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Abstract

Background: Few studies have examined how maternal body mass index (BMI), mode of delivery and ethnicity
affect the microbial composition of human milk and none have examined associations with maternal metabolic
status. Given the high prevalence of maternal adiposity and impaired glucose metabolism, we systematically
investigated the associations between these maternal factors in women 220 years and milk microbial composition
and predicted functionality by V4-16S ribosomal RNA gene sequencing (NCT01405547; https://clinicaltrials.gov/ct2/
show/NCT01405547). Demographic data, weight, height, and a 3-h oral glucose tolerance test were gathered at 30
(95% Cl: 25-33) weeks gestation, and milk samples were collected at 3 months post-partum (n=113).
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Results: Multivariable linear regression analyses demonstrated no significant associations between maternal
characteristics (maternal BMI [pre-pregnancy, 3 months post-partum], glucose tolerance, mode of delivery and
ethnicity) and milk microbiota alpha-diversity; however, pre-pregnancy BMI was associated with human milk
microbiota beta-diversity (Bray-Curtis R* = 0.037). Women with a pre-pregnancy BMI > 30 kg/m? (obese) had a
greater incidence of Bacteroidetes (incidence rate ratio [IRR]: 3.70 [95% Cl: 1.61-848]) and a reduced incidence of
Proteobacteria (0.62 [0.43-0.90]) in their milk, compared to women with an overweight BMI (25.0-29.9 kg/mz) as
assessed by multivariable Poisson regression. An increased incidence of Gemella was observed among mothers with
gestational diabetes who had an overweight BMI versus healthy range BMI (5.96 [1.85-19.21]). An increased
incidence of Gemella was also observed among mothers with impaired glucose tolerance with an obese BMI versus
mothers with a healthy range BMI (4.04 [1.63-10.01]). An increased incidence of Brevundimonas (16.70 [5.99-46.57])
was found in the milk of women who underwent an unscheduled C-section versus vaginal delivery. Lastly,
functional gene inference demonstrated that pre-pregnancy obesity was associated with an increased abundance
of genes encoding for the biosynthesis of secondary metabolites pathway in milk (coefficient = 0.0024, Prpg < 0.1).

Conclusions: Human milk has a diverse microbiota of which its diversity and differential abundance appear
associated with maternal BMI, glucose tolerance status, mode of delivery, and ethnicity. Further research is
warranted to determine whether this variability in the milk microbiota impacts colonization of the infant gut.

Keywords: Human milk, Microbiota, Body mass index, Gestational diabetes, Impaired glucose tolerance, Mode of
delivery, Vaginal delivery, Caesarean delivery, Ethnicity, Microbiome

Background
Breastfeeding is the recommended method of feeding for
all infants irrespective of whether the country of origin
is low, middle, or high-income [1]. Human milk is a rich
source of nutrients and bioactive components, such as
the antimicrobial proteins lactoferrin and lysozyme, and
contains an array of oligosaccharides which serve as a
source of prebiotics [2—5]. It is now well accepted that
human milk contains a rich supply of bacteria (~10°
bacterial cells/mL), which are believed to play an im-
portant role in postnatal colonization of the infant’s
gastrointestinal tract (gut) [6-13]. Microbial compos-
ition of the gut, in turn, is associated with maturation of
an infant’s gut and immune system, and aberrant gut
microbial compositions have been linked to a number of
short- and long-term health outcomes including diar-
rhea, respiratory tract infection, asthma, inflammatory
bowel disease, obesity, and metabolic syndrome [14-18].
There is a limited understanding of the stability of the
human milk microbiota in the face of environmental in-
fluences. Despite the high prevalence and known impact
on other milk constituents, no study we are aware of has
examined the association between maternal glucose tol-
erance status, either gestational diabetes or impaired glu-
cose tolerance, and the milk microbiota. Only a few
studies to date have cross-sectionally examined other
maternal factors, such as maternal BMI and mode of de-
livery, on the microbiota composition of mature human
milk (collected from 1-week to 6-months post-partum)
[19-23]. Moreover, the findings from the few available
studies are inconsistent likely due, in part, to the small

number of study participants, and differing methods of
milk collection and analysis (Additional file 1, Table S1).
Of the limited studies conducted, maternal BMI and
mode of delivery have been associated with the mature
milk microbiota; however, many of these reports relied
on small cohorts and thus their findings require replica-
tion in larger studies [19-23]. Further, most studies were
unable to employ multivariable statistical modelling to
adjust for multiple potential maternal factors of interest
simultaneously. Lastly, none of these studies carried out
functional inference analyses to determine if maternal
BMI and mode of delivery also perturb the milk micro-
biome’s potential metabolic activities or predicted func-
tional capabilities.

Therefore, we set out to fill these knowledge gaps in
the field by taking advantage of milk samples and clinical
metadata that had been previously collected from
women enrolled in a prospective cohort study to investi-
gate the impact of metabolic abnormalities and maternal
nutrition in pregnancy on human milk composition
(NCT01405547). The objective of this current study was
to investigate the associations between maternal pre-
pregnancy BMI (healthy, overweight, or obese), 3-month
post-partum BMI, maternal glucose tolerance status in
late pregnancy (gestational diabetes mellitus [GDM], im-
paired glucose tolerance [IGT], or normoglycemia),
mode of delivery (vaginal delivery, unscheduled Caesar-
ean delivery [C-section], or scheduled C-section), and
ethnicity (white, Asian, or other [South Asian, Black,
other]) on the microbial community composition and
predicted functional capabilities of human milk at 3
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months post-partum. This research will help to elucidate
the modulatory potential of human milk microbiota in
the face of physiological perturbations.

Results

Participant description

Milk samples were collected at 3 + 1-month post-partum
(mean * standard deviation [SD]) (n=113). Fifty-six
(49.6%) mothers fed their infants their own milk exclu-
sively at the time of milk collection (versus 57 [50.4%]
mixed feeds), and 61 (53.9%) samples were from a
complete breast expression (versus 52 [46.0%] from in-
complete breast expression). The mean (+ SD) age of
the mothers was 34.2 + 4.2 years (Table 1) with a pre-
pregnancy BMI (kg/m?) of 24.3 + 4.6, which is within a
healthy BMI range (18.5-24.9 kg/m?). A modified oral
glucose tolerance test (OGTT) administered at 30 weeks’
gestation (95% CI: 25—33 weeks) revealed that 24 (21.2%)
women had GDM, 20 (17.7%) had IGT, and 69 (61.1%)
had healthy glucose metabolism (normoglycemic).
Among women with a healthy pre-pregnancy BMI, 12
and 16 had IGT and GDM, respectively. Among women
with an overweight pre-pregnancy BMI, 5 had IGT and

Table 1 Baseline characteristics of mothers

Baseline variables n=113
Mean age (y), mean + SD 342+42
Ethnicity, No. (%)
White 64 (56.6%)
Asian (Chinese, Korean, Japanese, Filipino) 27 (23.9%)
Other (South Asian, Black, other) 22 (19.5%)
Pre-pregnancy BMI' (kg/m?),
Mean £ SD 243+46
Obese (> 30 kg/m?), No. (%) 11 (9.7%)
Overweight (25-29.9 kg/mz), No (%) 30 (26.5%)
Healthy (18.5-24.9 kg/m?), No (%) 72 (63.7%)
3-month post-partum BMI" (kg/m?),
Mean £ SD 264+52
Obese (> 30 kg/m?), No. (%) 17 (15.0%)
Overweight (25-29.9 kg/m?), No. (%) 46 (40.7%)
Healthy (18.5-24.9 kg/m?), No. (%) 50 (44.2%)
Glucose tolerance status, No. (%)
Gestational diabetes mellitus 24 (21.2%)
Impaired glucose tolerance 20 (17.7%)
Normoglycemic 69 (61.1%)
Mode of delivery, No. (%)
Vaginal 64 (56.6%)
Scheduled Caesarean section 21 (18.6%)
Unscheduled Caesarean section 28 (24.8%)

'BMI Body mass index
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5 had GDM (10 total). Lastly, among women with an
obese pre-pregnancy BMI 3 had IGT and 3 had GDM (6
total; Additional file 2, Table S2). Sixty-four (56.6%)
mothers delivered their infants vaginally, compared to
the 49 (43.4%) who underwent a C-section.

Overall microbial composition of human milk

Following V4-16S rRNA gene sequencing, the average
sequencing depth was found to be 63,025 (SD, 41,068)
reads per sample. Data were rarefied to 20,000 reads per
sample prior to calculating diversity metrics, and 4 sam-
ples were removed from analyses due to low sequence
counts following filtering and rarefying (n=109).
Twenty-six unique phyla-level and 292 unique genus-
level taxa were identified (Figs. 1 and 2). Proteobacteria
and Firmicutes were the most abundant phyla at 58.6 +
27.3% and 35.6 + 26.3%, respectively, followed by Actino-
bacteria (4.1 +4.7%), Bacteroidetes (1.4 +2.7%), and
Fusobacteria (0.1 +0.3%). Pseudomonas (43.4 +26.0%)
and Streptococcus (30.6 + 25.3%) were the predominant
genera across all samples, followed by smaller abun-
dances of Staphylococcus (6.2 +11.5%), Acinetobacter
(3.5 +7.4%), Veillonella (3.2 +7.2%), Gemella (1.9 *
3.3%), Corynebacterium (1.6 +5.5%), Rothia (1.3 +2.4%),
Aeromonas (0.6 + 6.2%), and Brevundimonas (0.6 + 5.7%).
Plotting the relative abundances of taxa at the phylum
(Fig. 1) and genus (Fig. 2) taxonomic levels revealed ob-
vious inter-individual variability in the microbial com-
position of milk. Of the top 5 phyla and top 10 genera,
all taxa, with the exception of Fusobacteria and Aeromo-
nas, were found in > 96% of all milk samples (Additional
file 3, Table S3).

Associations between maternal BMI, glucose tolerance
status, mode of delivery, ethnicity and the milk
microbiota

The Chaol and Shannon indices were used to assess
alpha-diversity (richness and diversity, respectively)
within each human milk sample. No statistically signifi-
cant associations were found between maternal charac-
teristics (maternal glucose tolerance status, mode of
delivery, pre-pregnancy BMI, 3-month post-partum
BMI, ethnicity), and milk microbiota richness or
diversity using multivariable linear regression analyses
(Fig. 3a-e; results in Additional file 4, Table S4).

To further investigate associations between maternal
characteristics and microbial composition, beta-diversity
of the milk microbiota was assessed by principal coord-
inate analysis (PCoA) using the weighted UniFrac
distance metric and the Bray-Curtis index of dissimilar-
ity (Additional file 5, Fig. S1A-E; Additional file 6, Fig.
S2A-E; Additional file 7, Table S5) [24]. No obvious
clustering or separation based on maternal characteris-
tics was observed; however, a small but statistically
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Fig. 1 Microbial relative abundance in human milk at the phylum level (n =109). The relative abundances of bacterial phyla in collected human
milk samples are visualized using bar plots. For simplicity, only the most abundant 5 phyla are displayed with other phyla merged into the
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- Actinobacteria
. Bacteroidetes
Firmicutes
Fusobacteria
Proteobacteria
Other

significant association between maternal pre-pregnancy
BMI and beta-diversity clustering was identified (Bray-
Curtis R*=0.037, p=0.031). No other statistically sig-
nificant associations were found for the other maternal
characteristics and beta-diversity.

We assessed whether taxa abundance was associated
with maternal characteristics by using multivariable
Poisson regression models and accounting for multiple
comparisons (Table 2; Additional file 8, Table S6;
Additional file 9, Table S7; Additional file 10, Table S8;
Additional file 11, Table S9). At least one maternal
characteristic was associated with the differential abun-
dance of Proteobacteria, Bacteroidetes, Firmicutes and
Actinobacteria at the phylum level, and Staphylococcus,
Streptococcus, Pseudomonas, Veillonella, Gemella, Aero-
monas, Corynebacterium and Brevundimonas at the
genus level.

Association between maternal BMI and the milk
microbiota

Pre-pregnancy BMI (i.e., healthy, overweight, obese) was
found to be most consistently associated with differen-
tially abundant taxa after controlling for relevant
maternal characteristics. Mothers categorized as obese
pre-pregnancy displayed a lower incidence of Proteobac-
teria (incidence rate ratio [IRR]: 0.62 [95% CI: 0.43—
0.90]) in their milk as compared to mothers with an
overweight BMI (Table 2). Conversely, mothers with
overweight presented with an increased incidence of
Proteobacteria in their milk, compared to healthy weight
mothers (1.23 [1.00-1.50]). Mothers defined as obese
pre-pregnancy had a greater incidence of Bacteroidetes
in their milk as compared to mothers with an over-
weight (3.70 [1.61-8.48]) or healthy BMI (2.56 [1.27-
5.17]). When examining 3-month post-partum BMI,
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Fig. 2 Microbial relative abundance in human milk at the genus level (n=109). The relative abundances of bacterial genera in collected human
milk samples are visualized using bar plots. For simplicity, only the most abundant 10 genera are displayed with other genera merged into the

Genus

- Acinetobacter
. Aeromonas

. Brevundimonas
- Corynebacterium

. Gemella

- Pseudomonas
] Rothia

. Staphylococcus
Streptococcus
[] veillonella

. Other

Actinobacteria incidence was greater in women with
obesity versus both mothers with an overweight (2.34
[1.38-3.98]) or healthy BMI (2.02 [1.18-3.46]).

At the genus-level, women with obesity pre-pregnancy
displayed a higher incidence of Staphylococcus as com-
pared to mothers with an overweight (2.50 [1.09-5.72])
or healthy BMI (3.15 [1.47-6.08]) (Table 2). Mothers
with an obese BMI pre-pregnancy also displayed a
greater incidence of Corynebacterium in their milk ver-
sus both mothers with an overweight (5.13 [1.79-14.70])
or healthy BMI (4.98 [2.11-11.74]). This same relation-
ship with Corynebacterium was seen in mothers with
obesity at 3-months post-partum compared to mothers
with overweight (4.84 [2.19-10.72]) or a healthy BMI
(7.77 [2.95-20.43]). An increased incidence of Brevundi-
monas was also observed in mothers with an overweight
BMI pre-pregnancy versus healthy BMI (8.72 [3.24—

23.48]). At 3-months post-partum, women with obesity
also displayed a greater incidence of Brevundimonas ver-
sus both those with overweight (8.89 [2.29-34.57]) and
those at a healthy weight (9.56 [2.17-42.22]) (Table 2).

Association between maternal glucose tolerance status
and the milk microbiota

When examining the interaction between BMI and
maternal glucose tolerance status, Gemella showed an
increased incidence among mothers with an over-
weight (versus healthy) BMI with gestational diabetes
(5.96 [1.85-19.21]) (Additional file 11, Table S9). In
addition, Gemella was increased in mother’s with
obesity and concurrent impaired glucose tolerance
versus both overweight (11.42 [1.49-87.67]) and
healthy BMI (4.04 [1.63-10.01]) mothers with im-
paired glucose tolerance.
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Fig. 3 a-e The association between maternal characteristics and human milk microbiota alpha-diversity. The bacterial richness (Chao1 index) and
diversity (Shannon index) of each human milk sample are plotted using box and whisker plots (mid-line = median; upper and lower bounds of
the box = first and third quartile) as a function of a maternal glucose tolerance, b mode of delivery, ¢ pre-pregnancy BMI, d 3-month post-partum
BMI, e ethnicity. Multivariable linear regression analyses revealed no significant associations between the alpha-diversity of the milk microbiota
and maternal metabolic and obstetrical characteristics. Abbreviations: GDM, gestational diabetes mellitus, IGT, impaired glucose tolerance; Sched
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Association between mode of delivery and the milk
microbiota

Associations between mode of delivery and the differen-
tial abundance of select taxa at the phylum and genus
level were found for both pre-pregnancy and post-
partum BMI models (Table 2, Additional file 11, Table
S9). A greater incidence of Brevundimonas was observed
in mothers who underwent an unscheduled C-section
versus a vaginal delivery from both the pre-pregnancy
BMI model (16.70 [5.99-46.57]) and 3-month post-
partum BMI model (13.01 [4.01-42.20]). Conversely, a
reduced incidence of Brevundimonas was observed in

mothers who underwent a scheduled C-section versus
an unscheduled C-section in both the pre-pregnancy
BMI model (0.071 [0.011-0.46]) and the 3-month post-
partum BMI model (0.08 [0.013-0.62]).

Association between maternal ethnicity and the milk
microbiota

Lastly, ethnicity (white, Asian, other [South Asian,
Black, other]) was associated with the differential
abundance of Corynebacterium, Brevundimonas and
Aeromonas (Table 3). White mothers had a reduced
incidence of both Corynebacterium (0.27 [0.12-0.59])
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Table 2 Associations between maternal characteristics and top 5 phyla and top 10 genera: Grouped by BMI

Taxa Group effect p-value  Pairwise comparison IRR 95% Cl Pairwise comparison p-value
Pre-pregnancy BMI
Phylum
Proteobacteria 0.019 Obese vs overweight 0.62 043-0.90 0012
Overweight vs healthy 1.23 1.00-1.50 0.045
Bacteroidetes 0.0051 Obese vs overweight 3.70 1.61-848 0.002
Obese vs healthy 256 1.27-5.17 0.0086
Genus
Staphylococcus 0.011 Obese vs overweight 250 1.09-5.72 0.031
Obese vs healthy 315 147-6.76 0.0032
Corynebacterium 0.0003 Obese vs overweight 513 1.79-1470  0.0023
Obese vs healthy 498 211-1174  0.0002
Brevundimonas <0.0001 Overweight vs healthy 872 324-2348  <0.0001
< 0.0001 Unscheduled C-section vs vaginal 16.70  599-4657  <0.0001
Scheduled C-section vs unscheduled C-section  0.071  0.011-046  0.0053
3-month post-partum BMI
Phylum
Actinobacteria 0.0058 Obese vs overweight 234 1.38-3.98 0.0017
Obese vs healthy 202 1.18-3.46 0.010
Genus
Corynebacterium < 0.0001 Obese vs overweight 484 2.19-10.72  0.0001
Obese vs healthy 7.77 295-2043 < 0.0001
Brevundimonas 0.0005 Obese vs overweight 8.89 229-3457 0016
Obese vs healthy 9.56 2.17-4222  0.0029
<0.0001 Unscheduled C-section vs vaginal 13.01  4.01-4220 <0.0001
Scheduled C-section vs unscheduled C-section  0.08 0013-062 0015

Separate Poisson regression models were run for pre-pregnancy BMI and 3-month post-partum BMI, while adjusting for maternal glucose tolerance status, mode
of delivery, DNA extraction batch, and PCR sequencing batch. Statistically significant main group effect findings shown only (group effect: p < 0.022 for phylum,
p <0.017 for genus; pairwise comparison: p < 0.05). An interaction term between pre-pregnancy BMI and maternal glucose tolerance status was found to be
statistically significant for Gemella. No other statistically significant interactions were found between maternal pre-pregnancy BMI and glucose tolerance status.
Gemella showed an increased incidence among mothers with an overweight BMI (versus healthy BMI) and concurrent gestational diabetes IRR, Cl (5.96 [1.85-
19.21], p=0.0028). An increased incidence of Gemella was also observed in mothers with an obese BMI and concurrent impaired glucose tolerance versus both
mothers with overweight (11.42 [1.49-87.67], p = 0.019) and healthy weight BMIs (4.04 [1.63-10.01], p = 0.0026). Abbreviations: confidence interval Cl, incidence

rate ratio, IRR

and Brevundimonas (0.084 [0.015-0.46]) when com-

pared to ‘other’ mothers and Asian

ively; Asian mothers also had a reduced incidence of
Corynebacterium when compared to ‘other’ mothers

(0.17 [0.049-0.63]).

mothers, respect-

Association between maternal BMI, glucose tolerance
status, mode of delivery, ethnicity and functional gene
expression of the milk microbiota

We carried out functional inference analyses using

Piphillin to assess if there were any differences in

Table 3 Associations between ethnicity and the top 5 phyla and top 10 genera

Taxa Group effect p-value Pairwise comparison IRR 95% Cl Pairwise comparison p-value
Genus
Corynebacterium 0.0008 White vs other 0.27 0.12-0.59 0.001
Asian vs other 0.17 0.049-0.63 0.0075
Brevundimonas 0.0051 White vs Asian 0.084 0.015-0.46 0.0042
Aeromonas 0.022 Asian vs other 0.020 0.0007-0.59 0.023

Ethnicity was investigated for all taxa and models were adjusted for DNA extraction and PCR sequencing batch effects. Statistically significant findings shown only
(group effect: p <0.022 for phylum, p <0.017 for genus; pairwise comparison: p < 0.05). No statistically significant associations were found between ethnicity and
any phylum-level taxa. Other: pooled South Asian, Black, other. Abbreviations: confidence interval, C/, incidence rate ratio, IRR
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predicted functional capabilities of the milk microbiota
based on the maternal clinical data. In contrast with the
bacterial taxonomic results, the relative abundance of
the 20 top KEGG pathways across all milk samples was
fairly consistent (Additional file 12, Fig. S3). We ana-
lyzed the association between maternal clinical data and
KEGG ortholog (KO) beta-diversity as well as examined
the association between maternal clinical parameters
and differentially-expressed KEGG pathways (Additional
file 13, Table S10; Additional file 14, Table S11; Add-
itional file 15, Table S12). No significant associations
were found when examining metadata and KO beta-
diversity (Additional file 13, Table S10); however, one
statistically significant differentially-expressed set of
pathways was observed (Additional file 14, Table S11;
Additional file 16, Fig. S4). BMI, specifically the obese
sub-category, was shown to be associated with enrich-
ment of the KEGG pathway “Biosynthesis of secondary
metabolites” (coefficient = 0.0024, Pgpr < 0.1) (Additional
file 16, Fig. S4). Analysis of individual genes within this
KEGG pathway and maternal metadata did not yield any
statistically significant associations.

Discussion
Our results suggest that maternal factors, and most con-
sistently maternal pre-pregnancy BMI, are associated
with the microbial composition of human milk. This is
the first study to include maternal glucose tolerance sta-
tus in the investigations of the association between ma-
ternal BMI and the milk microbiota (Additional file 1,
Table S1). Gestational diabetes is associated with a num-
ber of negative health outcomes, including an increased
risk of type 2 diabetes and metabolic syndrome in the
mother. According to a recent systematic review and
dose-response meta-analysis, the risk of GDM increases
by 4% for every unit increase in BMI [25]. While some
negative health outcomes associated with GDM are re-
lated to maternal adiposity and vice versa, others are
thought to be independently related to chronically im-
paired glucose metabolism. Thus, it is important to in-
vestigate the impact of maternal BMI and GDM
together on the composition of the milk microbiota. Our
results show a significant interaction between pre-
pregnancy BMI and gestational glucose intolerance on
the differential abundance of Gemella in human milk.
This suggests that associations between pre-pregnancy
maternal BMI and the human milk microbiota are differ-
entially impacted by maternal glucose tolerance status.
We did not find any differences in alpha-diversity
based on our maternal characteristics; however, we did
find statistically significant differences in beta-diversity,
with human milk microbiota separating, or non-
randomly clustering, based on pre-pregnancy BMI even
after adjustment for other covariates (Additional file 5,
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Fig. S1; Additional file 6, Fig. S1; Additional file 7, Table
S5). The human gut microbiota has been reported to
cluster as a function of body size, but this has not yet
been reported for the human milk microbiota [26]. Our
results demonstrating an association between maternal
BMI and microbial composition is consistent with other
smaller scale studies on human milk microbiotas (Add-
itional file 1, Table S1). Cabrera-Rubio et al. (2012) ex-
amined the association between maternal body size and
the differential abundance of human milk genera in a
study of healthy Finnish women (n = 18) [20]. They re-
ported an increase in Staphylococcus in human milk col-
lected from obese women, which mirrors the findings in
our study (Additional file 8, Table S6).

Mode of delivery was also associated with changes in
the human milk microbiota at both the phylum and
genus levels (Table 2; Additional file 8, Table S6). For
example, we observed greater differential abundance of
Staphylococcus in human milk from women who under-
went a scheduled C-section versus vaginal delivery (Add-
itional file 8, Table S6). Our results are similar to that
reported by Cabrera-Rubio et al. (2012, 2016). These
two small cross-sectional cohorts of healthy Finnish
women (n =18, 10) showed a non-statistically significant
increase in Staphylococcus in milk observed among
women who delivered their infant via a scheduled C-
section versus a vaginal delivery [19, 20]. The proposed
mechanism whereby mode of delivery alters the milk
microbiota is via the infant oral cavity, which is colonized
during either vaginal delivery or C-section; from here,
retrograde inoculation of bacteria can occur from the in-
fant’s oral cavity into the mammary gland via the suckling
process with direct breastfeeding [9, 27-29]. Understand-
ing how an infant’s gut microbiota and overall health is
impacted by differences in the milk microbiota based on
mode of delivery remains uninvestigated. Future studies
profiling the human milk microbiome, infant salivary
microbiome and gut microbiome with repeated clinical
follow-up over time would help answer these questions.

The results of our multi-ethnic cohort revealed associ-
ations between ethnicity and specific bacterial taxa. Eth-
nicity and/or geographic location have been shown to be
factors in determining various microbiomes of the body
including the gut, oral cavity, respiratory tract, skin, and
urogenital tract [30]. Ethnicity and geographic location
typically come with an overlay of dietary variation,
making the impact of each variable challenging to
separate. Only a few studies to date have assessed associ-
ations between ethnicity and the milk microbiota;
however, the ethnic/geographic groups differed from our
study as they generally examined Europe, Africa and the
United States, making it challenging to compare findings
(Table 3; Additional file 9, Table S7; Additional file 11,
Table S9) [12, 21, 31, 32].
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We used a functional inference approach to characterize
the microbial genetic potential in human milk. In agree-
ment with what has been reported for other human-
associated microbiotas, the functional capacity of the
human milk microbiota is more stable than its taxonomic
composition [33]. We then assessed whether there were
specific predicted pathways that were suggested to be as-
sociated with maternal characteristics and found that ma-
ternal pre-pregnancy BMI, specifically the obese sub-
category, was significantly associated with an increase in
the “Biosynthesis of secondary metabolites” predicted
KEGG pathway. Microbes produce secondary metabolites,
which are small, bioactive molecules, not necessary for
growth or development but are instead involved in
microbe-host or microbe-microbe interactions [34, 35].
Indeed, many of the genes in the biosynthesis of secondary
metabolites pathway encode for the biosynthesis of antibi-
otics [36]. We assessed whether any individual genes (KO
terms) involved in the predicted “Biosynthesis of second-
ary metabolites” pathway were significantly associated
with BMI using MaAsLin2; however, no statistically sig-
nificant associations were found. We hypothesize this may
mean it is the culmination of many genes together that
are leading to the enrichment of the “Biosynthesis of sec-
ondary metabolites” pathway, and not one individual gene.
However, these observations require confirmation in fu-
ture studies.

Human milk is considered a low biomass sample and,
for this reason, may be more affected by sample process-
ing than higher biomass samples, such as stool. To ad-
dress this concern, we used PCoA plots to visualize
clustering, or lack thereof, of our milk samples and
negative controls (Additional file 17, Fig. S5). Our nega-
tive controls were seen to cluster away from the samples,
suggesting that our results do not arise from technical
contaminates, which was confirmed using Adonis ana-
lyses to statistically corroborate that our samples clus-
tered away from the negative controls (Weighted
UniFrac R*=0.07, p = 0.0001; Bray-Curtis R*=0.10, p=
0.0001, Additional file 17, Fig. S5).

Strengths of the current study include the varied eth-
nicity of women included, clinical examination via an
OGTT, and enrichment of the cohort with women of
varying body sizes who had abnormal glucose tolerance
status. These strengths allowed for a more fulsome in-
vestigation using multivariable statistics to determine
how each maternal factor is independently associated
with the milk microbiome. Despite our larger sample
size as compared to most earlier studies, we did not have
sufficient sample size for adjustment of all covariates of
interest (e.g., maternal diet) and thus were not able to
perform the granular analyses needed to fully investigate
the sub-groups within each metadata category. Future
research should strive for larger sample sizes providing
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greater statistical power in order to capture more poten-
tial confounders. Additionally, although an acceptable
sequencing depth was reached, rare but important mi-
crobes may still have been missed as our methods may
not have been sensitive enough to pick up on certain im-
portant microbes. The compositional nature of data gen-
erated from next-generation sequencing also remains a
challenge since it is limited to assessing relative (versus
absolute) abundance; in other words, it holds the as-
sumption that if one bacterial taxa increases, another
bacterial taxa must conversely decrease, regardless of
how the absolute abundance of these taxa may be chan-
ging [37-39]. Lastly, although interesting, the use of
Piphillin to determine associations between metadata
and predicted pathways is only hypothesis generating
and requires confirmation using a combination of shot-
gun metagenomics, metabolomic profiling or compari-
son of matched human milk samples. Moreover, the
microbes identified in the milk from the present study
likely include bacteria from the mother’s skin microbiota
as her breast was not disinfected prior to milk sampling.
Practically, however, mothers do not disinfect their
breast prior to pumping and storing milk for their infant,
nor do they disinfect prior to breastfeeding. Therefore,
the human milk microbiota as collected in the current
study is likely a more accurate depiction of what the in-
fant would receive. Finally, our study is limited by its
cross-sectional analytic design and thus we cannot assess
how the milk microbiota changes over time. It is pos-
sible that the associations we identified between mater-
nal factors and microbial composition in milk are not
transitory and change across the course of lactation.

Conclusions

Our study found that human milk has a highly personal-
ized microbiota with high inter-individual variability.
Expressed human milk at both the phylum and genus
levels appear to be related to maternal metabolic and
obstetrical factors. Surprisingly, glucose tolerance status
was significantly associated with fewer microbiota pa-
rameters than anticipated. Most consistently, maternal
pre-pregnancy BMI, despite glucose tolerance status,
was associated with the differential abundance of various
taxa in human milk and potentially the production of
bacterial secondary metabolites as well. To understand
the clinical significance of these findings, future research
should explore how differences in the microbial compos-
ition of human milk impact infant’s microbial
colonization and overall health.

Methods

Study participants and design

To address the research objectives of this study, we used
maternal metabolic and obstetrical health data along
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with bio-banked human milk samples available from a
previously conducted prospective cohort study (Clinical-
Trials.gov Identifier: NCT01405547); a detailed descrip-
tion of the study protocol has been previously published
[40]. Pregnant women (n=216) were recruited from
outpatient clinics at Mount Sinai Hospital in Toronto,
Canada and completed a 3-h 100g OGTT between
March 2009 and July 2010. In total, 117 women donated
a milk sample at 3 months post-partum, with 113 sam-
ples available for this study (Additional file 18, Fig. S6).
Women were eligible for inclusion in the original study
if they were =20 years of age and had an intention to
breastfeed. Exclusion criteria included pre-existing dia-
betes diagnosis, current use of insulin, or completion of
an OGTT prior to recruitment [41]. By design, mothers
were recruited from clinics which follow higher risk
pregnancies with a greater risk of either GDM or IGT
diagnosis.

Collection of demographic, anthropometric and

metabolic data

During the first study visit, which occurred in late preg-
nancy (30 weeks [95% CI: 25-33 weeks]), demographic
and anthropometric data were collected (e.g. age, ethni-
city, weight, height); mothers were asked to recall their
pre-pregnancy weight. All pregnant women in Canada
are screened for GDM by way of a 50 g glucose chal-
lenge test (GCT). If the plasma glucose concentration at
1-h post-glucose load is 27.8 mmol/L, the patient is then
referred for a diagnostic OGTT. Contrary to standard
obstetrical practice, all women completed a 3-h 100g
OGTT in the current study during their first study visit
regardless of whether or not they completed a GCT. The
OGTT involved having blood samples drawn at fasting,
30, 60, 90, 120- and 180-min post-glucose load. Women
were then diagnosed with either GDM, IGT, or as
normoglycemic based on the following glycemic thresh-
olds: 1) GDM diagnosis =2 or more of the following:
fasting blood glucose =5.8 mmol/L, 1-h blood glucose
>10.6 mmol/L, 2-h blood glucose >9.2 mmol/L, or 3-h
blood glucose >8.1 mmol/L, or 2) IGT diagnosis would
exceed only one of the previous thresholds, or 3) normo-
glycemic = normal OGTT [40].

Human milk collection, processing and amplification

At the three-month post-partum research visit, mothers
were asked to pump a complete breast expression of
milk using a double electric breast pump (Medela Inc.,
Illinois, USA) with a sterile pumping kit. Mothers were
instructed not to pump or breastfeed their infant for 2 h
before the study visit. Samples of whole human milk
were then divided into aliquots and stored at —80°C
until the time of analyses.
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DNA was extracted from human milk using the
NucleoSpin Food DNA Isolation Kit (Macherey-Nagel,
Pennsylvania, USA) according to manufacturer’s instruc-
tions with modifications as we have described previously
[42]. Due to the small concentration of DNA in human
milk, an elution buffer volume of 30 L, instead of the
recommended 100 pL, was used to ensure adequate
DNA concentrations for downstream PCR.

PCR amplification of the V4 hypervariable region was
performed using the forward primer (515F) 5’AATGA-
TACGGCGACCACCGAGATCTACACTATGGTA AT
TGTGTGCCAGCMGCCGCGGTAA and reverse pri-
mer (806R) 5’CAAGCAGA AGACGGCATACGAGATA
GTCAGTCAGCCGGACTACHVGGGTWTCTAAT
[43]. PCR reactions were set up following the manufac-
turer’s recommendations (Roche) including 12.5 pL of
KAPA2G Robust HotStart ReadyMix, 1.5puL of 10 uM
forward and 1.5 pL of 10 uM reverse primer, 3.5 pL of
sterile water and 6 uL of DNA. Amplification of the V4
hypervariable region of the 16S rRNA gene involved 28
cycles of PCR: 95 °C for 3 min, 25-30 cycles of 95 °C for
155, 50°C for 15s and 72°C for 15s, followed by a 5
min 72°C extension (different numbers of cycles be-
tween PCR runs were adjusted for statistically). All am-
plifications were completed in triplicate and all
amplicons were run on a 1% TBE agarose gel to ensure
accurate amplification (amplicon size ~ 390 bp). A nega-
tive control without template DNA and a positive con-
trol with DNA from a known bacterial species
(Pseudomonas aeruginosa) were also included to confirm
the amplification quality. Bands of the same size and in-
tensity were pooled and quantified to create the pooled
sequence library. Purification of the pooled library was
completed with AMPure XP beads (0.8X volume of
beads to 1X volume of library DNA) following the man-
ufacturer’s protocol. The purified library was quantified
using the Qubit High Sensitivity DNA Kit (Thermo
Fisher Scientific). The quantified library was loaded on
an [llumina MiSeq and sequenced using the MiSeq-V2—
300 cycle chemistry to generate 150 PE reads.

Bioinformatics analyses

The raw paired end sequences from the MiSeq instru-
ment have been deposited to the NCBI Sequence Read
Archive (http://www.ncbi.nlm.nih.gov/sra) under acces-
sion number PRJNA516669. The UPARSE pipeline
(USEARCH) was used for sequence analysis. Raw paired
end sequences were assembled (-fastq_mergepairs;
—fastq_merge_maxee =1.0), filtered (-fastq_filter;
—fastq_maxee = 0.5) and sequences shorter than 225 base
pairs were removed (-fastq_filter; —fastq_minlen 225)
[44]. Sequences were then de-replicated and sorted using
USEARCH (-derep_full; -sortybysize). Chimeric se-
quences in the OTUs were detected and removed using
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the Ribosomal Database Project (RDP) 16S gold database
(USEARCH), while ensuring the number of false positive
chimeras detected was minimized [45]. Sequences were
then grouped together into Operational Taxonomic
Units (OTUs) at 97% similarity (—usearch_global). Tax-
onomy was assigned to these OTUs (RDP 16S gold data-
base) (-utax) and OTU fasta sequences were aligned
using PyNast via a QIIME python script (align_seqs.py).
A phylogenetic tree was assembled using the FastTree
QIIME python script (make_phylogeny.py) [46].

Data analysis and statistics

The phyloseq package (1.25.2) in R (version 3.4.1) was
used to analyze microbiota composition [47]. OTUs that
only appeared once or twice (singletons and doubletons)
were removed and all OTUs were rarefied to 20,000
reads/sample prior to calculating relative abundances at
different taxonomic levels, alpha-diversity and beta-
diversity using phyloseq.

Statistically significant differences between the alpha
diversities (Chaol/Shannon indices determined in R)
and maternal metabolic or obstetrical characteristics
were determined using multivariable linear regression
models (PROC MIXED) in SAS version 9.4. Independent
variables included in the models were: maternal BMI
(healthy = 18.5-24.9 kg/m?, overweight = 25-29.9 kg/m?,
obese= >30kg/m?), maternal glucose tolerance status
(GDM, IGT, normoglycemic), mode of delivery (vaginal,
unscheduled C-section, scheduled C-section), DNA
extraction batch, and PCR sequencing batch. Separate
statistical models were built using pre-pregnancy and 3-
month post-partum BMI as covariates, due to concerns
about collinearity. An interaction term between BMI
and maternal glucose tolerance status was also tested in
each model and removed if it was non-significant. Due
to our sample size and the number of covariates we
wished to test, separate models for ethnicity (white,
Asian, other [South Asian, Black, other]) were run that
adjusted for DNA extraction and PCR sequencing
batches, but no other covariates. Multicollinearity was
assessed between independent variables in all models,
using a variance inflation cut-off of > 5. The significance
level was set at p < 0.05. Of note, 6 mothers with a pre-
pregnancy BMI between 18.0—18.4 kg/m* were placed in
the “healthy BMI” group for all analyses.

Beta diversities and principal coordinate analysis (PCoA)
were also ascertained in phyloseq and statistical signifi-
cance based on maternal characteristics was determined
using the adonis function in vegan (version 2.5-3) [24].
Adonis assesses the amount of variation explained by each
metadata variable, such as maternal BMI or glucose toler-
ance status; all variables were run individually and to-
gether in adonis to adjust for one another. The interaction
term between BMI and glucose tolerance status was also
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tested and removed if non-significant. Four patient sam-
ples were missing the post-partum BMI data and thus we
used their pre-pregnancy BMI for the post-partum ana-
lyses. Again, the significance level was set at p < 0.05.

Multivariable Poisson regression models (PROC GEN-
MOD) were run in SAS version 9.4 to assess differential
abundance at the phylum and genus levels based on ma-
ternal characteristics. The Benjamini-Yekutieli cut point
approach was used to account for multiple testing. A
p <0.022 at the phylum level (5 tests) and p<0.017 (10
tests) at the genus level were considered statistically sig-
nificant for the overall group effect. If the overall group-
adjusted p-value was significant, pairwise comparisons
were conducted and a pairwise p < 0.05 was considered
statistically significant.

Piphillin: functional analysis of human milk microbiota
Piphillin, a metagenomics inference tool, was used to
infer functional capabilities in milk samples (https://
piphillin.secondgenome.com/) [48]. In this study, the
Kyoto Encyclopedia of Genes and Genomes (KEGG;
https://www.genome.jp/kegg/) was used as a reference
database to retrieve gene copy numbers and create a
gene feature table from the 16S rRNA sequence data.
Statistically significant associations between maternal
characteristics and KEGG pathways were assessed in
three ways: 1) examining the association between mater-
nal characteristics and KO beta-diversity using Adonis
in R (p <0.05), 2) investigating metadata associated with
differentially-expressed predicted functional pathways
using MaAsLin2 in R (Pepr<0.1) and 3) investigating
metadata associated with individual genes (KO) found in
the differentially expressed functional pathways from
step 2.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512866-020-01901-9.

Additional file 1: Table S1. 165 rRNA studies examining the association
of maternal body mass index (BMI) and mode of delivery on the milk
microbiota of women delivering healthy term-born infants. Note: Only
studies in which mature milk was collected between 1 week - 6 months
post-partum and BMI and mode of delivery were investigated were in-
cluded to more accurately compare with our own findings.

Additional file 2: Table S2. The intersection of pre-pregnancy BMI and
gestational glucose tolerance status.

Additional file 3: Table S3. Proportion of samples containing the top 5
phyla and top 10 genera.

Additional file 4: Table S4. The association between maternal
characteristics and milk microbiota alpha-diversity. Pre-pregnancy BMI
and post-partum BMI models were adjusted for maternal glucose toler-
ance status, mode of delivery, DNA extraction and PCR sequencing
batches. Ethnicity was adjusted for DNA extraction and PCR sequencing
batch effects.

Additional file 5: Figure S1A-E. Visual representation of the
association between maternal characteristics and milk microbiota beta-
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diversity (weighted UniFrac metric). Principal coordinate analysis (PCoA,
weighted UniFrac) plots comparing microbiota composition based on (A)
maternal glucose tolerance, (B) mode of delivery, (C) pre-pregnancy BMI,
(D) 3-month post-partum BMI, and (E) ethnicity. PCoA using the weighted
UniFrac distance metric showed that microbiota profiles did not separate
based on maternal clinical data. No statistically significant findings were
observed between beta-diversity and glucose tolerance, mode of deliv-
ery, BMI, or ethnicity. Abbreviations: GDM, gestational diabetes mellitus,
IGT, impaired glucose tolerance; CS, C-section.

Additional file 6: Figure S2A-E. Visual representation of the
association between maternal characteristics and milk microbiota beta-
diversity (Bray-Curtis metric). Principal coordinate analysis (PCoA, Bray-
Curtis dissimilarity) plots comparing microbiota composition based on (A)
maternal glucose tolerance, (B) mode of delivery, (C) pre-pregnancy BMI,
(D) 3-month post-partum BMI, and (E) ethnicity. PCoA using the Bray-
Curtis dissimilarity showed that microbiota profiles separated based on
pre-pregnancy BMI (R? = 0.037, p = 0.031), even after adjustment for ma-
ternal glucose tolerance status, mode of delivery, DNA extraction batch,
and PCR sequencing batch. No statistically significant findings were ob-
served between beta-diversity and glucose tolerance, mode of delivery,
3-month post-partum BMI or ethnicity. Abbreviations: GDM, gestational
diabetes mellitus, IGT, impaired glucose tolerance; CS, C-section.

Additional file 7: Table S5. Examining the association between
maternal characteristics and the milk microbiota beta-diversity. Statistically
significant p-values (p < 0.05) are indicated with asterisks (¥). 1Adjusted for
maternal glucose tolerance status, mode of delivery, DNA extraction and
PCR sequencing batches. Maternal glucose tolerance and mode of deliv-
ery were further adjusted for pre-pregnancy BMI. “Ethnicity was adjusted
for DNA extraction and PCR sequencing batch effects. An interaction
term between BMI and glucose tolerance (Pre-pregnancy BMI-Maternal
glucose tolerance status) was adjusted for batch effects and mode of de-
livery. The interaction term was found to be non-significant (as shown)
and statistical models were re-run with it removed.

Additional file 8: Table S6. Associations between maternal
characteristics and the top 5 phyla and top 10 genera: Results where
pairwise comparisons were statistically significant but group effects were
not. Separate Poisson regression models were run for pre-pregnancy BMI
and 3-month post-partum BMI, while adjusting for maternal glucose tol-
erance status, mode of delivery, DNA extraction batch, and PCR sequen-
cing batch. Statistically significant pairwise findings shown only (p < 0.05).
Group effect thresholds [p < 0.022 for phylum, p <0.017 for genus] were
not significant, however, pairwise comparisons were (p < 0.05). All models
were run testing an interaction term between BMI and maternal glucose
tolerance status; this was removed from models if non-significant. Abbre-
viations: confidence interval, Cl; incidence rate ratio, IRR; GDM, gestational
diabetes.

Additional file 9: Table S7. Associations between ethnicity and the top
5 phyla and top 10 genera: Results where pairwise comparisons were
statistically significant but group effects were not. Ethnicity was
investigated for all taxa and models were adjusted for DNA extraction
and PCR sequencing batch effects. Group effect thresholds [p < 0.022 for
phylum, p < 0.017 for genus] were not significant, however, pairwise
comparisons were (p < 0.05). No statistically significant associations were
found between ethnicity and any phylum-level taxa. Abbreviations: confi-
dence interval, Cl; incidence rate ratio, IRR.

Additional file 10: Table S8. The association between maternal
characteristics and the top 5 phyla. PreBMI, Pre-pregnancy BMI; PostBMI,
Post-partum BMI.

Additional file 11: Table S9. The association between maternal
characteristics and the top 10 genera. PreBMI, Pre-pregnancy BMI; Post-
BMI, Post-partum BMI.

Additional file 12: Figure S3. Relative abundance of top 20 KEGG
pathways across milk samples.

Additional file 13: Table $10. Examining the association between
maternal metadata and KEGG ortholog beta-diversity. Pre-pregnancy BMI
and post-partum BMI models were adjusted for maternal glucose toler-
ance status, mode of delivery, DNA extraction and PCR sequencing
batches. Maternal glucose tolerance and mode of delivery were further

adjusted for pre-pregnancy BMI. Ethnicity was adjusted for DNA extrac-
tion and PCR sequencing batch effects. Statistical significance p < 0.05.

Additional file 14: Table S11. Statistically significant differentially-
expressed predicted functional pathway. Pre-pregnancy BMI result was
adjusted for maternal glucose tolerance status, mode of delivery, DNA ex-
traction and PCR sequencing batches. BMI_cat = Pre-pregnancy BMI.

Additional file 15: Table S12. Complete results from MaAsLin2 (KEGG
pathways). BMI_cat = Pre-pregnancy BMI.

Additional file 16: Figure S4. Statistically significant association
between the KEGG pathway, “Biosynthesis of secondary metabolites’, and
pre-pregnancy BMI (obese sub-category). BMI_cat = Pre-pregnancy BMI.

Additional file 17: Figure S5. Principal coordinate analysis (PCoA) plots
examining negative controls compared to human milk samples. (A)
Weighted UniFrac distances comparing microbiota composition based
on negative controls and milk samples. (B) Bray Curtis dissimilarity
comparing microbiota composition based negative controls and milk
samples. Negative control = sterile water

Additional file 18: Figure S6. Flow diagram of subject participation at
each time point.
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