachenko
2004). Many of the classic results are presented in mono-
graphs (Fridman & Polyachenko 1984; Binney & Tremaine
2008; Bertin 2014).

According to another approach, hydrodynamic unsta-
blemodes capable of forming a spiral structure canbe gen-
erated in the gas disk of a galaxy with an abrupt jump in
the rotation velocity (in the inner part of the disk) (Mo-
rozov 1977, 1979; Morozov et al. 1985a,b; Torgashin 1986;
Fridman 1990). A.G. Morozov first discovered and previ-
ously investigated a branch of the so-called centrifugal
(CF) hydrodynamic instability. It was found that in the
model gaseous disk of a flat galaxy with an idealized ro-
tation curve having a rather sharp jump in the angular
velocity, CF instability will be quite powerful (in incre-
ments). In subsequent works it was shown that when we
move to model disks with more realistic rotation profiles

1 Over the past 15 years, many publications have appeared on the ba-
sis for the scenario of secular evolution of spiral galaxies – based on
numerical modeling, analysis of modern observations, etc. We here,
as a rule, give references to themain reviews, in which the reader can
find a detailed bibliography.
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that have a fairly smooth velocity jump, the instability is
gradually weakened and stabilized, while no other unsta-
ble branches have been detected until recently. Partially
this gapwas eliminated in (Torgashin&Omurkanov 2013),
below (TO).

In the present work, the numerical study of unstable
HD modes in the model gas disk of a flat galaxy with a ve-
locity jump on the rotation curve, started in (TO), is con-
tinued. As a result, for the first time the modes in discs
with the parameters and the shape of the velocity jumps
actually corresponding to those observed in a number of
massive disc galaxies (for example, M31 and M81) were in-
vestigated. In addition, the effect of the radial gradient of
the equilibrium surface density of a gas disk on the devel-
opment of unstable HD modes was studied (to the best of
our knowledge, previously HD modes have been studied
only in homogeneous density gaseous galactic disks). It
is shown that the presence of a noticeable gradient in the
surface density of a disk in the region of the velocity jump
increases the chances of manifestation of unstable reso-
nant HD branches of oscillations and the formation of a
large-scale pseudo-circular structure in this region of the
disk. Conclusions are made about the ability of unstable
HDmodes to form large-scale regular structures in the gas
disks of some spiral galaxies at a certain stage of their evo-
lution.

2 Conditions under which unstable
HD modes of oscillations in the
gas disk of a flat galaxy can
manifest themselves

For themanifestation of themechanisms of large-scale HD
instabilities in the galaxy, it is necessary, firstly, to have a
noticeable jump in the rotation velocity (in the inner re-
gion of the disk), with a steeper velocity decrease with a
radius, than in the Keplerian law, and secondly,more pow-
erful mechanisms of gravitational instabilities in flat sub-
systems were suppressed. It is assumed that such proper-
ties of the galaxy could have formed at the previous stages
of its secular evolution.

As follows from many numerical experiments on the
evolution of stellar galactic disks, the bar-mode formed
due to collective gravitational perturbations, and/or the
spiral density wave, causes gas flows from the interme-
diate radii to the center of the disk and to the periphery,
see, for example, (Athanassoula 1992; Salo et al. 1999). As
a result of star formation, this leads to the formation in the

central region of the galaxy of a massive flattened conden-
sation – pseudo-bulge. If a fairly flattened and compara-
tively massive stellar pseudo-bulge is formed in a massive
galaxy, with a radial size abulge and a fairly sharp bound-
ary along the radius ², then the total distribution of the
equilibrium gravitational potential is able to create, in the
region of the disk near the radius r ∼ (1.2 − 1.5) abulge,
the fall of the rotation curveVφ (r)with a radius faster than
Keplerian law:

Vφ (r) ∝ r(αΩ+1); Ω (r) ∝ rαΩ ; (1)
αΩmin ≈ (−1.7) − (−1.8) ;

Another mechanism for the formation of velocity jump in
the rotation curve in the galactic disk is considered in the
article (Kondratyev 2014).
Rotational curves with a velocity jump are observed in a
number of nearby massive galaxies, see, for example, (So-
fue & Rubin 2001; Chemin et al. 2009; Tenjes et al. 1998),
and Figure 1 (M31, M81). Our preliminary studies on the
construction of a self-consistent model of the large-scale
mass distribution in the disk galaxy within the framework
of the Einasto-Haud model (Einasto & Haud 1989) with 5
main components (old bulge + disk, young thin pseudo-
bulge + disk, and extended halo, the disk has a density
depression at the center), show that the value of the pa-
rameter αΩmin, that determines the fastest decay of the an-
gular velocity with the radius, with reasonable set of the
mass-model parameters, that do not contradict the obser-
vations, can reach values ≈ (−1.80) − (−1.85). A similar
estimate was obtained earlier, see (Arakcheev & Torgashin
2012; TO).

Another important consequence of the development
in the stellar galaxy disk of a bar mode, or/and of a spi-
ral density wave, is the effects of heating of the stellar
gas noted in early numerical experiments – its tempera-
tures (stellar velocities dispersion) increase. Modern ob-
servational data confirm these facts, showing a notice-
able increase in the dispersion of the velocities of stellar
subsystems with an increase in their age (determined by
chemical composition), see, for example, (Holmberg et al.
2007). Such evolutionary warming up of young stellar disk
subsystems means the approaching of these subsystems
(according to the Safronov-Toomre criterion, and its later
variants taking into account open spirals) to the bound-
ary of gravitational instability. In many numerical exper-

2 The characteristic radial scale-size abulge of such a pseudo-bulge
in a massive spiral galaxy, based on the shape of the rotation curve
and the model mass distribution in the galaxy, is estimated as
abulge ∼ (1 − 2) kpc.
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Figure 1. Observed rotation curves of galaxies having velocity jump
in the inner disk region: M31 – crosses on a dashed line (Chemin et
al. 2009); M81 – circles on a solid line (Tenjes et al. 1998).

iments, at later stages, the spirals, or bar mode gradu-
ally began to blur, respectively, the bar merged with the
pseudo-bulge (Bournaud et al. 2005; Sellwood 2011).

The above facts and considerations speak in favor of
the possibility of the situation when, at some stage of the
evolution of the disk galaxy, its quasi-equilibrium state
will satisfy the two required conditions. The first is the
proximity to the boundary of instability with respect to the
powerful gravitational instabilities (or the stabilization of
these instabilities). The second is the formation of a mass
distribution of large-scale components of the galaxy, in
which a gravitational potential distribution is created, in
which the equilibrium angular velocity of the gas disk,
Ω (r), has a region with relatively steep radial decrease,
see (1). In this case, conditions are created for the mani-
festation of large-scale, so-called gradient, hydrodynamic
mechanisms of instability in a gas galactic disk (Morozov
1977, 1979; Morozov et al. 1985a,b; Fridman 1990).

We note that it is practically impossible to sepa-
rate gravitational and hydrodynamic instabilities in a real
galaxy, since in the equations describing the dynamics
of perturbations in a gas disk, there are always terms
with gradients of the perturbed gravitational potential,
and terms with gradients of the perturbed pressure. Here,
we are talking about the fact that the properties of HD
modes are manifested in "pure form" in cases when the
terms with pressure gradients dominate, although self-
gravitation even in these situations may be important, but

not basic in determining the properties of unstable modes
of a disk. This is the situation we are exploring here, at the
first stage, discarding terms with self-gravity.

3 A brief description of the
investigation of HD modes in a
model gaseous disk with a
velocity jump on the rotation
curve

First, a model disk is constructed that approximates the
gas disk of a flat galaxy with a velocity jump on the rota-
tion curve. For the selected galaxy, on the basis of the ob-
served rotation curve Vφ glx (r), the values of the velocity
jump parameters are settled:

{RαΩ; Vφmax; δVφ; αΩmin} (2)

Here RαΩ – is the radius of the steepest fall of
the rotation curve in the region of the velocity
jump, it is approximately equal to the average ra-
dius of the velocity jump region; Vφmax – magni-
tude of the internal maximum of azimuthal velocity;
δVφ ≡

(︀
Vφmax − Vφmin

)︀
/Vφmax – relative amplitude of

the velocity jump; αΩmin = min
r

(αΩ (r)) = αΩ (r = RαΩ) –
the parameter of the most rapid fall of the angular ro-
tation velocity with a radius, where αΩ (r) = d ln Ω0(r)

d ln r ;
Ω0 (r) = Vφ (r)

⧸︀
r – is the equilibrium angular rotation ve-

locity in the gaseous disk.
Taking into account the fact that the observed

Vφ glx (r) has a scatter of data related to observation errors,
and also taking into account possible non-circular mo-
tions in the galactic disk (which we assume to be small),
the constructed model function, Vφ (r), should not only
have parameters that coincide with (2). Besides that, it
must satisfy the modern constructed mass distribution
models for disk galaxies, see, for example, (Einasto &
Haud 1989; Tenjes et al. 1998). From the analysis of the re-
sults of these models, in particular, there are restrictions
on the possible steepness of the decrease of Vφ (r) profile
in the region of the velocity jump, i.e. on the parameter
αΩmin, see (1).

In the case of an inhomogeneous density disk, it is
necessary in the sameway to additionally specify a simple
model of the equilibrium surface gas density in the disk,
σ0 (r).

For greater universality of the results obtained, we
further normalize the basic functions to given charac-
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teristic scales in the galaxy. The radii and velocities are
normalized, respectively, to the values RαΩ and Vφmax,
then the frequencies will be normalized by the value
Ωnorm = Vφmax

⧸︀
RαΩ. The surface density is normalized to

the value σ02 – the unperturbed density in the outer part
of the disk (relative to the velocity jump).

We use the traditional 2-D system of equations (Eu-
ler’s equations of motion, the continuity equation and
the adiabaticity equation of gas motion). Taking into ac-
count the equilibrium axisymmetric stationary state, af-
ter linearizing the equations, neglecting the terms with
self-gravitation, then we pass to the spectral harmonics³
f̃ (m,ω) (r) of the perturbations.

As a result, we obtain a system of two linear homo-
geneous ordinary differential equations for the perturbed
normalized enthalpy η̃ and the perturbed radial Lagrange’
displacement ξ̃ , see, for example, (Torgashin 1986; TO):

dη̃
dr =

[︂
2mΩ0
ω̂ − γ − 1γ ασ

]︂
η̃
r (3)

+
[︂(︁
ω̂2 − κ2

)︁
− γ − 1γ2

α2σ
M2
* r2

]︂
ξ̃ ;

dξ̃
dr =

[︂
m2

r2ω̂2 −M
2
*

]︂
η̃ −

[︂
1 + 2mΩ0

ω̂ + ασγ

]︂
ξ̃
r .

The remaining perturbed values are expressed
through η̃ and ξ̃ in a linear algebraic way:

Ṽr = −iω̂ξ̃ ; Ṽφ = mω̂
η̃
r −

κ2
2Ω0

ξ̃ ; (4)

σ̃ = σ0
[︂
M2
* η̃ −

γ − 1
γ ασ

ξ̃
r

]︂
.

We used following designations:

ω̂ (r) = ω − mΩ0 (r) ; Ω0 (r) = Vφ0 (r) /r; (5)
κ2 (r) = 4Ω2

0
(︀
1 + αΩ/2

)︀
; η̃ = p̃/σ0;

M* = Vφmax/CS0; αf = d ln f0 (r) /d ln r.

Here p̃ and σ̃ – are the perturbations of the plane pres-
sure and the surface density (the unperturbed equilibrium
functions are denoted by the subscript "0"), CS0 – is the
dispersion of the gas velocities (which was assumed to be
equal to its value in the region of the velocity jump), γ –
is plain adiabatic index, m – is the azimuthal harmonic
number. Taking into account the corresponding boundary
conditions, we calculate the eigenvalues ω and eigenfunc-
tions f̃ for system (3). With the aid of (4) we find the re-
maining perturbations.

3 The perturbations are presented in the complex form
f̂ (r, φ, t) ∝ f̃ (m,ω) (r) · exp [i (mφ − ωt)].

4 Results of the investigation of HD
modes in the model gaseous
galactic disk

Recent studies of unstable HD modes in a thin non-self-
gravitatingmodel gas disk, approximating the gas galactic
disk, made it possible to reveal for the first time the pres-
ence of a set of "low-frequency" Ak, and "high-frequency"
Bj unstable oscillation branches along with the known
centrifugal branch of oscillations, CF, see (TO).

The new unstable HD branches of oscillations
found in (TO) were interpreted, by analogy with the
works (Fridman et al. 2006, 2008), as overreflection
modes. Such modes were, apparently, first found by
Kolykhalov (Kolykhalov 1984) – in a plane-parallel com-
pressible gas flow with supersonic vortex sheet and a
parallel rigid wall (providing feedback).

Investigations of unstable HDmodes in (TO) were car-
ried out for amodel diskwith a rotation profile given in the
form:

Vφ th (r) = r · Ωth (r) (6)

= r ·
[︂
⟨Ω⟩ − ∆Ω2 · tanh

(︂
r − RΩ
LΩ

)︂]︂
;

Theparameters set
{︁
⟨Ω⟩;

(︁
∆Ω
2

)︁
; RΩ; LΩ

}︁
for calculating

the model Vφ th (r) was found from the condition, that the
profile (6) must give the same defining parameters, as the
galaxy set (2).

The equilibrium surface density was assumed con-
stant, σ0 (r) = const, ασ = d ln σ0/d ln r = 0.

The equilibrium state of the model gas disk, taking
into account the normalization used, was determined by
three dimensionless parameters: {δVφ; αΩmin}, describ-
ing the shape of themodel rotation curve, and the gas tem-
perature, which was determined by

M* = Vφmax/CS0,

see (5).
In (TO), the main unstable branches of oscillations

for themost large-scale azimuthal harmonicsm = 1, 2, 3
were investigated, with relative amplitudes of the ve-
locity jump δVφ ∈ [0.2; 0.45], in the range of parame-
ters αΩmin ∈ [−6.0; −2.0], M* ∈ [1; 35]. Calculations have
shown that the increments of unstable modes fall signifi-
cantly from idealized profiles with a sharp velocity jump,
αΩmin = −6, to profiles that are closer to the real ones, with
αΩmin = −2.Moreover, the unstable CF oscillation branch,
which forms a regular spiral density wave, has already sta-
bilized when αΩmin = −2. Use for a disk with αΩmin = −2
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a slightly modified (steepened in the central region of the
jump) rotation profile, obtained from (6) without chang-
ing the values {RαΩ; Vφmax; δVφ; αΩmin}, somewhat
strengthened (by increments) the weakly unstable modes,
and revived CF unstable branch, formore details, see (TO).

Although important results were obtained in (TO) on
unstable HD modes in a gas galactic disk, certain funda-
mental questions remained unclear.

1. How much will the eigenvalues and eigenfunctions
of unstable modes change if on the periphery of
the disk the velocity profile is not described by
Ω (r) → const, but, as is the case in a real galaxy,
by Vφ (r) → const, see Figures 1, 2.

2. Are the unstable branches of oscillations preserved
if the steepness of the profile is a real value,
αΩ min ≈ (−1.80) − (−1.85), see (1) and below in the
text.

On the basis of some trial calculations, it was noted in (TO)
that the influence of the periphery of the profile (6) on the
unstable modes is rather weak, and that with an increase
in the value αΩ min from −2 up to about −1.7, the insta-
bility should stabilize. Nevertheless, detailed studies for a
disk with more real model profiles have not been carried
out, and unstable modes in the case of profiles with a pa-
rameter αΩ min ≈ (−1.80) − (−1.85) have not been practi-
cally studied.

In this paper, we present the results of investigations
that give answers to the unresolved questions mentioned
above. Here, as a base profile, describing the rotation
curve, is used the one, which on the periphery of the disk
goes to the plateau:

Vφ th tail (r) = r · Ωth tail (r) ; (7)
Ωth tail (r) = Ωth (r) · ftail (r) ;

ftail (r) =
[︁
1 +

(︀
r/Rtail

)︀N]︁−1/N ; (8)

N = {2 − 6} ;

here function Ωth (r) – from the formula (6).
The results below are obtained with N = 4. When us-

ing (7), (8), a parameter qtail = Vφ ∞
⧸︀
Vφmax is added to

the set of defining parameters of the profile, which defines
the velocity value on the plateau:

{R α Ω; Vφ max; δVφ; α Ωmin; q tail} (9)

The main results presented below are obtained for a disk
with amodel rotation profile (7), (8), with the following set
of defining parameters:

RαΩ = 2.85 kpc Vφmax = 340 km/s; (10)

0  1  2  3  4  5  
0

0.25 

0.5

0.75

1.0

r/R
α Ω

V
φ
/V

φ max
 

 

 

V
φ max

V
φ min

 r
 =

 R
α 

Ω
 

Vφ th

Vφ glx

Vφ th tail g

Figure 2. Rotation curves in normalized units: the same as in the
Figure 1 for the M31 – crosses and dashed lines; the model rotation
curve (7), (8), used in this work – thick solid red line; the profile (6)
used in the previous work (TO) – green dotted line; normalization
parameters: Vφ max = 340 km/s, Rα Ω = 2.85 kpc; other parameters
– see text.

δVφ = 0.40; αΩmin = −1.85;
qtail = 0.80; N = 4;

In the central part of the velocity jump region, the velocity
profile was steepened, similar to that used in (TO). As can
be seen from Figure 2, with the chosen set of parameters
(10), the model rotation curve satisfactorily approximates
the observed rotation curve in the galaxy M31 (Chemin et
al. 2009).

It is this model velocity profile that was plotted on Fig-
ure 2 by thick solid red line together with the observed ro-
tation curve of galaxy M31, (Chemin et al. 2009). As we
noted, functions on Figure 2, as well as all other functions
here, were normalized, and the normalization values for
velocity and radius are Vφmax and RαΩ respectively, see
(10).

First, within the framework of themodel disk with ho-
mogeneous density, the influence of the shape of the ve-
locity profile in the outer part of the disc (relative to the
velocity jump region) on the results of the simulation of
the HD modes was carried out. For a model disk with the
parameters given in (10), but with αΩ min = −2.0, a com-
parisonwasmade of the excitedmodes for the cases of the
rotation profile (6), and the profile (7), (8).
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The differences in the eigenvalues and eigenfunctions
of the excitedmodes, with other fixed determining param-
eters, turned out to bewithin ~3%. This indirectly confirms
that the excitation mechanism of unstable HD modes is
determined by the "generator" – the region of the velocity
jump in the disk.

In the second stage, a study was made of the changes
in HD modes in a model disk with a rotation profile (7),
(8), determined by set of parameters (10), when we move
from αΩ min = −2.0 (Figure 3) to a more realistic value
αΩ min = −1.85, Figure 4. The last rotation profile com-
pletely corresponds to both the observed galactic rotation
curve and our preliminary results on the construction of a
self-consistent 5-componentmodel of the galaxy, see para-
graph 1.

It turns out that a small, at first glance, change in
the steepness of the profile, defined by parameter αΩ min,
significantly changes the properties of the unstable HD
modes excited in the disk. It was found that not only
a significant weakening of the increments of unstable
modes occurs, but also the suppression of some unstable
branches of oscillations, see Figures 3, 4.

The figures represent the calculated pictures of the
eigenvalues – complex frequencies ω, depending on the
varying parameter M*, – for perturbations in the model
disk with velocity profile (7), (8), having a set of parame-
ters (10), for the azimuthal harmonicm = 2. The top panel
presents the phase velocities ωr/m, and the bottom panel
– the increment ωi. The velocity profile steepness parame-
ter αΩ min is changed in the disk, from Figure 3 to Figure 4,
correspondingly from the value −2.0 to the value −1.85.

The range of the parameter M* that is most interest-
ing for applications to the gaseous galactic disk can be es-
timated as⁴: 15 . M* . 25. It is in this range of the pa-
rameter M* that the basic calculations of the eigenvalues
(complex eigenfrequencies of oscillations) and eigenfunc-
tions of unstable branches of hydrodynamic modes were
performed.

When we moved from a disk with a rotation pro-
file with αΩ min = −2.0, Figure 3, to a disk with a rota-
tion profile with αΩ min = −1.85, Figure 4, the CF oscil-
lation branch in the "main" range of parameter M* has
completely stabilized, and the additional low-frequency

4 The values of the maximum of the rotation velocity in massive spi-
ral galaxies are usuallyVφ max ∼ 250 − 350 km/s, and in the casewe
have chosen, Vφ max ≈ 340 km/s. According to observations, in the
inner region of the disk, the dispersion of the gas velocities can be
estimated as CS0 ∼ 12 − 20 km/s, see, e.g., (Haan et al. 2009). This
gives a rough estimate of the range of the parameter M*.
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Figure 3. Calculated eigenvalues of the main unstable branches
depending on the parameter M* in the model gas disk, having ro-
tation profile (7), (8) with parameters (10), but αΩ min = −2.0. Case
of uniform unperturbed surface density. Top panel – phase angular
velocity of waves ωr/m, bottom panel – increment ωi.

branch A0 is practically not relevant because of small in-
crements and its stabilization at M* & 13, see Figure 4.

So, as it can be seen from the results shown in Fig-
ure 4, in the model disk with a uniform surface density,
and with a rotation profile (7), (8), having a complete set
of parameters (10), practically A1 was the only unstable
low-frequency branch that survived.

Two basic approaches can be used to analyze the spa-
tial form of perturbations. Taking into account the com-
plex representation of the perturbations (footnote (3)), we
can write the real perturbations at a fixed time moment in
the form:

Re
{︁
f̂ (r, φ)

}︁
= Af (r) (11)

· cos
{︀
m
[︀
φ − ψf (r) + φ0

]︀}︀
Here, the amplitude Af (r) and phase ψf (r) of the per-
turbed function f̂ (r, φ) are determined through the abso-
lute value and the argument of the complex function f̃ (r)
in the standard way:

Af (r) =
⃒⃒⃒
f̃ (r)

⃒⃒⃒
; ψf (r) = −

1
mArg

{︁
f̃ (r)

}︁
; (12)

The values of the initial phase φ0, at φ0 = (2π/m) · n,
n = 0; ±1; ±2; ... – correspond in (11) to perturbation
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Figure 4. The eigenvalues of the main unstable branches depending
on the parameter M*, in the model gas disk as in Figure (3), but with
more realistic velocity profile, having the steepness velocity jump
parameter αΩ min = −1.85.

maxima at each radius, and φ0 = (π/m) · n, – determine
the minima.

For example, the phase curveψσ1 (r) of calculated per-
turbed surface density σ1 (r, φ) as the eigenfunction, cor-
responding to the eigenvalue ω of unstable branch A1,
azimuthal harmonic m = 2, and parameter M* = 15.0, is
presented on Figure 5, bottom panel. The curve describes
the phase φ of the amplitude maximum of eigenfunction
σ1 (r, φ) at each radius r. The corresponding maximum
amplitude Aσ1 (r) is presented on the top panel of the Fig-
ure.

Another standard way of representing perturbations
is the image of the surface Re

{︁
f̂ (r, φ)

}︁
. On Figure 6 the

same calculated perturbed surface density σ1 (r, φ) for A1
unstable root, as in Figure 5, is presented. Also on this Fig-
ure, the perturbed vector velocity field in the coordinate
frame, rotating with the angular velocity Ω = Ωph, where
Ωph = ωr/m – is the phase angular velocity of the root A1,
– is shown. As is known, perturbed vector velocity field
(in co-rotating frame) of HDmodes in the considered case,
forms an anticyclonic vortexes, with centers near corota-
tion circle (TO). These centers on Figure 6 denoted by red
stars.
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Figure 5. Amplitude (top) and phase (bottom) of the perturbed sur-
face density σ1 (r, φ) for eigenfunction, corresponds to the eigen-
value ω of unstable branch A1, azimuthal harmonic m = 2, see Fig-
ure 4, with fixed value of parameter M* = 15.0. The model disk has
uniform unperturbed surface density, and rotation profile (7), (8),
with parameters (10). Here the annular radial interval encompassing
the region of the velocity jump is represented. Vertical dashed lines
show the radii of resonances: blue - corotation, red - Lindblad’s.
In the shown here annular region, there are two internal Lindblad
resonances, the outer one is somewhat further along the radius.

The unstable HD modes of oscillations of different
branches are large-scale gravitational-acoustic growing
waves in an inhomogeneous (along the radius) gas galac-
tic disk.

In particular, perturbations for unstable low-
frequency oscillation branches have an internal "wave
zone" (relative to their corotation radius located inside the
velocity jump, closer to its periphery). We can see it on fig-
ures 5 and 6, where the perturbed surface density σ1 (r, φ)
of branch A1, azimuthal harmonic m = 2, is shown. From
figure 6 it is clear, that the perturbations of surface density
for a branch A1, harmonic m = 2, can be represented as
two tightly wound quarter-turn spirals localized along ra-
dius near the corotation circle. So, this unstable HD mode
can form an analog of inhomogeneous and not quite cir-
cular pseudo-ring.
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Figure 6. The same eigenfunction σ1 (r, φ), as on Figure 5, in usual
representation. The corotation circle is indicated by a bold black
dot-dashed line, the phase curve – by blue dashed line. The arrows
represent the perturbed vector velocity field in the coordinate frame
of the wave, red stars denote centers of anti-cyclones, large arrow
to the north-west indicating the direction of the disk rotation. The
outer part of the disk is cut off, where the perturbation amplitude
decreases quite rapidly.

As we shall see below, perturbations for the centrifu-
gal branch CF have, in the opposite way, an external wave
zone, and it’s corotation radius is located slightly inward
from the center’s radius of the velocity jump.

5 Influence of gradients of
unperturbed surface density of a
gas galactic disk on unstable HD
modes

According to observations, in many massive spiral galax-
ies, the equilibrium surface density σ0 (r) can vary quite
strongly with the radius, even with smoothing of small-
scale inhomogeneities.

In the main part of the gas disk, where a global spiral
structure is observed, σ0 (r) of gas is determinedbyneutral
hydrogen HI, and is estimated to be close to values corre-
sponding to the boundary of the disk’s gravitational sta-
bility (Zasov et al. 2011):

σ0 (r & 1.5RαΩ) ≈ (5 − 8) M⊙/(pc)2.

In the inner region of such galaxies, when
r . (1 − 1.5) RαΩ, there is sometimes a fairly massive disk

of molecular hydrogen H2, whose surface density can
reach a hundred or more units of M⊙

⧸︁
(pc)2, see, for ex-

ample (Helfer et al. 2003).
In spiral galaxies where there is no such molecular

disk at the time of observation, but there is a noticeable
star formation in the inner region of the galaxy, indicating
the presence of a young stellar pseudo-bulge, we can as-
sume the existence of such amassive gas disk in the recent
past.

Therefore, it seems important to investigate the influ-
ence of gradients of the unperturbed equilibrium surface
density of a gas galactic disk on the development of unsta-
ble HD modes in it. The system of equations (3), (4) was
used to study unstable HD modes in a gas galactic disk
with an inhomogeneous equilibrium surface gas density
σ0 (r). Themodel densitywas specified using the function:

σ0 (r) = σ02
[︂
(Qσ + 1)

2 (13)

− (Qσ − 1)2 tanh
(︂
r − Rσ
Lσ

)︂]︂
,

where Qσ = σ01/σ02, σ01 and σ02 – are the surface densi-
ties in the center of the disk and at its periphery, respec-
tively; Rσ – radius of the density jump center, Lσ – semi-
thickness of the transition region.

The results of the investigations of unstable HDmodes
presented below are obtained for a disk with a model pro-
file Ωth tail (r), see (7), (8), with parameters given in (10),
andwith themodel function σ0 (r), defined by the formula
(13), with the following set of parameters:

Qσ = 20; Lσ = 0.1; (14)

σ02 = 5 M⊙
⧸︁
(pc)2 Rσ ∈ [0.4 − 1.4] ;

Suchparameters qualitatively correspond to thedistri-
butions of the equilibrium surface density of the gas disk,
which are observed in some massive spiral galaxies.

It can be assumed that the σ0 (r) density jump, de-
scribed by (13), (14), will not be too "narrow". Taking into
account the normalization of the linear units over RαΩ,
see (10), the chosen width of the σ0-jump region will be
∼ 2Lσ ≈ 570 pc, which is several times larger than the
characteristic thickness of the gas disk in its central re-
gion.

It was found that the presence of a strong inhomo-
geneity of the surface density, described by formulas (13),
(14), significantly changes the properties of unstable HD
modes. In this case, depending on the position Rσ of the
center of the density jump (relative to the center of the ve-
locity jump), individual branches of oscillations can both
beweakened, up to stabilization, andappreciably increase
in increment, in comparison with a homogeneous disk.
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The results of the simulation performed below are
analyzed using calculations for the azimuthal harmonic
m = 2.

We found out that different branches of HD oscilla-
tions change in different ways when the inhomogeneity of
the surface density is introduced into the model. In partic-
ular, the resonant low-frequency branch A1 exhibits the
local maximums and local minimums of the increment as
a function of the changes in the position of the center of
the density jump Rσ, with the fixed remaining parameters
of the model disk. These changes of the eigenvalue ω for a
typical value M* = 15, are shown on Figure 7.
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Figure 7. Calculated eigenvalues of the main unstable branches of
the m = 2 harmonic, depending on the parameter Rσ – the position
of the σ0 (r) -jump (relative to RαΩ – position of the Ω (r)-jump),
at fixed value of parameter M* = 15. The model gas disk has the
velocity profile (7), (8) with parameters (10), and αΩ min = −1.85.
The unperturbed surface density σ0 (r) is described by (13), (14).
Top panel – phase angular velocity of waves ωr/m, bottom panel –
increment ωi.

Another important effect of the influence of density
gradients was the "revival" of the branch CF, when the po-
sition of the density jump, Rσ, falls into a neighborhood of
some resonance value, Rσ 0, see Figure 7. The increment
of the CF branch with Rσ ≈ Rσ 0, exceeds the local maxi-
mums of the increments of branch A1, in the range of the
parameter 10 6 M* 6 25. However, when the center Rσ is
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Figure 8. The eigenvalues of the main unstable branches of the
m = 2 harmonic, depending on the parameter M*, at fixed value
of parameter Rσ = 0.96. The model gas disk has the same other
parameters, as described in Figure 7.

displaced relative to Rσ 0 by & 10%, the CF branch stabi-
lizes.

We note the well-known property of the growth rate
of unstable HD modes, which also manifests itself in the
inhomogeneous disk described here. When the parameter
M* increases, starting with the values M* & (3 − 5) /δVφ,
here it means M* & 10, with its further growth, the maxi-
mum increments of unstable HDmodes decrease quite no-
ticeably.

Nevertheless, the magnitudes of the increments near
their maxima for the investigated unstable branches of HD
modes remains acceptable for the development of these
modes in the galactic disk – up to values of the parame-
ter M* ≈ 20, see Figure 8.

Now we can compare, how change the behavior of
the perturbations for the unstable CF branch of HD
modes, when we proceed from the model disk with a uni-
form equilibrium surface density (and the velocity pro-
file steepness parameter αΩ min = −2.0), – to the disk
with the σ0-jumped surface density (and the parameter
αΩ min = −1.85).

For comparison, Figures 9 and 10 present the calcu-
lated patterns of the perturbed surface density (eigenfunc-
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tion) for an unstable branch CF, the harmonicm = 2, for a
parameter value M* = 15, for two cases:

on Figure 9 – for a disk with a rotation profile (7), (8)
with parameters (10), but with αΩ min = −2.0, and a
uniform equilibrium surface density;

Figure 9. The perturbed surface density σ1 (r, φ) for the unstable
branch CF , the azimuthal harmonic m = 2, the parameter M* = 15.
Case of the model disk with a uniform unperturbed surface density,
and angular velocity profile (7), (8) with parameters (10), but with
αΩ min = −2.0.

Figure 10. Normalized perturbed surface density σ1 (r, φ)/σ0 (r),
for the unstable branch CF , the azimuthal harmonic m = 2, and pa-
rameter M* = 15. Case of the model disk having an angular velocity
profile (7), (8) with parameters (10), parameter αΩ min = −1.85. The
unperturbed surface density σ0 (r) is described by (13), (14). The
scale of the exponential decay of the amplitude with radius, Le, for
r > (1.5 − 2) is Le ≈ (3.9 − 4.0) kpc.

and on Figure 10 – for a disk with a similar rotation
profile, with αΩ min = −1.85, but with non-uniform
equilibrium surface density (13), with parameters
(14), and Rσ = 0.87.

Note, that the inner part of the perturbations σ1 (r, φ)
(near the corotation) for the CF branch in Figure 10 – is
visually similar to the pseudo-ring structure in the case of
the A1 branch in Figure 6.

The eigenfrequencies, corresponding to the calculated
eigenfunctions, are present on the Figure 3 and Figure 7,
respectively.

For a disk with an inhomogeneous unperturbed
surface density σ0 (r), described by (13), (14), the dis-
tribution of the normalized perturbed surface density
σ1 (r, φ) /σ0 (r) is represented in the Figure 10.

It is this function that actually enters the equations de-
scribing the dynamics of small perturbations, see (3), (4).
As we see, the behavior of the disturbances on the Figs. 9
and 10 – looks pretty close.

On the other hand, in the case of the σ0 (r), described
by (13) and (14), the density perturbations σ1 will have a
small absolute amplitude in the outer region of the disk
(with respect to the density jump position).

Nevertheless, fromFigure 10 it can be seen, that the CF
branch is able, in principle, to form a regular spiral struc-
ture in the main part of the gas galactic disk (in the outer
region of the disc relative to the velocity jump).

To show explicitly the possibility of increasing the in-
crements of the CF branch due to the presence of the σ0 (r)
jump, Figure 11 shows the calculated eigenvalues of the
main (in increments) unstable branches, dependingon the
position Rσ of the center of the density jump for the disk
with the profile (10), but with αΩmin = −2.0, and model
σ0 (r) in the form (13). We see that the presence of a den-
sity jump can increase the growth rate of unstable HD
branches. In particular, the increment of the CF branch
can increase almost twofold in comparison with a disk of
a uniform density.

As follows from the results shown in Figures 7 and
8, the unstable HD modes, which are found in a model
disk that is inhomogeneous in the unperturbed surface
density, see (13), (14), and have a realistic velocity pro-
file (7), (8) with the velocity profile steepness parameter
αΩ min = −1.85, – quite "weak", i.e. have relatively small
increments.

Will such HD modes appear in the gas disk of a real
galaxy? The answer is given by an estimate of the char-
acteristic growth time of the perturbations. We use the
applied normalization. Taking into account the parame-
ters (10), the normalizing frequency Ωnorm = Vφmax/RαΩ
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Figure 11. Calculated eigenvalues of the main (in increments) unsta-
ble branches of the m = 2 harmonic, depending on the parameter
Rσ, at fixed value of parameter M* = 15. The model gas disk has
the velocity profile (7), (8) with parameters (10), and αΩ min = −2.0.
The unperturbed surface density σ0 (r) is described by (13), (14).
Notation – as in Figure 7. The asterisks show the eigenvalues for
the case σ0 = const. Top panel – phase angular velocity of waves
ωr/m, bottom panel – increment ωi.

is: Ω norm ≈ 119.3
(︁
km/s

)︁⧸︁
kpc. Then, for the time τe of

the exponential growth of the perturbation amplitude we
obtain an approximate formula that is applicablewhenus-
ing a particular set of parameters (10):

τe =

[︁
kpc

⧸︁(︁
km/s

)︁]︁
[ωi · Ωnorm]

≈ 8.196 · 10−3
ωi

GY (15)

As follows from the calculated eigenvalues of unstable HD
modes in the inhomogeneous model gas disk, with the ro-
tation profile (7), (8) and the parameters (10), in which
σ0 (r) is described by formulas (13), (14), the increment of
the modes at a typical value of the parameter M* = 15,
have a magnitude ωi & 0.03, see Figure 7.

Using (15), we obtain an estimate of the time of ampli-
tude growth by a factor of e: τe . 0.273 GY. In this case,
the amplitude growth time by an order of magnitude will
be: τ10 . 1.0GY.

If the values of the parameterM* in the disk are closer
to M* = 20, then the increments of the modes, as can be
seen from Figure 8, will be almost two times lower than in

the case of M* = 15, and the corresponding growth times
of the amplitude will be as many times as large.

This indicates the weakness of the investigatedmodes
in themodel gas diskwith the fairly realistic sets of param-
eters that we use. Moreover, the possibility of generating
of an unstable CF branch of perturbations in the "main"
range of the parameter M*, 15 . M* . 25, may not be re-
alized in the disk, because of the sensitivity of this branch
to the position Rσ, see Figure 7.

On the other hand, low-frequency branch A1 is quite
capable of developing in a real disk, because it is preserved
in a homogeneous disk, see Figure 4, and in a disk with
a nonuniform unperturbed gas surface density, see Fig-
ure 7. The values of the increments for this branch of oscil-
lations are satisfactory – up to the values of the parameter
M* ≈ 20. SuchanunstableHDoscillationmode can, under
certain conditions, form a large-scale pseudo-ring struc-
ture in the gas disk in the region of the velocity jump in
the galaxy. If unperturbed surfacedensity of the gasdisk in
the region of formation of the pseudo-ring was sufficiently
large, then, owing to star formation, a similar pseudo-ring
will appear in the young stellar disk.

6 Conclusions
A study is made of unstable HD modes in a thin, non-self-
gravitating model gas disk that approximates the gas disk
of a real galaxy whose rotation curve has a velocity jump
in the inner region of the disk.

It is shown that in this model disk two different
branches of unstable HD modes can be generated –
the "traditional" CF branch of oscillations, and the low-
frequency branch A1. Both branches have rather small in-
crements, at typical values of the temperature parameter
M* in the disk, the times τ10 of grows of the perturba-
tion amplitude by an order of magnitude turn out to be
τ10 . (1 − 2) GY.

Branch A1 has more chances for its manifestation in a
real gas galactic disk, because it can be excited both in a
uniform disk and in a disk that is inhomogeneous in den-
sity. This branch leads to the formation in the vicinity of its
corotation radius (the latter lies inside the velocity jump
region) of the pseudo-ring in the surface density field.

In the case of a two-arm azimuthal harmonic, these
are two tightly wound quarter-turn spirals. If the surface
density in the gas disk in the region of formation of this
pseudo-ring proves to be high enough, then, due to star
formation, a similar pseudo-ring will be formed in the
young stellar disk.
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An unstable branch CF generates a regular spiral den-
sity wave in the region of the disk behind the velocity
jump. However, there are fewer chances for this branch of
oscillations, since for its excitation it is necessary that an
appreciable density jump also exists in the gas disk, and
the center of this jump must fall into a narrow neighbor-
hood of some resonant position.

According to preliminary calculations, at some inter-
vals of the parameter M* a branches of other large scale
azimuthal harmonics – m = 1, and m = 3 – can be gen-
erated with increments, comparable with the ones of the
main branches of the m = 2 harmonic.
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