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Abstract. We have modeled electrostatic Langmuir waves by an electric
field, consisting of superposition of Gaussian wave packets with several proba-
bility distributions of amplitudes and with several Poisson distributions of wave
packets. The outcome of the model is that the WIND satellite observations,
especially in the low frequency domain (the WAVES experiment), do not allow
to conclude whether the input wave amplitude distributions are closer to the
log-normal than to the Pearson type I or uniform. The average number of wave
packets in 1 s is found to be between 0.1 and 50. Therefore, there is a clear need
to measure Langmuir wave energy distributions directly at the waveform level,
not a posteriori in the spectral domain. This is planned to be implemented on
the RPW (Radio and Plasma Wave Analyzer) instrument in the Solar Orbiter
mission.
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1. ELECTRIC FIELD MODEL – SIMULATIONS

We modeled the electric field, E(t), detected by the WIND satellite antennas
(Bougeret et al. 1995) as a superposition of Gaussian wave packets (Figure 1):
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where Ei is the amplitude, t0i is the time where maximum of i-th wave packet
occurs, ∆ti determines the spread of t-values about t0i, fi is the frequency and
φi is the phase of the wave packet. Number of wave packets in 1 s is modeled as
a Poisson distribution, P(λ). If we consider the number N to be determined by
Poisson law with a flux parameter λ [s−1], the probability to have N wave packets
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within the time TS is given by:

P(λ) = eλTS
(λTS)

N

N !
, (2)

where N is the number of wave packets observed during the sampling time TS

of the LFR instrument (Law Frequency Receiver) which measures the voltage
power spectral density in V2/Hz, i.e., the Fourier transform of the autocorrelation
function of the voltage measured by the dipole antennas.

Fig. 1. An example of the wave packet simulation with log(A2
i ): N (µ = −7, σ2 =

1.72); P(λ = 10). Ai is the amplitude of wave packet, µ is the first moment – mean value
and σ is the second moment – standard deviation of normal probability distribution.

Fig. 2. Histograms of input wave pack-
ets with amplitudes log(A2

i ): light gray
– U(a = −12, b = −2), black – N (µ =
−7, σ2 = 1.72), very light gray – PI(µ =
−0.5, σ2 = 0.52, β1 = 0.4, β2 = 2.5);
P(λ = 10).

Fig. 3. Histograms of the Langmuir wave
power, log(PLW ), spectral domain. They
correspond to the input wave packet am-
plitudes shown in Figure 2.

Histograms of input wave packet power logarithms with three different proba-
bility distributions of amplitudes log(A2

i ) are shown in Figure 2. Light gray repre-
sents histogram with uniform probability distribution, U(a = −12, b = −2) where
a and b are parameters of the probability distribution; black histogram with normal
distribution, N (µ = −7, σ2 = 1.72); and very light gray histogram with Pearson’s
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type I probability distribution, PI(µ = −0.5, σ2 = 0.52, β1 = 0.4, β2 = 2.5), where
µ and σ are the first two parameters, the mean and standard deviations, and
β1 and β2 (Eq. 4) are the second two parameters of the distribution. The flux
parameter in the Poisson law, P(λ), is 10. The corresponding histograms of the
Langmuir wave power logarithms, log(PLW ), in the spectral domain are shown in
Figure 3.

2. PEARSON’S SYSTEM OF DISTRIBUTIONS – β PLANE

Pearson (1895) defined a distribution system by the following equation for the
probability density function p(x):

−p′(x)

p(x)
=

b0 + b1x

c0 + c1x+ c2x2
, (3)

where b0, b1, c0, c1 and c2 are real parameters. The form of the solutions of
this differential equation depends on the parameter values, resulting in several
distribution types. The classification of distributions in the Pearson system is
entirely determined by the two moment ratios, square of skewness, β1, and kurtosis,
β2:

β1 =
µ2
3

µ3
2

, β2 =
µ4

µ2
2

. (4)

We conclude that in the case λTS ≫ 1 it is not possible to recover the initial
distribution of the electric field. Whatever is this distribution, at the end we obtain
a Gaussian distribution of V 2 (see Figures 2 and 3). The Gaussian parameters are
related to the electric field ones (Ei and ∆ti) and to the flux at λ. Contrary, in the
case λTS ≪ 1, the distribution of V 2 should be comparable to the distribution of
∆tiE

2
i . In both cases, this does not explain the log-normal distributions predicted

by Robinson’s Stochastic Growth Theory (SGT) (Robinson 1992), some other
process(es) must be responsible.

3. RESULTS AND CONCLUSIONS

1. We have shown that for 36 events – intense locally formed Langmuir waves
associated with type III radio bursts measured by the WIND spacecraft – the
probability distributions of the power logarithm belong to the three types of the
Pearson probability distributions: type I, type IV and type VI (Figure 4, black
dots). The goodness of the fits test (e.g., χ2) shows that the Pearson probability
distributions fit the data better than the Gaussian ones for all of the considered
events. This is in contradiction with the Stochastic Growth Theory (Robinson
1992) which assumes log-normal distributions for the wave energy, see Vidojević
et al. (2012).

2. We have modeled Langmuir waves by the electric field, E(t), consisting of
Gaussian wave packets with several distributions of amplitudes, log(A2), and with
several Poisson distributions of the number of wave packets in 1 s, P(λ).

3. The outcome of these simulations is that the β1 − β2 plane of the WIND
observations can be covered by a combination of the following assumptions: (a)
from WIND observations it is not possible to conclude whether the input wave
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Fig. 4. The β plane filled by results of several simulations. Probability distribution of
wave packet amplitudes, log(A2

i ): PI(µ, σ2, β1, β2). Symbols: circles – PI(µ = −7, σ2 =
1.72, β1 = 0.4, β2 = 2.5); × – PI(µ = −0.5, σ2 = 0.52, β1 = 0.4, β2 = 2.5), black dots –
36 WIND events.

amplitude distributions are closer to the log-normal than to the Pearson type I or
uniform; (b) the average number of wave packets in 1 s is between 0.1 and 50.

4. Therefore, there is a clear need to measure Langmuir wave energy distribu-
tions directly at the waveform level and not a posteriori in the spectral domain.
This is what is planned to be implemented on the RPW (Radio and Plasma Waves)
instrument on the Solar Orbiter, a new space mission.
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