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Abstract

Background: The Qinghai-Tibetan Plateau represents one of the most important component of the terrestrial
ecosystem and a particularly vulnerable region, which harbouring complex and diverse microbiota. The knowledge
about their underground microorganisms have largely been studied, but the characteristics of rhizosphere
microbiota, particularly archaeal communities remains unclear.

Results: High-throughput Illumina sequencing was used to investigate the rhizosphere archaeal communities of
two native alpine trees (Picea crassifolia and Populus szechuanica) living on the Qinghai-Tibetan Plateau. The
archaeal community structure in rhizospheres significantly differed from that in bulk soil. Thaumarchaeota was the
dominant archaeal phylum in all soils tested (92.46–98.01%), while its relative abundance in rhizospheres were
significantly higher than that in bulk soil. Ammonium nitrogen, soil organic matter, available phosphorus and pH
were significantly correlated with the archaeal community structure, and the deterministic processes dominated the
assembly of archaeal communities across all soils. In addition, the network structures of the archaeal community in
the rhizosphere were less complex than they were in the bulk soil, and an unclassified archaeal group
(Unclassified_k_norank) was identified as the keystone species in all archaeal networks.

Conclusions: Overall, the structure, assembly and co-occurrence patterns of archaeal communities are significantly
affected by the presence of roots of alpine trees living on the Qinghai-Tibetan Plateau. This study provides new
insights into our understanding of archaeal communities in vulnerable ecosystems.

Keywords: Rhizosphere, Archaeal community, Assembly process, Co-occurrence, Qinghai-Tibetan plateau

Background
The rhizosphere is a narrow zone of soil that tightly
surrounds growing plant roots, which secrete a variable
but substantial amount of photosynthesis-derived or-
ganic carbon compounds that enable the growth and
metabolic activities of soil microorganisms [1, 2]. There-
fore, the rhizosphere has been considered to be one of
the most complex interfaces in nature [3], where a var-
iety of microorganisms drive multiple biogeochemical

transformations including soil formation, carbon and ni-
trogen cycling [4, 5]. In addition, rhizosphere microbial
communities also have important effects on plant
growth, health, and abiotic stress tolerance [6–8]. A
growing number of studies have investigated the struc-
ture and assembly process of rhizosphere microbial
communities, as well as their response to the selective
effects of various biotic and abiotic factors [9–11]. How-
ever, these studies largely focused on bacteria and fungi,
and little is known about the structural characteristics
and driving factors of archaeal communities in the
rhizosphere.
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In fact, archaea have been considered a substantial
component of complex microbiomes [12], and have
profound interactions with bacteria, fungi and viruses in
a wide range of Earth’s ecosystems [13, 14]. Compared
to soil bacteria and fungi, archaeal communities are
usually of low abundance and have less diversity [15],
and they used to be thought to occur only in extreme
environments [16]. Due to the rapid development of
high-throughput sequencing technology, recent studies
have expanded our knowledge of the biology of the ar-
chaea and have discovered their fundamental and even
crucial ecological functions including methanogenesis
[17], ammonia oxidation [18], hydrocarbon degradation
[19], sulfate reduction [20], etc. Thus, a better know-
ledge of the structure, assembly and interaction of
archaeal components in soil is of great importance [12].
Several studies have investigated the diversity and

composition of archaeal communities in the rhizosphere.
These studies are mainly limited to rice and a few
wetland plants [21, 22], as well as only focusing on a
minority of archaea taxa such as ammonia-oxidizing
archaea (AOA) and methanogenic archaea [23–25].
Thus, it is not very clear what the diversity and compos-
ition of the archaeal community as a whole is in the
rhizosphere, especially under unique environmental
stress. In addition, the rhizosphere community structure
is affected by the combination of environmental vari-
ables and interactions among microbial species [26, 27].
However, given the unique cellular structure and specific
metabolic pathways of archaea that enable them to sur-
vive and even thrive under various adverse environments
[12, 28], several key questions about the archaeal com-
munity also need to be answered. The first question is
about the assembly process of archaea in rhizosphere: is
it governed by a deterministic process or stochastic
process? The second question is how archaeal species
interact with one another. Co-occurrence network
provides new perspectives for the analysis of microbiota
beyond those of simple diversity and composition [29],
and can well answer the second question.
The Qinghai-Tibetan Plateau (QTP), known as the

“roof of the world” and “the third pole”, is an important
component of the terrestrial ecosystem, which provides
many vital ecological services [30]. As one of the world’s
most vulnerable habitat, the QTP region has harsh
environmental conditions and is highly sensitive to
environmental disturbance, which could greatly impact
the distribution of organisms, especially soil microorgan-
isms [31–33]. The knowledge about their underground
microorganisms have largely been studied [34–36], but
the characteristics of rhizosphere microbiota, particularly
archaeal communities are inadequate. In this study,
high-throughput sequencing of 16S rRNA gene ampli-
cons was performed to exhaustively examine the

archaeal communities derived from the rhizosphere of
two native plants in the Qinghai-Tibetan Plateau. We
aimed to investigate the effects of the rhizosphere of
trees on the structure, assembly, and co-occurrence of
archaeal communities in this ecologically vulnerable re-
gion. We tested the following hypotheses: 1) the archaeal
community structure of tree rhizospheres are different
from that of bulk soil in the QTP region; 2) the assembly
of rhizosphere archaeal community are governed by
deterministic processes in the QTP region; 3) the co-
occurrence patterns of rhizosphere archaeal community
are more complex than that of bulk soil in the QTP
region.

Results
Soil physicochemical properties
The soil physicochemical properties significantly differed
between the rhizospheres of two plant species and the
bulk soil (Table 1; Table S1). The pH varied from 7.84
to 7.91, and the lowest pH was in the bulk soil. The
moisture of the two plant rhizospheres were similar and
were lower than that of the bulk soil. The highest
content of soil organic matter (SOM) was observed in
the bulk soil, and a significant difference was detected
only in the rhizosphere of P. crassifolia compared to the
bulk soil (P < 0.05). In addition, there were no significant
differences in the content of total nitrogen (TN), alkali-
hydrolysable nitrogen (AN) and total phosphorus (TP)
among the two plant rhizosphere and the bulk soil, but
the content of ammonium nitrogen (NH4

+-N) and
available phosphorus (AP) in the two rhizosphere were
significantly higher than they were in the bulk soil (P <
0.05).

Diversity and community composition of archaea
A total of 474,190 high-quality sequences were obtained
with a median read count per sample of 39,516 (range:
30,420-54,538). The high-quality reads were clustered
using > 97% sequence identity into 207 archaeal OTUs.

Table 1 Differences of soil physicochemical properties between
two rhizosphere and bulk soils

Index Bulk soil P. crassifolia P. szechuanica

pH 7.84(0.12)a 7.87(0.05)a 7.91(0.04)a

Moisture (%) 18.53(3.34)a 15.70(3.15)a 15.91(2.57)a

SOM (g/kg) 32.63(2.82)b 25.55(3.97)a 27.68(4.42)ab

TN (g/kg) 2.20(0.55)a 1.91(0.66)a 1.92(0.54)a

NH4
+-N (mg/kg) 13.88(0.76)a 15.44(0.62)b 15.55(0.31)b

AN (mg/kg) 255.75(67.09)a 236.50(75.24)a 261.25(47.25)a

TP (g/kg) 0.34(0.03)a 0.36(0.03)a 0.35(0.03)a

AP (mg/kg) 5.50(0.27)a 6.03(0.33)b 6.03(0.28)b

Data are means ± SD in parentheses, and different letters in the columns
indicate significant differences (Dunnett test, P < 0.05)
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The Good’s coverage scores (in all cases above 99.9%)
and the rarefaction curves showed clear asymptotes (Fig.
S1), which together indicated a near-complete sampling
of the archaeal community in this study.
The diversity indices of archaeal communities varied

among the rhizospheres of two plant species and the
bulk soil (Table 2). The observed number of OTUs (Ob)
was highest in bulk soil, followed by the rhizosphere of
P. szechuanica, whereas the rhizosphere of P. crassifolia
had lower numbers. Conversely, the Shannon index in
the two plant rhizospheres were higher than they were
in the bulk soil, and significant difference was identified
only in the rhizosphere of P. szechuanica compared to
the bulk soil (P < 0.05). The phylogenetic diversity
(MNTD) of the two plant rhizospheres were similar, and
their values were higher than that of the bulk soil.
Principal coordinate analysis (PCoA) based on weighted

UniFrac distances was performed to investigate the patterns
of separation among archaeal microbiota. We clearly ob-
served strong clustering of archaeal communities according
to the different microhabitats (i.e., P. crassifolia, P. szechua-
nica rhizosphere and bulk soil). Moreover, the two plant
rhizosphere samples were clearly distinguished from the
bulk soil samples across the first principal coordinate, while
the separation between the rhizosphere of P. crassifolia and
P. szechuanica was seen along the second principal coord-
inate, indicating that the largest source of variation in the
archaeal communities is proximity to the root, followed by
plant variety (Fig. 1a). Interestingly, PCoA analysis of
βMNTD distances revealed that the largest source of vari-
ation is plant variety rather than proximity to the root (Fig.
S2). Consistent with the result of PCoA analyses, ANOSIM
analyses also revealed significant differences in the structure
of archaeal communities among the rhizosphere of two
plant species and the bulk soil (Table S2).
The relative abundance of archaeal OTUs at the phylum

level was variable among the two plant rhizospheres and
the bulk soil. The most dominant archaeal phyla across all
samples were Thaumarchaeota, Unclassified_k_norank
and Euryarchaeota, accounting for 92.46–98.01%, 1.35–
6.01% and 0.56–1.18% of the pyrosequencing reads, re-
spectively (Fig. 1b). Analysis of variance (ANOVA)
showed significant enrichment of Thaumarchaeota in the
rhizosphere microbiota of two plant species compared to

that of the bulk soil (Dunnett test, P < 0.05). Conversely,
the relative abundance of Unclassified_k_norank and Eur-
yarchaeota in the rhizosphere microbiota of two plant spe-
cies decreased but did not show significant differences
compared with the abundance in the bulk soil (Table S3).
Moreover, LEfSe analysis was also performed to determine
the taxa that most likely explains the variations among dif-
ferent samples. In the bulk soil, four groups of archaea
were significantly enriched, namely, Thermoplasmata (the
class, orders of Thermoplasmatales, and its family
marine_Group_II to genus), unclassified_k_norank (from
phylum to genus), norank_c_Soil_Crenarchaeotic_Group_
SCG (from order to genus), group_C3 (from family to
genus). In the P. crassifolia rhizosphere, a group of ar-
chaea was significantly enriched, namely, Thaumarchaeota
(the phylum and its class soil_Crenarchaeotic). In the P.
szechuanica rhizosphere, two groups of archaea were sig-
nificantly enriched, namely, unclassified_c_Soil_Crenarch-
aeotic_Group_SCG (from order to genus), unknown_
Order_c_Soil_Crenarchaeotic_Group_SCG (from order to
genus) (Fig. 2).

Correlation between soil properties and archaeal communities
Distance-based redundancy analysis (dbRDA) indicated the
strong correlation between soil physicochemical character-
istics and the structure of archaeal communities. The first
two axes of CAP could explain 27.12 and 13.43% of the
total variation in archaea communities, respectively (Fig. 3).
In line with the PCoA (weighted UniFrac) analysis, the first
axis (CAP1) could separate the rhizosphere samples from
the bulk soil, and the second axis (CAP1) mainly distin-
guished the P. crassifolia rhizosphere from the P. szechua-
nica rhizosphere samples. The results of PERMANOVA
analysis revealed that soil ammonium nitrogen (NH4

+-N),
soil organic matter (SOM) accounted for 35.1 and 28.5% of
archaeal community differences, respectively, and niches
(rhizosphere vs bulk soil) contributed 45.4% of the inter-
pretation (Table S4). In addition, soil ammonium nitrogen
(NH4

+-N), available phosphorus (AP) and pH value were
important environmental attributes significantly affecting
the archaea community structure (Mantel test; r = 0.392,
P = 0.026; r = 0.362, P = 0.030; r = 0.400, P = 0.028).
Further analyses revealed that soil properties had

significant effects on the relative abundance of the
archaea taxa at the class level. Soil pH value was posi-
tively correlated with the relative abundance of Unclassi-
fied_k_norank, Norank_p_Bathyarchaeota, and it was
negatively correlated with Soil_Crenarchaeotic_Group_
SCG, Methanobacteria. Ammonium-nitrogen (NH4

+-N)
was positively correlated with the relative abundance of
Thermoplasmata. Soil total phosphorus (TP) was
positively correlated with the relative abundance of
Methanobacteria. Available phosphorus (AP) was nega-
tively correlated with Unclassified_k_norank (Fig. 4).

Table 2 Differences in the α-diversity indices of archaeal
communities between two rhizosphere and bulk soils

Taxonomic Diversity Phylogenetic Diversity

Ob Shannon MNTD

Bulk soil 69(23)a 2.06(0.15)a 0.36(0.11)a

P. crassifolia 45(14)a 2.23(0.11)ab 0.43(0.22)a

P. szechuanica 63(14)a 2.34(0.03)b 0.44(0.06)a

Data are means ± SD in parentheses, and different letters in the columns
indicate significant differences (Dunnett test, P < 0.05)
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Fig. 1 Structure and composition of archaeal communities in the two rhizosphere samples and the bulk soil. a Principal coordinate analysis
(PCoA) ordination of archaea communities based on Weighted UniFrac distances. The 95% confidence ellipses are shown around each type of
sample. b Taxonomic composition at the phylum level of archaeal communities

Fig. 2 A linear discriminant analysis effect size (LEfSe) method identifies the significantly different abundant taxa of archaea. The taxa with
significantly different abundances among the P. crassifolia, P. szechuanica rhizosphere and the bulk soil are represented by coloured dots. From
the centre outward, they represent the kingdom, phylum, class, order, family, and genus levels. The coloured shadows represent trends of the
significantly different taxa. Only taxa meeting a linear discriminant analysis (LDA) significance threshold of > 2 are shown
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Assembly processes of archaeal microbiota in rhizosphere
and bulk soil
The phylogenetic tree of archaea recovered from all samples
were relatively well classified according to the major lineages,
and the local support values on the branches were relatively
high (Fig. S3), suggesting the archaeal phylogenetic tree was
reliable. Additionally, the phylogenetic signal showed that
there was a significant relationship between ecological simi-
larity and phylogenetic relatedness across short phylogenetic

distances (Fig. S4). Thus, we calculated NTI and βNTI be-
cause both of these metrics emphasize phylogenetic relation-
ships across short phylogenetic distances [37].
We clearly observed that the NTI values of archaea micro-

biota from all samples were less than − 2, in which the lowest
mean NTI value was detected in the bulk soil (Fig. 5a), sug-
gesting that archaeal communities were phylogenetically
over-dispersed, especially in the bulk soil, and it also sug-
gested that deterministic processes mainly regulate the

Fig. 3 Ordination plots of the results from distance-based redundancy analysis (dbRDA) to explore the correlation between soil properties and
archaeal community structure

Fig. 4 Heat map showing the Pearson correlation between soil properties and the relative abundance of the archaea taxa at the class level. The
left side of the legend is the colour range of different R-values. The value of P < 0.05 and P < 0.01 is marked with “*” and “**”, respectively
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assembly of archaeal communities. In addition, the lowest
mean βNTI value for archaea was found in the bulk soil, and
it was significantly lower than zero (66.67% of βNTI values
ranging between 0 and− 2, 33.33% of βNTI values less than
− 2), suggesting the phylogenetic turnover was less than what
would be expected by chance. The mean βNTI value in the
P. crassifolia rhizosphere was significantly higher than zero,
suggesting the phylogenetic turnover was higher than what
would be expected by chance. However, the mean βNTI
value in the P. szechuanica rhizosphere was not significantly
different from zero (Fig. 5b). These results further indicated
that deterministic processes play a stronger role in the phylo-
genetic turnover than stochastic processes. Additionally, the
species rank abundance distribution models also revealed
that archaea communities in all samples were followed ‘niche
theory’models (Table 3).

Co-occurrence network structure of archaea microbiota
Three co-occurrence networks were constructed for all
sample types (Bulk soil, P. crassifolia and P. szechuanica

rhizosphere) to illustrate potential biotic interactions
among archaea taxa (Fig. 6). All the networks were
significantly different from the random networks with
the identical numbers of nodes and edges (Table S5),
suggesting that the network structures were non-
random and reliable.
We found that the networks in the rhizosphere of two

tree species were obviously different from that in the
bulk soil (Fig. 6; Table S5). The number of edges,
average degree and average clustering coefficient of the
networks in two rhizosphere were lower than they were
in bulk soil, indicating that rhizosphere assemblages of
two plant species formed lower complex archaea
networks compared with that of the bulk soil. The ratio
of negatively correlated edges between OTUs in the P.
crassifolia rhizosphere (30.8%) and the P. szechuanica
rhizosphere (27.6%) were profoundly higher than that of
in bulk soil (20.1%), which could be interpreted as
increased competitions among archaea taxa in the rhizo-
sphere environment. We also observed a high propor-
tion of unclassified_k_norank in all networks (Bulk soil,
P. crassifolia and P. szechuanica rhizosphere), account-
ing for 52.0, 52.0 and 62.0%, respectively. In addition,
the majority of unclassified_k_norank were highly
connected in the networks. Thus, it could be inferred
that unclassified_k_norank is very crucial for the stability
of archaea network structures in all samples.

Discussion
Variation of archaea community structures between
rhizosphere and bulk soil
In this study, the structure of archaeal communities in
the rhizosphere of two tree species were significantly

Fig. 5 Box plot of NTI metric (a) and βNTI metric (b) of archaeal communities in all samples. Letters above the boxes indicate significant
differences (Dunnett test, P < 0.05)

Table 3 The proportion of the lowest AIC values for six species
rank abundance distribution models of archaea communities in
all samples

Bulk soil P. crassifolia P. szechuanica

Break Stick

Pre-emption 75% 100% 75%

Lognormal

Zipf

Zipf-Mandelbrot 25% 25%

ZSM

The blank cells indicate ‘0%’

Zhang et al. BMC Microbiology          (2020) 20:235 Page 6 of 13



different from that in the bulk soil in the QTP region
(Fig. 1; Fig. S1; Table 2; Table S2), which supported our
first hypothesis. Moreover, we found that the largest
source of variation in archaeal communities is the pres-
ence of plant roots, followed by plant species, which
agreed with previous studies of rhizosphere bacterial and
fungal communities [38–41]. Plant roots could release a
variety of carbon exudates including sugars, amino acids,
organic acids, mucilage and root border cells [42, 43].
These exudates are available nutrients and energy for
microbial activities [44], making the microbial commu-
nity structures in the rhizosphere differed from what is
found in the bulk soil [5]. The variation of archaeal com-
munities observed between the rhizosphere P. crassifolia
and P. szechuanic may be due to the difference in the
composition of carbon exudates released by the roots of
the two tree species [45]. In addition, the plant rhizo-
spheres could form oxygen-depleted micro-niches for
soil microorganisms due to the respiration of the roots
[46]. Most of Archaea have also been identified as
strictly anaerobic or facultative anaerobes [12], which
are likely to be affected by the changes of redox potential
in the rhizosphere. Consistent with this inference,
important groups of Archaea, such as ammonium-
oxidizing archaea and methanogens, have been proved
to have unique distribution in the rhizosphere of Phrag-
mites australis and Halocnemum strobilaceum [25, 47].
Therefore, this may also explain the difference of
archaeal communities between the rhizosphere and bulk
soil in the QTP region.
Analysis of archaeal community composition revealed

that the archaeal communities were dominated by

Thaumarchaeota phylum, accounting for 92.46–98.01%
of sequences in this study (Fig. 1b; Table S3). This find-
ing was in agreement with previous findings from the
research also conducted in the Qinghai-Tibetan Plateau,
which showed that the dominant archaeal phylum was
Thaumarchaeota, accounting for 79.27% of sequences
[32]. Thaumarchaeota have been detected in a variety of
habitats [48–50], and identified as a novel archaeal
phylum in 2008 [48]. Many studies have suggested that
Thaumarchaeota species possess ammonia oxidizing
abilities and are considered to play an important role in
nitrogen cycling [51, 52]. In our study, the relative
abundance of Thaumarchaeota in the two different plant
rhizosphere were significantly higher than they were in
the bulk soil (Fig. 1b; Table S3), and all the eight
biomarkers in rhizosphere by the LEfSe analysis also be-
long to the phylum Thaumarchaeota (Fig. 2). These find-
ings collectively indicated that the nitrogen metabolism
activities occurred in the rhizosphere might be higher
than that in that in the bulk soil.

Important drivers of archaea communities
Combined with the analysis of dbRDA and Mantel test
showed that soil ammonium nitrogen (NH4

+-N),
available phosphorus (AP) and pH were significantly
correlated with the archaeal community structures (Fig.
3). This observation in NH4

+-N agreed with previously
reported results in the study by Norman and Barrett
[53], which documented NH4

+-N as a metabolic
substrate that drives the distribution patterns in richness
of ammonia-oxidizing archaea (AOA). Moreover, our
results revealed that the content of NH4

+-N in the

Fig. 6 The co-occurrence network of archaea communities based on correlation analysis. Each node represents an individual OTU coloured by
taxonomy at phylum level, and the size of each node is proportional to the degree. The connection stands for a strong and significant
(Spearman’s |r| > 0.6, P < 0.05) correlation. Red edges represent positive, blue edges represent negative correlation
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rhizosphere was significantly higher than it was in the
bulk soil (Table 1), and the increase of NH4

+-N concen-
tration in the rhizosphere may be due to the enrichment
of diazotrophic bacteria in the rhizosphere, which can
convert atmospheric N2 into ammonium via biological
nitrogen fixation [54, 55], although the results of this
study cannot be directly confirmed. The relative
abundance of the class Thermoplasmata was positively
correlated with soil NH4

+-N (Fig. 4). These results cor-
roborate the opinion that NH4

+-N may play a significant
role in shaping the archaeal community structures. Nu-
merous studies have suggested that soil pH is a major
driver of the community structure of bacteria, fungi or
diazotrophs [56–58], but there seems to be no consensus
on archaea [53, 58]. This contradiction could be ex-
plained by a plausible interpretation: soil pH indirectly
affects the abundance of major archaeal taxa mainly by
regulating the availability of substrates such as NH4

+,
CO2, and CH3COOH [53, 59, 60], so the correlation
may vary with samples or by region. The significant
correlation in our study could be attributed to more
available NH4

+-N regulated by pH to the phylum
Thermoplasmata [61]. Soil available phosphorus (AP)
has been reported to be a limiting factor for the growth
of plants or microorganisms [7, 62]; thus, it may directly
or indirectly affect archaeal communities.

Deterministic processes govern the assembly of archaeal
communities
Our results indicate that the assembly of archaeal com-
munities were governed by the deterministic processes
across all soils in the QTP region (Fig. 5; Table 3), con-
sistent with our second hypothesis. The mean NTI
values were significantly lower than zero in all samples,
which provided concrete evidence that the archaeal
communities were more phylogenetically over-dispersed
than expected as a result of chance [63, 64]. Previous
studies have shown that the competition among species
would become more frequent where there was greater
niche similarity and would subsequently lead to the co-
existence of distantly phylogenetically related species
[65, 66]. In the present study, most of the soil variables
(except for NH4

+-N and AP) were similar (Table 1), and
microorganisms competing strongly for nutrients or
water in the QTP region suffered from its low
temperature and strong ultraviolet radiation [67, 68],
which was supported by the high proportion of negative
interactions in archaeal networks (Fig. 6; Table S5).
These factors may explain why the archaeal communi-
ties were phylogenetically over-dispersed. Furthermore,
the NTI values in the rhizosphere were greater than that
in the bulk soil but not significant, which might indicate
that stochastic processes may still play a minor role [69].
In fact, former researches have already proved that the

assembly of ecological communities are regulated
concurrently by both stochastic and deterministic pro-
cesses [37, 70, 71]. In addition, We also found that the
rhizosphere βNTI values were significantly greater than
those measured in the bulk soil, suggesting that the
phylogenetic turnover of archaea in the rhizosphere were
higher than what was in the bulk soil [55, 71]. This
could be attributed to dynamic rhizosphere microhabi-
tats potentially stimulating the activities and evolutions
of archaeal species [3].

Distinct archaeal networks in rhizospheres and bulk soil
Previous studies have found that bacterial or fungal
networks in the rhizospheres were more [40, 72] or less
[27, 73] complex than what were found in the bulk soil.
In the present study, we found that the archaeal co-
occurrence networks of in the rhizosphere of two tree
species were less complex relative to that of the bulk soil
in the QTP region (Fig. 6; Table S5), which not sup-
ported our third hypothesis. Considering the complexity
of microbial networks may represent ecological interac-
tions or niche sharing among microorganisms [74], the
rhizosphere of two tree species in QTP region likely
fosters fewer archaeal interactions or develops less
shared niches than the bulk soil, which could be
explained through two plausible interpretations. On the
one hand, the archaea possess distinctive metabolic
pathways and enzymes that enable them to survive and
thrive under extreme or nutrient-poor environments
[12, 13], which may lead to their lower nutrient depend-
ence on root exudates than bacteria or fungi. On the
other hand, the rhizosphere bacterial and fungal species
are likely to accelerate the consumption of substrates
required by archaea, and even the plants themselves may
be competitors for microorganisms under severe envir-
onmental stress in the QTP region [75, 76], thus redu-
cing the interactions or niche sharing among archaea.
This interpretation was also supported by the finding
that higher numbers of negative links occurred in the
rhizosphere networks. Moreover, average path length of
archaeal network was smaller in the rhizospheres than
in the bulk soil. Networks with small path length are
considered to be small-world networks [77], which are
related to the rapid responses of ecosystems to perturba-
tions [78]. Therefore, archaeal community in the tree
rhizospheres may be more sensitive to climate change
compared with in the bulk soil in ecologically vulnerable
region. We also found that an unclassified archaeal
group, unclassified_k_norank occupies a high proportion
in all networks despite its low abundance in the commu-
nity composition (Fig. 1b; Table S3). Even though we do
not yet know the specific ecological functions of this
unclassified archaeal group, it is clear that it may play an
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important role in maintaining the stability of community
structure and function [79].

Conclusions
In summary, our study provides insight into the struc-
ture, assembly and co-occurrence patterns of the rhizo-
sphere archaeal communities in the QTP region. The
results showed that archaeal community structures in
the rhizosphere of two plant species significantly differed
from that in the bulk soil. Soil ammonium-nitrogen
(NH4

+-N), soil organic matter (SOM), available phos-
phorus (AP) and pH were important drivers of the ar-
chaeal communities. Deterministic processes dominated
the assembly of archaeal communities across all samples.
The network structures of the archaeal community in
the rhizosphere were less complex than they were in the
bulk soil. We also identified an unclassified archaeal
group (unclassified_k_norank) that may be crucial for
the interrelationships among archaeal species. Future re-
search should further investigate the interaction between
archaea and other microorganisms such as bacteria,
fungi and protists in the rhizosphere, and work to
understand the role of archaea in plant survival and
growth under low-temperature stress.

Methods
Site and sampling
A trees field trial located in the northeast portion of the
Qinghai-Tibetan Plateau (31°32′N, 92°00′E, 4531 m a. s.
l), which has a plateau sub-frigid monsoon semi-arid
climate with an average annual temperature of − 2.2 °C
and a mean annual precipitation of 458 mm. This field
trial was established in April 2010 and contains two
native alpine tree species (Picea crassifolia and Populus
szechuanica var. tibetica). These two woody plants
represent the typical coniferous and broad-leaved plants
living in the QTP area, respectively.
In order to ensure the representativeness of the sam-

ples, the surviving and well-growing trees (P. crassifolia
about 2.5 m, P. szechuanica about 4.5 m) were selected
for sample collection in July 2017. Three subsamples of
fine roots (< 2 mm) were carefully collected from differ-
ent positions in the rhizosphere of each selected tree at
the depth of 5–15 cm below ground level. The homoge-
neous rhizosphere soil was obtained from the combined
fine root samples of each tree according to the proced-
ure described in a previous study [38]. The bulk soil was
collected from four treeless quadrats (3 m × 3m) at the
depth of 5–15 cm below ground level. Each quadrat is
about 10 m away from the sampled trees, in which five
soil subsamples were obtained and combined into a rep-
resentative bulk soil sample. All soil samples were hand-
picked to remove roots and impurities, and then divided
into two subsamples. One portion was air dried and

sieved through 2mm meshes for soil property analyses,
and the other portion was stored at − 80 °C for DNA
extraction.

Soil physicochemical properties analysis
Soil physicochemical properties in both rhizosphere and
bulk soils were analysed according to Zhou et al. [80].
Briefly, soil moisture was quantified gravimetrically by
drying fresh soils in 105 °C for 48 h. Soil pH was
measured by a pH meter in a soil suspension with an
air-dried soil to water radio of 1: 2.5 mass/volume. Soil
organic matter (SOM) was determined by the potassium
dichromate oxidation titration method. Total nitrogen
(TN) was measured by the Kjeldahl digestion method.
Total phosphorus (TP) was determined by the Mo-Sb
anti-spectrophotometric method. Alkali-hydrolysable
nitrogen (AN) was measured by the alkali-hydrolysed
diffusing method. Ammonium nitrogen (NH4

+-N) was
measured using indophenol blue spectrophotometry.
Available phosphorus (AP) was extracted with a NH4F/
HCl solution, which was then determined using a UV-
visible spectrophotometer.

DNA extraction, PCR amplification, and sequencing
Total genomic DNA was extracted using the DNeasy
PowerSoil Kit (Qiagen, Hilden, Germany) according to
the manufacturer’s instructions. The quantity and qual-
ity of DNA was evaluated with a spectrophotometer
(NanoDrop, ND2000, Thermo Scientific, Wilmington,
DE, USA). The primers 524F10extF (5′-TGYCAGCCGC
CGCGGTAA-3′) and Arch958RmodR (5′-YCCGGCGT
TGAVTCCAATT-3′) were chosen for the amplification
and subsequent high-throughput sequencing of the ar-
chaea [81]. Each sample was amplified in triplicate in a
20 μL mixture containing 4 μL of 5 × FastPfu Buffer, 2 μL
of 2.5 mM dNTPs, 0.8 μL of each primer (5 μM), 0.4 μL
of FastPfu Polymerase and 10 ng of template DNA. The
PCR reaction were carried out using the following proto-
col: 3 min of denaturation at 95 °C, 27 cycles of 30 s at
95 °C, 30 s of annealing at 55 °C, 45 s of elongation at
72 °C, and a final extension at 72 °C for 10 min. The
PCR products were extracted and purified by agarose gel
electrophoresis, and further quantified using Quanti-
Fluor™-ST (Promega, USA) according to the manufac-
turer’s protocol. Purified amplicons were pooled in
equimolar amounts and paired-end sequencing was
performed on an Illumina MiSeq platform (Illumina, San
Diego, USA) according to the standard protocols de-
scribed by Majorbio Bio-Pharm Technology Co. Ltd.

Sequence processing
Raw sequences yielded from Illumina sequencing were
processed using QIIME 1.9.1 [82]. Paired-end reads were
joined with fastq-join, demultiplexed and quality filtered
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with default parameters [83]. Briefly, sequences with a
quality score < 20 or with any truncated reads shorter
than 50 bp were removed. Operational taxonomic units
(OTUs) were clustered with 97% similarity cutoff using
UPARSE 7.1 and chimeric sequences were identified and
removed using UCHIME. The taxonomy of each 16S
rRNA gene sequence was analysed by an RDP Classifier
algorithm (http://rdp.cme.msu.edu/) against the Silva
(SSU123) 16S rRNA database using a confidence thresh-
old of 80%.

Data analysis
All statistical analyses were carried out using R (v 3.5.1,
The R Core Team, 2018) unless stated otherwise. α-
diversity in each sample was calculated as the observed
number of OTUs (Ob), the Shannon diversity and the
phylogenetic diversity (MNTD) indices. Significant dif-
ferences in the variance of α-diversity and microbial
abundance data were examined using one-way analysis
of variance, and post hoc comparisons were conducted
by the Dunnett test at the 5% level. The differences in
archaeal community composition based on Weighted
UniFrac and βMNTD distances were illustrated with
PCoA ordination plots using the ‘cmdscale’ function
from the vegan package. To statistically support the ar-
chaeal clustering patterns resulted from PCoA analysis,
different samples were compared by ANOSIM analysis
using the vegan package. Additionally, we performed lin-
ear discriminant analysis (LDA) coupled with effect size
measurements (LEfSe) analysis to investigate statistically
representative biomarkers between different samples.
Distance-based redundancy analysis (dbRDA) was car-

ried out using the ‘rda’ function from the vegan package
to explore the relationships between soil physicochemi-
cal properties and archaeal community composition.
Furthermore, associations between soil properties and
nine archaeal classes were evaluated by Pearson correl-
ation analysis at the 5% level.
To evaluate the assembly processes of the archaeal

community, the phylogenetic signal of each sample was
first tested by following the procedure described by a
previous study [69]. Briefly, environmental optima for
each OTU with respect to all physicochemical variables
were calculated. The correlation coefficients between
phylogenetic distances and differences in environmental
optima were calculated by phylogenetic Mantel correlo-
grams [55], and the significance of these correlations
were examined with 999 randomizations using the ‘man-
tel.correlog’ function from the vegan package. The
phylogenetic diversity within each sample was calculated
as the mean nearest taxon distance (MNTD) and nearest
taxon index (NTI) using the ‘mntd’ and ‘ses.mntd’ func-
tions from the picante package [84] Note that MNTD
refers to the phylogenetic distance between each OTU

and its closest relative also found per sample, and NTI
measures the deviation of observed MNTD from MNTD
in a null model with 999 randomizations. For NTI > + 2
(NTI < − 2) in a single community or a mean NTI > 0
(NTI < 0) significantly across all communities indicates
coexisting taxa are more closely related (phylogenetic
clustering) or more distantly related (phylogenetic over-
dispersion) than can be expected by chance [37]. The
pairwise phylogenetic turnover between communities
was calculated as βMNTD and βNTI using the ‘com-
distnt’ function from the vegan package [84]. βNTI > + 2
(βNTI < − 2) between one pair of communities or mean
βNTI > 0 (βNTI < 0) significantly in all pairs of commu-
nities indicates greater (or less) than expected phylogen-
etic turnover, respectively [69]. If the observed βMNTD
values does not significantly deviate from the null
βMNTD distribution [85], it suggests that stochastic
processes predominate phylogenetic community
composition. In addition, to verify the results from
phylogenetic analyses, five models representing niche
theory (Break Stick, Pre-emption, Lognormal, Zipf, Zipf-
Mandelbrot) and ZSM representing neutral theory were
performed using the function ‘radfit’ from the R package
‘vegan’ or TeTame [64]. Akaike Information Criterion
(AIC) was used to evaluate the fitting quality of each
statistical model, where the lower AIC value indicated a
better fit for the model [86].
Network analyses based on Spearman’s rank analysis

were carried out with the ‘WGCNA’ package [30, 87],
and structural attributes of the overall networks includ-
ing average degree, clustering coefficient and average
path distance were calculated in the ‘igraph’ package.
The 50 most abundant OTUs of the archaea community
in each sample were selected, and the co-occurrence
patterns of archaea communities were explored based
on strong and significant correlation (Spearman’s |r| >
0.6, P < 0.05). Finally, the constructed networks were
visualized using Gephi 0.9.2 [88].
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