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Abstract. In this note we discuss the main results of a study of a massive
binary with unequal mass ratio, q, embedded in an accretion disk, with its
orbital rotation being opposed to that of the disk. When the mass ratio is
sufficiently large, a gap opens in the disk, but the mechanism of gap formation
is very different from the prograde case. Inward migration occurs on a timescale
of tev ∼ Mp/Ṁ , where Mp is the mass of the less massive component (the

perturber), and Ṁ is the accretion rate. When q ≪ 1, the accretion takes
place mostly onto the more massive component, with the accretion rate onto
the perturber being smaller than, or of order of, q1/3Ṁ . However, this rate
increases when supermassive binary black holes are considered and gravitational
wave emission is important. We estimate a typical duration of time for which
the accretion onto the perturber and gravitational waves could be detected.
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1. INTRODUCTION

Supermassive black hole binaries (SBBH) may form as a consequence of galaxy
mergers, see, e.g., Komberg (1968), Begelman, Blanford & Rees (1980). Given that
the directions of the angular momenta associated with the motion of the binary
and that of the gas in the accretion disk are potentially uncorrelated, the binary
may move either in a prograde or retrograde orbit with respect to the orbital
motion in the disk when it becomes gravitationally bound and starts to interact
with it.

The prograde case has been considered by many authors beginning with Ivanov,
Papaloizou & Polnarev (1999), hereafter IPP, and Gould & Rix (2000). The
retrograde case has received much less attention, with relatively few numerical
simulations available to date, see, e.g., and Nixon et al. (2011a,b). However,
the retrograde case may be as generic as the prograde case when the interaction
of SBBH with an accretion disk is considered. Note that, although the disk is
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likely to be initially inclined with respect to the orbital plane of the binary, the
alignment on a length scale corresponding to the so-called alignment radius is
attained relatively rapidly, the direction of rotation of the disk gas being either
retrograde or prograde with respect to orbital motion, depending on the initial
inclination, see, e.g., IPP.

Here we review recent results published in detail by Ivanov, Papaloizou,
Paardekooper and Polnarev (2015, hereafter IPPP) on the the evolution of ret-
rograde SBBH. A variety of analytical and numerical techniques were employed.
For simplicity, a binary in a circular orbit that was coplanar with the disk was as-
sumed for the most part. However, the case of an eccentric binary was also briefly
discussed. The main emphasis is on the case of a small mass ratio q. However,
this is taken to be sufficiently large that the disk is significantly perturbed in the
neighborhood of the binary orbit.

We describe our numerical approach to the problem of the interaction of SBBH
with an accretion disk in Section 2 and a simple analytical approach for calculat-
ing the orbital evolution of SBBH in Section 3. Various associated effects and
phenomena are discussed in Section 4. Finally, in Section 5 we summarize the
results.

2. NUMERICAL SIMULATIONS OF MASSIVE RETROGRADE
PERTURBERS EMBEDDED IN THE ACCRETION DISK

In this section we consider numerical simulations for which the perturber is
massive enough to significantly perturb the accretion disk1 and open a surface
density depression called hereafter ‘a gap’ in the vicinity of its orbit. For that we
require mass ratio, q, of the perturber with mass Mp to the dominant mass M ,
to be greater than ∼ 1.57(H/rp)

2, where rp is the radius of perturber’s orbit and
H is the disk semi-thickness. We consider values of q of 0.01 and 0.02 below. In
some runs, accretion onto the perturber is taken into account. The initial surface
density was specified to be ∝ r−1/2 and scaled so that the total mass interior to
the initial orbital radius of the perturber was 10−3 in units of the dominant central
mass.

The perturber was initiated on a retrograde circular orbit of radius r0 which is
taken to be the simulation unit of length. For simulation unit of time we take the
orbital period of a circular orbit with this radius. We use two different values of
the softening length bs. For the “standard case”, bs = 0.6H was adopted and for
the case of “small” softening, bs = 0.1H was adopted. For other details see IPPP.

The structure of the disk gaps for q = 0.02 and q = 0.01 is illustrated in the
surface density contour plots presented in Figs. 1 and 2 at various times. The runs
respectively correspond to the strongest and weakest gap forming cases considered
in this section. Note that the gap is indeed significantly wider and deeper for
q = 0.02 as expected, and, in addition, the gap edges define significantly non
circular boundaries. Material crossing the gap in the form of streamers is also
present. Note that an animation of the process of gap formation can be found on
the website http://astro.qmul.ac.uk/people/sijme-jan-paardekooper/publications.

1 See IPPP for the opposite case of a low mass perturber, which is insufficiently massive to
open a gap.
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Fig. 1. log Σ contours for q = 0.02 with a softening length of 0.1H after 50 (left
panel) and 100 (right panel) orbits. In these simulations the companion (the small light-
gray circle), its position in each case being at the center of the white circle located within
the gap region, was allowed to accrete. The width of the gaps slowly increases while the
accretion rates, on average, slowly decrease with time. Short-wavelength density waves
in the outer disks are just visible. Note that values of log Σ below the minimum indicated
on the color bar are plotted as that minimum value.

Fig. 2. The same as in Fig. 1b but for q = 0.01 with a softening length of 0.6H after
100 (left panel ) and 800 orbits (right panel). As the mass ratio is lower in this case
compared to that of Fig. 1b the gap in the disk is narrower. The companion, indicated
by the small light-gray circle is found, in general, to orbit closer to the inner disk edge at
earlier times. In the left-hand panel the companion grazes the inner edge slightly above
the x axis for x < 0. This enhances the accretion rate at that stage.
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Fig. 3. Semi-major axis, in units of the initial orbital radius, as a function of time
for q = 0.02 and q = 0.01 for small softening and for q = 0.01 with standard softening.
Two curves without superimposed crosses, which are very close together, are shown for
each of these three cases. The uppermost pair of curves corresponds to q = 0.01 with
standard softening, and the lowermost pair to q = 0.01 with small softening. The central
pair corresponds to q = 0.02 with small softening. The lower of the pair of curves for
the cases with small softening corresponds to runs with accretion from the disk included.
For the case with standard softening this situation is reversed. The straight lines with
superimposed crosses are obtained adopting the initial Type I migration rate. The line
with the more widely separated crosses corresponds to q = 0.01 with small softening
while the other line corresponds to q = 0.01 with standard softening.

The semi-major axis is shown as a function of time for q = 0.02 and q = 0.01 for
small softening and for q = 0.01 with standard softening in Fig. 3. The behavior
depends only very weakly on whether the perturber is allowed to accrete from
the disk or not. At early times, the cases with q = 0.01 have the migration rates
expected in the type I regime, where the gap is not open, see IPPP. However, after
a few orbits the effects of gap formation become noticeable and migration starts to
slow down. For the case with q = 0.02, the initial migration rate is a factor of two
smaller than the expected type I migration rate with the effects of gap formation
being noticeable immediately. Note that at longer times the migration rates for
q = 0.01 with different softening lengths slow down to become approximately equal
as would be expected if the migration was governed by the viscous evolution of the
disk. On the other hand, the larger open inner boundary radius adopted for the
simulations with smaller softening, on account of necessary numerical convenience,
results in a relatively larger angular momentum loss from the system as material
passes through and this may also affect the orbital evolution (see below). In all
cases the characteristic time scale becomes comparable to, or greater than, that
for the viscous evolution of the disk.

3. A SIMPLE APPROACH TO EVOLUTION OF THE BINARY AND THE
DISK

A very simple approach to the problem of calculation of the orbital evolution
is possible when the pertuber’s mass is larger than a typical disk mass in a region
of size rp (see IPPP). In this case the orbital evolution timescale tev exceeds the
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local timescale for viscous evolution of the disk, tν . After the perturber has been
present in the disk for a time that is longer than tν , but shorter than tev, the
disk structure at radii r ∼ rp should be close to a quasi-stationary one. In this

situation, the mass flux Ṁ and the specific angular momentum at the inner disk
may be assumed to be functions of time exclusively with a characteristic time scale
for change being much shorter than tν .

In addition, in the limit q ≪ 1, the annulus in the vicinity of the perturber,
where impulsive interaction with the disk gas operates, is very small, with a typical
dimension ≪ rp. Therefore, in the simplest treatment of the problem, we describe
the influence of the perturber on the disk as providing a jump condition for sur-
face density, to be applied at the perturber’s orbital location, in a disk otherwise
evolving only under the influence of internal viscosity.

As indicated above, the mass flux through the gap is approximately constant
in this limit. Furthermore, it can be easily shown (e.g., IPPP) that, when the
mass flux is fixed, stationary solutions depend only on one constant of integration,
h∗, which is proportional to the flux of angular momentum through the disk via
the relation L̇ = ṀΩ0r

2
0h∗.

The region of the disk for which r slightly exceeds rp should attain Σ(rp+) ∼ 0
as a result of interaction with the perturber, which causes disk gas at radii slightly
exceeding rp to lose angular momentum and be transferred to the inner region
through the gap. This means that the flux of angular momentum through the
disk at radii r >∼ rp, L̇+, should be ∼ Ṁ

√
GMrp and we must accordingly set

h∗ =
√
rp/r0.

On the other hand, the flux of angular momentum through the inner disk, at
r <∼ rp, L̇−i, should be equal to the angular momentum accreted per unit time
by the component with the dominant mass, M . Assuming that rp is much larger
than the size of the last stable circular orbit around that component, we can set
L̇− ≈ 0.

Since the total angular momentum of the system is conserved and that, for
small enough inner boundary radius, there is no angular momentum flux through
the inner disk, the outward angular momentum flux through the outer disk, T ,
must be equal and opposite to the torque acting on the perturber due to the disk,
the latter being −T . Thus we have

T ≈ −Ṁ(t)
√
GMrp, (1)

where Ṁ(t) > 0, and, accordingly, T < 0.

As shown in IPPP, when the disk has formally infinite extent, Ṁ(t) ≈ const is
equal to the mass flux at infinity. In this case, we use (1) and the law of angular
momentum conservation to obtain

rp = r0 exp(t/tev), tev =
Mp

2Ṁ
. (2)

When the disk has a finite extent, as in our numerical simulations, a simple ap-
proach to the calculation of the dependence of Ṁ on t is possible for a disk with
a constant kinematic viscosity. A comparison of the results based on analytic
and numerical methods is shown in Fig. 16 of IPPP, which demonstrates excellent
agreement between the methods.
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4. ADDITIONAL EFFECTS AND PHENOMENA

4.1. Effects of finite eccentricity

So far we have assumed that the eccentricity of the binary is zero. In this
case it can be easily shown that there are no outer Lindblad resonances and the
standard mechanism of gap opening by a torque carried by waves launched at res-
onances is absent. The situation is different, however, in the case of an eccentric
retrograde binary, which can form both when SBBH and planetary systems are
considered, see, e.g., Polnarev & Rees (1994), Papaloizou & Terquem (2001) for
the case of SBBH and planetary systems, respectively. In this case the Lindblad
resonances are present, although the amplitude of the torque is suppressed com-
pared to the prograde case. Provided the gap (or cavity) forms through the action
of the resonances, its structure is quite different from that discussed above and
can resemble the prograde case discussed in IPP. Namely, the action of resonances
supplies positive angular momentum to the disk gas, thus leading to accumula-
tion of the gas at distances exceeding rp, and, accordingly, formation of a gap or
circumbinary cavity. In order to estimate the importance of this effect we use the
theory of Goldreich & Tremaine (1979) and the gap opening criterion discussed
by Lin & Papaloizou (1979) and Artymowicz & Lubow (1994). The condition of
gap formation can be formulated as the condition for the binary eccentricity to

exceed some critical value el,mcrit, where l and m correspond to a Fourier harmonic
with temporal and azimuthal mode numbers m and l, respectively. We have

e1,−1
crit ≈ 0.2α

1/4
∗ q

−1/2
∗ δ

1/2
∗ (3)

and
e2,−1
crit = 0.37α

1/6
∗ q

−1/3
∗ δ

1/3
∗ , (4)

for m = 1, l = −1 and m = 2, l = −1, respectively, where α∗ = α/10−2,
q∗ = q/10−2 and δ∗ = (H/r)/10−3. Since the critical eccentricities are of the order
of 0.2–0.4 for very thin accretion disks, which may be present in galactic nuclei,
this effect may operate there. The situation is less favorable for protoplanetary
disks, where we typically have δ ∼ 0.05, and, accordingly, δ∗ ∼ 50. In this case we
have the critical eccentricities formally exceeding unity for α∗ = 1, and, therefore,
this effect is unlikely to operate unless α is very small.

4.2. Mass flux to the perturber

The mass flux to the perturber is estimated in IPPP as

ṁ ∼ q1/3Ṁ. (5)

It was also shown by IPPP that this estimate agrees with numerical simulations,
provided the results obtained by the numerical approach are averaged over several
orbital periods. On the other hand, the numerical approach shows that the mass
flux can change by order of magnitude or more on the orbital timescale. Note
that this variability may lead to some important consequences since it can lead
to luminosity variability on the same time scale, provided accretion efficiency is
sufficiently large. Also note that equation (5) shows that the mass flux onto the
perturber is smaller than the mass flux onto the primary component, provided
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q ≪ 1, and the orbital evolution is determined by the interaction with the disk.
This, however, can change for SBBH when the orbital evolution is sped up by the
emission of gravitational waves, see the next Section.

4.3. The influence of emission of gravitational waves on the orbital evolution
and accretion rate for SBBH

In the case of SBBH there is an additional important mechanism for driving
orbital evolution through emission of gravitational waves. For a circular orbit and
q ≪ 1, the corresponding time scale, tgw, can be easily obtained from formulas
given, e.g., by Landau & Lifshitz (1975) and from equation (2). We first remark
that tev can be written as

tev ≈ 5 · 107
(
q−2M8

Ṁ−2

)
yr, (6)

where q−2 = q/10−2, M8 = M/108M⊙, and Ṁ−2 = Ṁ/(10−2M⊙ yr−1). From
the condition tgw < tev we find that gravitational waves determine the orbital
evolution when

rp < rgw(I) = rg

(
8c q tev
5 rg

)1/4

≈ 0.7q−2M8

(Ṁ−2)1/4
pc. (7)

Note that the orbital period at rp ∼ rgw(I) given by Porb ≈ 5r
3/2
−2 M

−1/2
8 yr, where

r−2 = rp/(10
−2 pc), is expected to be of the order of a few years. From the

definition of rgw(I) and (6) it also follows that

tgw =

(
rp

rgw(I)

)4

tev. (8)

Another important scale length, rgw(ν), is determined by the condition that the
time scale for orbital evolution due to gravitational radiation should be less than
the time scale for viscous evolution of the disk, or tgw(rp < rgw(ν)) < tν . For this
scale length we obtain

rgw(ν) = rg

[
32
√
2q

15αδ2

]2/5

≈ 5 · 10−3M8(q−2)
2/5α

−2/5
∗ δ

−4/5
∗ pc. (9)

When r < rgw(ν), from the point of view of the perturber, the disk gas is trans-
ferred from the inner disk to the outer disk which is the opposite direction to
that considered above. However, arguments leading to formula (5) remain essen-

tially the same if instead of the accretion rate through the disk, Ṁ , the rate of
transfer of the disk gas through perturber’s orbit, Ṁtr, is adopted. Note that
Ṁtr is defined in the frame, where the perturber is at rest. We can estimate it
as Ṁtr ∼ Md(r < rp)/tgw, where Md(r < rp) is the disk mass inside the per-
turber’s orbit. As discussed above, the disk inside the perturber’s orbit can be
approximated as a stationary accretion disk, characterized by the accretion rate
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Ṁ , and, therefore, its mass can be estimated as Md(r < rp) ∼ Ṁtν . Taking these
considerations into account we obtain

ṁ ∼ q1/3Md(r < rp)

tgw
∼ q1/3Ṁtν

tgw
∼

q1/3Ṁr4gw(ν)

r4
. (10)

This indicates that the accretion rate onto the secondary can exceed that onto the
primary, ∼ Ṁ, provided that

r < rcrit = q1/12rgw(ν). (11)

Given that the power of q in (11) is small, we have that typically rcrit ∼ rgw(ν).

4.5. An estimate of the time for which gravitational waves with amplitudes
sufficient for possible detection will be emitted during inspiral

Let us assume that a future space-borne gravitational wave antenna will have
sensitivity h0 = 10−22h̃−22 in the frequency range

ωmin = 10−5 ω̃−5 Hz < ωgw < ωmax = 10−2 ω̃−2 Hz , (12)

where h̃−22 = h0/10
−22, ω̃−5 = ωmin/10

−5 Hz, ω̃−2 = ωmax/10
−2 Hz are dimen-

sionless constants, and we expect the antenna to be sensitive to gravitational waves
with a typical amplitude 10−22 and typical frequencies 10−5 − 10−2 Hz. On the
other hand, when the SBBH orbit is approximately circular, we have

ωgw ≈ 2ωorbit = 2(GM)1/2r−3/2 and hence r = rg(c
√
2/rgωgw)

2/3. (13)

From (13) and the conditions on ωgw given by (12) one obtains the following
constraints on the orbital radius during this final stage:

βmin < r/rg < βmax, where βmin =
(√

2rgωmax/c
)−2/3

and βmax =
(√

2rgωmin/c
)−2/3

. (14)

Another constraint is obtained from a comparison of the amplitude of the emitted
gravitational waves, |hαβ |, with h0. Using the quadrupole formula (Landau &
Lifshitz 1975) to make an order of magnitude estimate, one obtains

h ∼ (2G/3c4L)D̈αβ ∼ (2G/3c4L)(3/2)qMr2ω2
gw

= (G/c4L)qMr2(4GM)/r3 = qr2g/rL > h0, (15)

where L = L100×100 Mpc is the distance to the binary and D̈αβ is the second time
derivative of the quadrupole tensor. Given that r > rst = 3rg, where rst is the
radius of the last stable circular orbit for the Schwarzschild metric, the conditions
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for the gravitational radiation from the binary to be detectable can be written in
the form

max [3, βmin] <
r

rg
< min [β∗, βmax], where β∗ =

qrg
h0L

. (16)

These constraints are compatible if

β∗ > 3, β∗ > βmin and βmax > 3. (17)

The above inequalities can be rewritten as

q−2 > 3× 10−9h̃−22L100M
−1
8 , q−2 > 3× 10−10h̃−22L100M

−5/3
8 ω̃

−2/3
−2

and M8 < 3× 102ω̃−1
−5 . (18)

In the most realistic case

q−2 > 3× 10−8h̃−22L100M
−5/3
8 ω̃

−2/3
−5 , which corresponds to β∗ > βmax (19)

and the duration of this final stage is

∆tgw ≈ 102q−1
−2M

−5/3
8 ω̃

−8/3
−5 yr. (20)

During this period the frequency of gravitational waves increases from ωmin to ω∗,
where

ω∗ = ωmax, if M8 < 3× 10−2ω̃−1
−2 (which corresponds to βmin > 3) (21)

or ω∗ = 3× 10−4M−1
8 Hz (the frequency corresponding to r = rst = 3rg),

if 3× 10−2ω̃−1
−2 < M8 < 3× 102ω̃−1

−5 (corresponding to βmin < 3 < βmax). (22)

5. CONCLUSIONS

In this note we briefly reviewed the results obtained in IPPP on the interaction
of a retrograde circular binary with a coplanar accretion disk. We discussed the
following results.

(1) When the mass ratio q is small, but larger than ∼ 1.6(H/rp)
2, a gap in the

vicinity of the perturber opens due to increase of radial velocity of the gas in this
region. Its size is smaller than the orbital distance rp in this limit.

(2) For such systems, assuming that perturber’s mass is larger than a typical
disk mass at distances ∼ rp, the disk structure outside the gap is close to a
quasi-stationary one. The inner disk has nearly zero angular momentum flux,
while the outer disk has angular momentum flux equal to the mass flux times the
binary specific angular momentum. The timescale of orbital distance evolution,
tev = Mp/(2Ṁ), is determined by the law of conservation of angular momentum.
Note that this picture differs from the prograde case with similar parameters, where
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there is a pronounced cavity instead of the inner disk and the orbital evolution is
somewhat faster.

(3) When the orbital evolution is determined by the interaction with the disk,

the mass flux onto the more massive component ∼ Ṁ , while the average mass
flux onto the perturber is smaller, ∼ q1/3Ṁ. However, the latter exhibits strong
variability on time scales of the order of the orbital period. The mass flux to the
perturber can increase significantly during the late stages of the inspiral of SBBH
when the emission of gravitational waves controls the orbital evolution.

(4) When the binary is sufficiently eccentric and the disk is sufficiently thin,
the opening of a ’conventional’ cavity within the disk is also possible due to the
presence of Lindblad resonances.

Additionally, we estimated the time duration for which the emitted gravita-
tional waves would have sufficient amplitude for the detection by a space-borne
interferometric gravitational wave antenna with realistic parameters. This is given
by eq. (20) as well as the appropriate range of frequencies as a function of the
primary black hole mass.

Note that all these results have been obtained under the assumption that the
binary orbit and the disk are coplanar. This may break down at late times since
IPPP provide an estimate that their mutual inclination angle measured at large
distances grows with time for the case of a retrograde binary. The typical time
scale is on the order of, or possibly even smaller than, tev depending on the mass
ratio and disk parameters. Thus, this effect should be taken into account in future
studies of these systems.
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