
Research Article

Asynchronous event feature generation
and tracking based on gradient
descriptor for event cameras

Ruoxiang Li1 , Dianxi Shi2,3, Yongjun Zhang2, Ruihao Li2,3

and Mingkun Wang1

Abstract
Recently, the event camera has become a popular and promising vision sensor in the research of simultaneous localization
and mapping and computer vision owing to its advantages: low latency, high dynamic range, and high temporal resolution.
As a basic part of the feature-based SLAM system, the feature tracking method using event cameras is still an open
question. In this article, we present a novel asynchronous event feature generation and tracking algorithm operating
directly on event-streams to fully utilize the natural asynchronism of event cameras. The proposed algorithm consists of
an event-corner detection unit, a descriptor construction unit, and an event feature tracking unit. The event-corner
detection unit addresses a fast and asynchronous corner detector to extract event-corners from event-streams. For the
descriptor construction unit, we propose a novel asynchronous gradient descriptor inspired by the scale-invariant feature
transform descriptor, which helps to achieve quantitative measurement of similarity between event feature pairs. The
construction of the gradient descriptor can be decomposed into three stages: speed-invariant time surface maintenance
and extraction, principal orientation calculation, and descriptor generation. The event feature tracking unit combines the
constructed gradient descriptor and an event feature matching method to achieve asynchronous feature tracking. We
implement the proposed algorithm in Cþþ and evaluate it on a public event dataset. The experimental results show that
our proposed method achieves improvement in terms of tracking accuracy and real-time performance when compared
with the state-of-the-art asynchronous event-corner tracker and with no compromise on the feature tracking lifetime.

Keywords
Robotics, event camera, feature descriptor, feature tracking, SLAM

Date received: 16 February 2021; accepted: 27 May 2021

Topic Area: Robotics software Design and Engineering
Topic Editor: David Portugal
Associate Editor: D.J Lee

Introduction

Over the past several years, simultaneous localization and

mapping (SLAM) has been widely studied and developed

for augmented and virtual reality, self-driving cars, and

unmanned aerial vehicles.1 The combination of depth

learning and SLAM2,3 has also become a hot research topic

at present. But, due to the complexity of the real environ-

ment, existing visual SLAM systems using single vision

sensor are still faced with many problems, such as tracking

1National University of Defense Technology, Changsha, China
2 Artificial Intelligence Research Center (AIRC), National Innovation

Institute of Defense Technology (NIIDT), Beijing, China
3Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin, China

Corresponding author:

Dianxi Shi, Artificial Intelligence Research Center (AIRC), National

Innovation Institute of Defense Technology (NIIDT), Beijing 100166,

China.

Email: dxshi@nudt.edu.cn

International Journal of Advanced
Robotic Systems

July-August 2021: 1–13
ª The Author(s) 2021

Article reuse guidelines:
sagepub.com/journals-permissions

DOI: 10.1177/17298814211027028
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://orcid.org/0000-0002-6684-2011
https://orcid.org/0000-0002-6684-2011
https://orcid.org/0000-0002-9839-1489
https://orcid.org/0000-0002-9839-1489
mailto:dxshi@nudt.edu.cn
https://sagepub.com/journals-permissions
https://doi.org/10.1177/17298814211027028
http://journals.sagepub.com/home/arx
https://creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F17298814211027028&domain=pdf&date_stamp=2021-07-09

failure. To enhance the robustness of SLAM systems, many

researchers fuse the data derived from two or more sensors,

such as cameras, Lidar, GPS, IMU, and so on.4,5 However,

there are still many challenges to these systems when faced

with challenging scenes, such as high-speed motion and

high dynamic range. Recently, bioinspired vision sensors6,7

have aroused many researchers’ interest and have become a

hot research topic for robotics and computer vision. Event

cameras respond to local pixel-level brightness changes,

transmitting asynchronous events only when brightness

changes are detected rather than frames with a fixed time

interval, intrinsically different from standard cameras.

Each event is a tuple ½x; y; t; p�, where ðx; yÞ is the coordi-

nate in the imaging plane, t is the triggered timestamp, and

p is the sign of the brightness change. The advantages of

event cameras include low latency, low power consump-

tion, high dynamic range, high temporal resolution, and no

motion blur. Therefore, event cameras have the potential to

help SLAM systems to overcome the limitations in challen-

ging environments. For example, owing to the natural abil-

ity of being sensitive to dynamic objects, event cameras

could be used for object detection and tracking,8 and have

great potential for improving the performance of the SLAM

pipeline in dynamic environments,9 for which we might

have to filter the dynamic moving objects from the raw

image data for better SLAM performance.10,11

Unfortunately, the asynchronous events from event

cameras are intrinsically different from the intensity

images, so standard computer vision methods cannot be

directly applied for event cameras.12 Researchers have to

explore new methods to bring event cameras’ potential into

full play. Until now, there have been a large amount of

research efforts focused on event cameras in multiple direc-

tions, such as SLAM,9,13,14 segmentation,15,16 reconstruc-

tion for visual information,17,18,19 and control for

unmanned aerial vehicles.20,21 More related research con-

tents can be found from the survey articles12,22 and the list

of event-based vision resources (https://github.com/uzh-

rpg/event-based_vision_resources).

As one of the basic methods in SLAM, feature-based

SLAM methods extract features from intensity frames, and

each feature is associated with a descriptor, such as scale-

invariant feature transform (SIFT), speeded-up robust fea-

tures (SURF), oriented FAST and rotated BRIEF (ORB),

and so on. The extracted descriptor preserves the informa-

tion of the local area around the feature point and provides

a quantitative comparison with other feature points.5 Then,

data association is performed to associate similar features

to complete feature tracking tasks. To the best of our

knowledge, there is still no visual SLAM system using

asynchronous feature tracking method, which is proposed

for event cameras. Driven by the demand for an efficient

asynchronous feature tracking method for subsequent

SLAM system based on event cameras, we propose an

asynchronous event feature generation and tracking algo-

rithm working directly on event-streams. The proposed

algorithm consists of an event-corner detection unit, a

descriptor construction unit, and an event feature tracking

unit. The results of asynchronous event feature tracking are

shown in Figure 1. The main contributions of this article

can be summarized as follows:

� We propose an asynchronous event feature genera-

tion and tracking algorithm, which can work directly

on asynchronous event-streams. The proposed algo-

rithm includes an event-corner detection unit, a

descriptor construction unit, and an event feature

tracking unit.

� We address a novel asynchronous event feature gra-

dient descriptor. The descriptor can be constructed

by speed-invariant time surface (SITS)24 mainte-

nance and extraction, principal orientation calcula-

tion, and descriptor generation. The descriptor is

used to represent the distribution of the local gradi-

ent information for event-corners and help to

achieve quantitative measurements of similarity

between event feature pairs.

� We implement our proposed algorithm in Cþþ and

evaluate it on the public dataset.23 The experimental

results show that our proposed method can improve

the tracking accuracy and real-time performance

when compared with the state-of-the-art asynchro-

nous event-corner tracker and with no compromise

on the feature tracking lifetime.

The rest of the article is organized as follows. The

related works are given in the next section. Then, we give

the overview of the presented algorithm, which is followed

by the introduction of the proposed gradient descriptor.

Later, the details of the event feature tracking method are

outlined, and the following section presents the experimen-

tal results and the corresponding analysis. Finally, the con-

clusions are drawn and the future work is given.

Figure 1. Our event feature generation and tracking algorithm
works directly on asynchronous event-streams based on our
proposed gradient descriptor. This figure shows the event feature
tracking results in the spatiotemporal space with our proposed
algorithm on shapes scene of the public event camera dataset.23

Different colors indicate different tracked event features.

2 International Journal of Advanced Robotic Systems

https://github.com/uzh-rpg/event-based_vision_resources
https://github.com/uzh-rpg/event-based_vision_resources

Related works

In computer vision, a feature may be a specific structure,

such as interest point, edge, block, or object, which differs

from its immediate neighborhood in the image. The

feature-based tracking method is widely applied for visual

odometry, SLAM, and augmented reality. Feature-based

tracking method generally consists of feature detection,

feature description, feature matching, and feature tracking.

In the whole process, feature description is one of the most

significant steps for tracking.

Feature descriptors for standard images

As one of the most widely used features, SIFT25 is invariant

to image scale and rotation, and robust to changes in illu-

mination and affine distortion. The generation of SIFT fea-

ture descriptor has four stages: scale-space extrema

detection (based on the difference of Gaussian pyramid),

keypoint localization, orientation assignment, and keypoint

description. After the first two stages, keypoints will be

selected including their locations and scales. In the step

of the orientation assignment, one or more orientations will

be assigned to each keypoint based on local image gradient

information at the local patch region around the keypoint

location. So, every keypoint can be assigned with the loca-

tion, scale, and orientation. Finally, the descriptor with

multidimensions can be calculated for each keypoint at the

selected scale based on the local patch region around its

location. The SURF descriptor26 was proposed based on the

idea similar to SIFT. SURF is faster than SIFT, and it is

also scale invariant and rotation invariant. As a binary

descriptor, the binary robust independent elementary fea-

ture (BRIEF) descriptor27 allows very fast Hamming dis-

tance matching, but it is not scale invariant and rotation

invariant. Another binary descriptor, called ORB,28 com-

bines the oriented features from accelerated segment test

(FAST) detector29 and rotated BRIEF descriptor. ORB is

rotation invariant but not scale invariant. Compared to

BRIEF and ORB, SIFT and SURF need significantly more

computation effort. However, SIFT and SURF use binary

strings as feature descriptions, which result in larger mis-

match rates.

Event-based corner detection

In recent years, many asynchronous event-corner detection

and tracking methods30,31,32,33,34 have been proposed based

on event-driven data. In detail, Vasco et al.31 applied an

adaptation of the original image-based Harris corner detec-

tor35 for event-based data, while Mueggler et al.32 pre-

sented a FAST-like event-based corner detector faster

than the method proposed by Vasco et al.,31 inspired by

image-based FAST corner detection method. Li et al.33

studied a fast and asynchronous event-based corner detec-

tion method, called FA-Harris, with a corner candidate

selection and refinement strategy. Alzugaray and Chli36

proposed a faster asynchronous event-corner detection

method inspired by the method of Mueggler et al.32 and a

simple asynchronous event-corner tracker. The tracker uti-

lizes a directed graph to record the tracks of event-corners.

Then, Alzugaray and Chli37 improved the asynchronous

event-corner tracking algorithm by introducing the normal-

ization descriptor for extracted event-corners. FA-Harris

detector achieves better performance in terms of accuracy

with moderate computation performance, compared with

the other aforementioned corner detection methods.

All the above event-corner detection methods operate

directly on asynchronous event-streams using the surface

of active event (SAE)38 (also called time surface.39). Time

surface maps the position of the latest event to its time-

stamp. In other words, time surface keeps the absolute

timestamps of the latest events triggered at the imaging

plane. Manderscheid et al.24 proposed the SITS, which is

invariant to the motion speed of cameras or scene objects.

SITS keeps the relative timestamps instead of absolute

ones. They utilized the SITS to detect event-corners from

event-streams by training a random forest.

Event-based feature tracking

Some event-based feature tracking methods work based on

event frames (synthesized by events with a fixed number or

in a fixed temporal window) or the absolute intensity infor-

mation on images. In the study of Tedaldi et al.,40 they first

extracted Harris corners and Canny edge features on inten-

sity images and then tracked the features on asynchronous

event-streams. Kueng et al.41 presented an event-based

visual odometry method to track the six degrees of motion

of the camera, and the proposed method is also based on

corners and edges. Zhu et al.42 accumulated events in a

temporal window to integrate event frames. Based on the

integrated event frames, they applied the original Harris

corner detector and then tracked the detected corners with

expectation–maximization scheme. Afterward, Zhu et al.43

further introduced the inertial measurement into the system

and proposed an event-based visual-inertial odometry

method. Gehrig et al.44 detected Harris corners on the

intensity frames and tracked them on event-streams. Li

et al.45 proposed a feature tracking method using events,

intensity frames, and IMU data. They first extracted Harris

and Canny feature on intensity frames, and then, the feature

templates are tracked using an expectation–maximization

iterative closest point strategy. Besides, Alzugaray and

Chli46 addressed a method to track generic patch features

event-by-event without the requirement for detecting

event-corners and descriptors.

To fully utilize the natural asynchronism of event cam-

eras, we propose a novel asynchronous event feature gen-

eration and tracking algorithm inspired by frame-based

feature tracking techniques. The algorithm can work

directly on event-streams without the requirement for

Li et al. 3

intensity frames, artificially synthesized event frames, or

other prior knowledge of scenes or camera motion. The

proposed algorithm is based on a novel asynchronous event

feature gradient descriptor inspired by the frame-based

SIFT feature descriptor. The gradient descriptor represents

the distribution of the local gradient information for event-

corners, and it is used for feature matching during the

asynchronous tracking process.

Overview

Inspired by standard computer vision tasks, we propose an

asynchronous event feature generation and tracking algo-

rithm in this article. As shown in Figure 2, the algorithm

includes an event-corner detection unit, a descriptor con-

struction unit, and an event feature tracking unit.

The event-corner detection unit is based on a fast and

asynchronous event-corner detection method,33 which is

called FA-Harris. It detects event-corners directly on

event-streams without using intensity images, which

mainly consists of five steps, including event filter, global

SAE maintenance, local SAE extraction, corner candidate

selection, and corner candidate refinement. In the proposed

event feature generation and tracking algorithm, the event-

corner detection unit utilizes the FA-Harris detector to

extract event-corners from event-streams, and the event

filter included in FA-Harris detector is not used in our

method here, which we found would not contribute to the

performance improvement of the tracking method.

After detecting event-corners, we design a novel asyn-

chronous event feature gradient descriptor for each event-

corner based on the SITS.24 The gradient descriptor can be

constructed by SITS maintenance and extraction, principal

orientation calculation, and descriptor generation. The

descriptor can represent the distribution of the local gradi-

ent information for event-corners and help to achieve quan-

titative measurements of similarity between event feature

pairs in the following event feature tracking unit. By intro-

ducing the gradient descriptor, we can define the event

feature as a tuple ½x; y; t; d�, where ðx; y; tÞ is the spatiotem-

poral coordinate of the event feature and d is the gradient

descriptor of the event feature. The details of the proposed

gradient descriptor will be introduced in the following

section.

Finally, the generated event features will be tracked

using the event feature tracking unit. The tracking unit is

achieved using the constructed descriptor and an event fea-

ture matching method to achieve asynchronous event fea-

ture tracking. The proposed gradient descriptor is used to

provide the similarity measurements between event feature

pairs. The event feature matching method is implemented

based on a directed graph, which is composed of multiple

structured track trees.

Gradient descriptor

This section introduces our proposed gradient descriptor.

The construction of the gradient descriptor can be divided

into three stages: SITS maintenance and extraction, princi-

pal orientation calculation, and descriptor generation,

which is mainly inspired by the last two stages of the

frame-based SIFT descriptor. We firstly select the event-

corners (keypoints) from the incoming events including

their locations, timestamps, and polarities based on FA-

Harris detector. Compared with the keypoints in the SIFT

method, our event-corners do not contain the scale infor-

mation. For the frame-based SIFT descriptor, the first stage

is the scale-space extrema detection based on the difference

of Gaussian pyramid before the keypoint localization step.

For the consideration of simplicity, we did not utilize the

scale space compared with the frame-based SIFT descrip-

tor, which would be a feature direction for further research.

As mentioned above, the keypoint localization for our

method is achieved using the FA-Harris detector for event

Figure 2. The overview of the proposed asynchronous event feature generation and tracking algorithm. The algorithm consists of an
event-corner detection unit, a descriptor construction unit, and an event feature tracking unit. The input of the algorithm is the event-
streams, and the output of the algorithm is the tracks of the tracked event features. The event-corner detection unit is based on a fast
and asynchronous event-corner detection method. It extracts the event-corners through global SAE maintenance, local SAE extraction,
corner candidate selection, and corner candidate refinement. The gradient descriptor is constructed by SITS maintenance and
extraction, principal orientation calculation, and descriptor generation. The tracking unit is achieved using the constructed descriptor
and an event feature matching method to achieve asynchronous feature tracking. SAE: surface of active event; SITS: speed invariant time
surface.

4 International Journal of Advanced Robotic Systems

cameras rather than localizing the keypoint in the scale

space. We apply the SITS method24 to provide temporal

information and gradient information of events. The global

SITS structure will be maintained based on the incoming

events. It has the same size width� height as the imaging

plane, where each position is associated with the corre-

sponding pixel position in the imaging plane and will be

used to provide the gradient information for each event-

corner. For each incoming event-corner, the gradient

descriptor will be generated based on the local patch region

extracted from the global SITS structure around its loca-

tion. The construction process of the gradient descriptor is

asynchronous, in other words, the algorithm generates a

gradient descriptor once a new event-corner arrives.

Speed-invariant time surface maintenance and
extraction

Since there is no concept of intensity images for event

cameras and a single event does not bring any information

to provide gradient information for descriptor construction,

we choose the SITS24 (updated asynchronously, with every

incoming event) to store the temporal information of events

and provide the gradient information, rather than using the

intensity image as in the frame-based SIFT descriptor.25

According to Manderscheid et al.,24 SITS is invariant to

the motion speed of cameras or objects in the environment,

which can contribute to the speed-invariant property of

event features. To distinguish event-corners from event-

streams, SITS keeps relative values for timestamps rather

than absolute ones. The method tries to maintain one SITS

structure for each polarity of event, which stores a single

value for each pixel location. Specifically, all the values in

the SITS are initialized to 0. When a new event arrives, the

values, which are larger than the value at the corresponding

event pixel position ðx; yÞ, within the window l � l will be

reduced by 1. According to the study of Manderscheid

et al.,24 l is set to 11. The value at the corresponding event

pixel position ðx; yÞ will be modified to l2. SITS is invariant

to the motion speed of cameras or objects in the

environment.

In our proposed algorithm, we maintain one global SITS

structure for each polarity same as in the method of Man-

derscheid et al.24 For each incoming event, the global SITS

structure corresponding to the polarity of the new coming

event will be updated. When a new event-corner arrives, we

extract the local patch P with size ð2ºRßþ 2Þ � ð2ºRßþ 2Þ
around the pixel position of the event-corner on the global

SITS structure corresponding to the polarity of the new

event-corner. As shown in Figure 3, R ¼
ffiffiffi
2
p

r is decided

by the radius r of the sampling region for the gradient

descriptor. The extracted local patch P will be used for

descriptor generation.

Principal orientation calculation

On the extracted local patch P extracted from the global

SITS structure, we calculate the magnitude mðx; yÞ and

orientation qðx; yÞ of gradient for every position as follows

Figure 3. The generation of the proposed asynchronous event feature gradient descriptor. The local patch with size
ð2ºRßþ 2Þ � ð2ºRßþ 2Þ is extracted from the global SITS. The sampling region with size 2r � 2r is divided into 2� 2 cells in this case.
One gradient histogram with eight bins is computed for each cell based on the reoriented local patch. In this way, a 32-dimension
gradient descriptor vector will be constructed. SITS: speed invariant time surface.

Li et al. 5

mxy ¼ mðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x þ d2
y

q
(1)

qxy ¼ qðx; yÞ ¼ arctan
dy

dx

� �
(2)

where dx ¼ Pðxþ 1; yÞ � Pðx� 1; yÞ is the differential in

x direction of the local patch (which is the same as the

x direction of the imaging plane), dy ¼ Pðx; yþ 1Þ�
Pðx; y� 1Þ is the differential in y direction of the local

patch (which is the same as the y direction of the imaging

plane), and x; y ¼ 1; 2; :::; 2 Rb c. A gradient histogram with

n1 ¼ 36 bins (according to Lowe25) will be generated for

the local patch. The histogram is essentially a vector with

36 bins corresponding to angles 0; 10; . . . ; 350. The

magnitude values will be weighted using Gaussian

weighting function w with spread s ¼ 1 pixel before

adding to the gradient histogram. Hence, the gradient

magnitude near the event-corner will have greater

weight. For all magnitudes mxy and orientation

qxy 2 ½0; 360��, where x; y ¼ 1; 2; :::; 2 Rb c, the generation

of a gradient histogram H ¼ ðH 0;H 1; :::;Hk ; :::;Hn1�1Þ,
where k ¼ 0; 1; :::; n1 � 1, can be formalized as

Hk ¼
X

x;y2C
mxywxy (3)

where

C ¼ fx; yj n1qxy

360

� �
¼ kg (4)

wxy ¼ e
�ðx2þy2Þ

2s2 x; y ¼ 1; 2; :::; 2 Rb c (5)

The orientation corresponding to the peak value in the

gradient histogram represents the gradient orientation of

the local patch, and it is also regarded as the principal

orientation of the local patch. Since the orientation we get

from a gradient histogram is essentially an interval of 10�,
we apply the parabolic interpolation processing to get the

specific orientation. More specially, the selected orienta-

tion and the orientations adjacent to it are used for parabolic

interpolation.

To enhance the robustness of feature matching, we

choose the orientation corresponding to the maximum

value in the histogram and orientations where the value is

greater than 80% (same as in reference25) of the maximum

value. In this way, one or more orientations are assigned to

each event-corner on the local patch. The orientations

belong to circular data rather than linear data, and the cir-

cular mean47 can provide a more intuitive estimate of the

“center” of the distribution for this kind of data compared

with the arithmetic mean. So, to obtain the final principal

orientation from the orientations assigned to each event-

corner, we compute the circular mean of these orientations

rather than the arithmetic mean. To be specific, for the

orientations (�1; �2; . . . ; �n), the circular mean � is calcu-

lated as follows

� ¼ arctan
1

n

Xn

i¼1

cos�i;
1

n

Xn

i¼1

sin�i

 !
(6)

The circular mean � is regarded as the principal orienta-

tion of the local patch.

Descriptor generation

In this stage, we reorient the local patch to its principal

orientation to generate the gradient descriptor vector, that

is, we rotate the x direction of the local patch (which is the

same as the x direction of the imaging plane) to coincide

with its principal orientation. The neighborhood with size

2r � 2r around the event-corner position (center of the

local patch) is taken as the sampling region for descriptor

generation. As shown in Figure 3, the sampling region is

divided into c� c cells. We set c to 2 here. In the litera-

ture,25 the author suggested setting the value of c to 4.

However, according to our findings, the number of features

tracked by the algorithm in this case is not enough. There-

fore, with this in mind, we set the value of c to 2 to guar-

antee that we can track a sufficient number of features

without too much impact on the other performance of the

algorithm. We calculate the orientation and magnitude of

the gradient for every pixel position on the local patch and

then determine the reoriented pixel value as follows

xrot ¼ xcos�� ysin�

yrot ¼ xsin�þ ycos�

(
(7)

where x; y ¼ 0; 1; :::; 2 Rb c þ 1. After the reorientation, only

pixels falling into the sampling region contribute to descrip-

tor generation. Since the coordinate values of the reoriented

pixels are not integers, we compute their contribution to each

adjacent cell using trilinear interpolation same as in SIFT.25

Then, a gradient histogram with n2 ¼ 8 bins (same as in the

literature25) will be given for each cell based on the reor-

iented local patch. We generate a N-dimensional descriptor

vector, where N ¼ c2 � n2. The descriptor vector will be

normalized using L2 norm to remove the scale, and finally,

we can get the gradient descriptor for an event-corner.

After we get the gradient descriptors for event-corners,

we need to compute the descriptor distance between event

feature pairs to measure the similarity between them. For

two gradient descriptor vector d1; d2, we compute their

distance D as follows

D ¼

ffiXN

i¼0

ðdi
1 � di

2Þ
2

vuut (8)

Event feature tracking

In the event feature tracking unit, we combine the con-

structed gradient descriptor and an event feature matching

6 International Journal of Advanced Robotic Systems

method to achieve asynchronous event feature tracking. For

each incoming event-corner, we assign a gradient descriptor

to it based on the above-mentioned gradient descriptor con-

struction method. Our proposed gradient descriptor is used to

represent the distribution of the local gradient information

within the event-corner neighborhood on the time surface

space. We define the event feature as a tuple ½x; y; t; d�, where

ðx; y; tÞ is the spatiotemporal coordinate of the event feature

and d is the gradient descriptor of the event feature. The

gradient descriptor is regarded as a quantitative measurement

of similarity between event feature pairs for feature matching.

The event feature matching method37 used in our pre-

sented algorithm is based on a directed graph. The imple-

mentation details of the event feature matching method are

summarized in Figure 4. For each new incoming event

feature, the algorithm generates a new vertex vnew. The

global vertex memory with size width� height saves the

latest event features corresponding to pixels within the

temporal window Dt. The latest event features within Dt

for each pixel position are saved in the vertex queue. The

directed graph is composed of multiple structured track

trees, and each tree represents a set of multiple possible

tracks for the same event feature. An address is assigned

for every event feature. The address is a tuple encoding the

path to find where the event feature is in the directed graph.

Therefore, a vertex is associated with an individual event

feature and encodes the information about an event feature

and the associated address. Each tree node encodes the

information about a vertex, the depth of the node and the

state (active or inactive), and its children nodes. The edge

between two nodes represents the association between

event feature pairs. Each graph node keeps a hypothetical

track tree and encodes the information about the tree, which

includes the tree depth, the reference tree node (the refer-

ence vertex), and the pointer to the tree.

For every new generated vertex, it can be assigned to an

existing tree or become the root of a new tree. Once the

depth of a tree increases, the proposed algorithm will per-

form the reference updating operation.

Tree assignment

Considering the descriptor distance introduced in the above

section, the closest vertex compared with the new vertex in

the spatiotemporal window w� w�Dt will be selected as

the matching vertex vmatch. The tree that vmatch belongs to is

regarded as the matching tree. For the vertices on the

matching tree, the newest vertex within the spatial window

w� w is regarded as the parent vertex of vnew, and the new

vertex vnew will be associated to the parent vertex by adding

a new edge from the parent vertex to vnew. The descriptor

distance between vnew and vmatch must be smaller than the

threshold dmax. Otherwise, vnew will be identified as the

root of a new tree.

Reference updating

A reference vertex vref for each tree maintains a maximum

number of rmax vertices from itself to the deepest vertex in

the same tree. The vertex in the tree whose depth is smaller

than vref is regarded as the inactive vertex, and the vertex

whose depth is larger than vref is regarded as the active

Figure 4. Implementation details of the event feature tracking unit. A global memory with size width� height saves the latest event
features used for feature matching. The latest event features withinDt for each pixel position are saved in a vertex queue. The directed
graph keeps all the possible tracks of the tracked event features. Each track tree keeps a reference tree node (dark green), which
maintains a maximum number of rmax vertices from itself to the deepest vertex in the same tree. rmax is 2 in this case. An address tuple
is assigned to each vertex (yellow), and the vertex (yellow) is used to find where the matching vertex (green) is in the directed graph.

Li et al. 7

vertex. Once the depth of a tree increases, vref will be

updated according to the descriptor distance between the

previous vref and its children vertices. The children vertices

of vref can be divided into weak vertices and strong vertices

depending on their descriptor distances with vref . A child

vertex, whose descriptor distance with vref is larger than the

threshold dmin, is regarded as the weak vertex. Otherwise,

the child vertex will be regarded as the strong vertex. The

newest strong child vertex will be considered as the new

vref and the new parent vertex of the other strong children

vertices as well. If there is no strong child vertex, the weak

child vertex with the smallest distance will be regarded as

the new vref , and the other weak vertices together with their

children trees will disconnect from the tree to generate new

trees. These weak vertices disconnected from the tree will

become the roots of new trees.

Track refinement

To get smoother tracks, the event feature tracks are

smoothed using a simple interpolation operation. For each

vertex, its pixel coordinate will be interpolated using its s

predecessors and s successors in the same track. Only the

event feature track which contains at least m refined ver-

tices is used to filter out the short and noisy tracks.

Experiments

This section introduces the experimental results of our pro-

posed algorithm, including accuracy and computational per-

formance evaluation for feature tracking. We compare our

proposed method with the tracking method42 (referred as

EOF tracker), the ACE tracker,37 and the tracking method

of reference46 (referred as AMH tracker). The public event

camera dataset,23 generated using a DAVIS240C with a

spatial resolution of 240� 180 pixels, is adopted to perform

the comparison. The data consist of events, intensity images,

IMU measurements, and ground truth from a motion-capture

system. In the experiments, we choose multiple scenes with

different complexity of textures from the dataset, including

shapes, dynamic, poster, boxes and poster,

boxes with high dynamic range of illumination. Only the

first 10 s of the dataset are used for evaluation.

To perform the comparison, we implement the normal-

ization descriptor and the ACE tracker37 in Cþþ. The same

parameters and values are used as those presented in the

article. All methods are implemented in Cþþ and evaluated

on a laptop equipped with an Intel i7-7700HQ CPU with

2.80 GHz and RAM with 16 GB. For the event feature

tracking unit, we employ the spatiotemporal window

w� w�Dt, where w ¼ 4;Dt ¼ 0:5 s. We set the threshold

of the gradient descriptor dmax ¼ 100 for the matching ver-

tex selecting, and dmin ¼ 50 for distinguishing the strong

and weak vertex. rmax is set to 8. s is set to 14. m is set to

50; 30; 12; 12 for shapes, dynamic, poster, and

boxes, respectively. Note that the suitable values for above

parameters are chosen using the trial and error method.

Tracking performance

We use the event-based feature tracking evaluation code48

for tracking performance analysis. The ground truth feature

tracks are collected using KLT-based feature tracking

method on frames. The positions of the initial features on

frames are interpolated from the event-based features close

to the time of the frames. The initial features are tracked

using KLT tracking method until they are lost, and the

tracker updates the tracked features for each frame. The

asynchronous event feature tracks for our proposed algo-

rithm on shapes and dynamic scenes are depicted in

Figure 5. The figures show the different feature tracks using

our method with different colors over the last 0.5 s.

Table 1 summarizes the average pixel error and average

feature lifetime for event feature tracks on several scenes

Figure 5. Asynchronous event feature tracks on (a) shapes and (b) dynamic scenes. The figures show the different feature tracks using
our method over the last 0.5 s. The intensity frame is used for visualization in the figure.

8 International Journal of Advanced Robotic Systems

with different textural complexity. In our experimental eva-

luation, if the pixel error for a tracked feature is above 5 pix-

els, the tracked feature is regarded as invalid, and only the

valid tracked feature is considered in the evaluation. The

best results are made in bold in the table, and the results

indicate that our proposed method can achieve better perfor-

mance in terms of accuracy when compared with EOF

tracker and ACE tracker. Besides, we report the average

tracking error from reference46 (the authors did not explicitly

report tracking lifetime numerically), compared with which

our tracking method also performs better with significant

improvement, except one case, shapes_translation.

When considering the average feature tracking lifetime, our

method also works well on the scenes with simple or mod-

erate texture, such as shapes, dynamic, and so on. The

results on the scenes hdr_poster and hdr_boxes
demonstrate that our method can perform well when faced

with the scenes with high dynamic range. However, while

working on the scene poster, EOF tracker performs well

compared with both ACE tracker and our method.

Figure 6 shows the average tracking pixel error and the

percentage of the tracked surviving features over time for the

ACE tracker and our proposed method on four different scenes.

The results demonstrate that our proposed method achieves

better performance in terms of tracking accuracy. What is

more, the band around the central line is wider with our

method, which indicates that our method is more robust. How-

ever, the ACE tracker performs better on the scenes with com-

plex texture when considering the feature tracking lifetime.

Computational performance

In this section, we compare the computational performance

of our proposed event feature tracking method with the

ACE tracker.

The ACE tracker uses the normalization descriptor as a

quantitative measurement of similarity between event-

corners. The normalization descriptor is implemented

based on the simple sorting operation of the events’ time-

stamps in a local patch. The sorted timestamps are normal-

ized into the range ½0; 1�. They measured the descriptor

distance by calculating the amount of overlap between the

two normalization descriptors.

Table 2 presents the real-time performance of our pro-

posed descriptor construction and the event feature match-

ing method. We report the total time, the time spent on

descriptor construction and event feature matching, and

their ratios to the total time. As given in Table 2, the

descriptor construction ratio with our method is larger than

that of ACE. This is because our method needs gradient

computation and Gaussian weighting, while the normaliza-

tion descriptor used in ACE only needs a sort operation and

a normalization operation. However, the matching time

with our method is much shorter than the matching time

with ACE, which contributes to a better real-time perfor-

mance in terms of the total time for feature generation and

tracking.

Also, we report the metric, real-time factor for real-

time performance analysis, which indicates the total

time spent processing the events of each scene with

respect to the duration of dataset (10 s for each scene).

For this metric, the smaller result indicates better real-

time performance, and the results under 1 indicate the

performance above real time. According to Table 2, our

method achieves better real-time performance when fac-

ing all of the scenes compared with the ACE method.

However, there are still some scenes, such as dynami-

c_rotation, poster_rotation, and hdr_poster,

that the real-time factors are slightly greater than 1. It

Table 1. Average pixel error and feature lifetime of event feature tracks on different scenes using the AMH tracker, the EOF tracker,
the ACE tracker, and our proposed method.a

Datasets

Average tracking error (px) Average feature lifetime (s)

AMH EOF ACE Ours EOF ACE Ours

shapes_rotation 1.84 2.23 1.64 1.04 0.08 0.16 0.43
shapes_translation 1.10 1.93 1.50 1.12 0.15 0.24 0.44
shapes_6dof 1.52 2.14 1.71 1.14 0.20 0.66 1.16
dynamic_rotation — — 0.71 0.65 — 0.20 0.22
dynamic_translation — — 1.51 0.81 — 0.13 0.37
dynamic_6dof — — 1.61 0.93 — 0.17 0.42
poster_rotation 2.11 2.32 1.08 0.50 0.19 0.04 0.13
poster_translation 1.81 2.35 1.60 0.80 0.41 0.07 0.16
poster_6dof 2.11 2.44 1.84 0.77 0.30 0.16 0.21
boxes_rotation 2.09 2.34 1.42 0.94 0.07 0.06 0.16
boxes_translation 1.39 1.89 1.89 1.09 0.29 0.14 0.25
boxes_6dof 1.64 2.00 1.79 0.99 0.23 0.26 0.31
hdr_poster 1.79 2.26 1.47 0.84 0.35 0.41 0.29
hdr_boxes 1.68 2.03 1.98 1.43 0.33 0.34 0.48

aThe best results are highlighted in bold.

Li et al. 9

means that our method has a potential in improving the

calculating performance, especially in refining the

matching method to reduce more processing time for

better real-time performance for utilization in real-time

applications.

Table 3 gives the event processing ability of the ACE

tracker and our proposed event feature generation and

tracking algorithm. The table includes the mean rate of

events, the mean rate of the event-corners, and the mean

time for a single feature matching. According to Table 3,

our proposed method achieves faster event-rate, corner-rate,

and speed for every single feature matching than the ACE

tracker, which contributes to the improvement of the real-

time performance of our method.

Figure 6. (a–d) The performance of feature tracking on different scenes. The figures in the second row show the average tracking pixel
error (central line) on the corresponding scenes for the ACE tracker and our method. The band around the central line represents the
percentage of the tracked surviving features over time. The wider the band is, the more robust the tracking method is.
(a) Scene: shapes, (b) scene: dynamic, (c) scene: poster, (d) scene: boxes, (e) tracking error: shapes_6dof, (f) tracking error: dyna-
mic_6dof, (g) tracking error: hdr_poster, (h) tracking error: boxes_6dof.

Table 2. The real-time performance of our proposed descriptor construction and event feature matching method compared with
those of the ACE tracker, including the total time, the time for descriptor construction (des. time), the time for event feature matching
(matching time), the ratio of time spent on descriptor construction to the total time (des. ratio), the ratio of time spent on event feature
matching to the total time (matching ratio), and the real-time factor.a

Datasets
Total time (s) Des. time (s) Des. ratio (%)

Matching time
(s)

Matching ratio
(%) Real-time factor

ACE Ours ACE Ours ACE Ours ACE Ours ACE Ours ACE Ours

shapes_rotation 11.38 10.04 1.48 2.88 13.03 28.63 8.27 4.36 72.62 43.44 1.138 1.004
shapes_translation 11.88 10.32 1.45 2.95 12.25 28.58 8.71 4.30 73.28 41.64 1.188 1.032
shapes_6dof 10.44 9.31 1.21 2.79 11.55 29.96 7.90 3.82 75.63 40.98 1.044 0.931
dynamic_rotation 13.28 11.28 1.49 2.70 11.24 23.91 8.99 3.48 67.66 30.81 1.328 1.128
dynamic_translation 10.10 9.79 1.15 2.19 11.42 22.38 6.29 2.64 62.25 26.92 1.010 0.979
dynamic_6dof 10.12 9.43 1.15 2.14 11.34 22.65 6.26 2.56 61.85 27.15 1.012 0.943
poster_rotation 16.84 12.81 1.86 2.94 11.05 22.98 10.88 3.17 64.65 24.78 1.684 1.281
poster_translation 13.65 11.75 1.59 2.66 11.64 22.67 8.26 2.53 60.49 21.58 1.365 1.175
poster_6dof 12.07 10.70 1.47 2.44 12.20 22.79 7.17 2.39 59.45 22.36 1.207 1.07
boxes_rotation 10.88 10.28 1.39 2.31 12.82 22.43 6.17 2.13 56.73 20.76 1.088 1.028
boxes_translation 10.00 9.65 1.27 2.18 12.74 22.63 5.62 2.00 56.22 20.75 1.000 0.965
boxes_6dof 10.83 10.01 1.32 2.15 12.18 21.49 5.93 1.92 54.80 19.19 1.083 1.001
hdr_poster 13.63 11.35 1.46 2.56 10.74 22.59 8.81 2.62 64.69 23.12 1.363 1.135
hdr_boxes 11.72 10.38 1.30 2.04 11.12 19.63 6.49 1.84 55.34 17.69 1.172 1.038

aBoth ACE and our method are performed on the same laptop. The better results are highlighted in bold.

10 International Journal of Advanced Robotic Systems

Conclusion

In this article, we present a novel asynchronous event fea-

ture generation and tracking algorithm operating directly

on event-streams for event cameras. The algorithm consists

of an event-corner detection unit, a descriptor construction

unit, and an event feature tracking unit. An asynchronous

gradient descriptor is developed for the quantitative mea-

surement of similarity between event feature pairs, and it is

constructed through SITS maintenance and extraction,

principal orientation calculation, and descriptor generation.

The experimental evaluation demonstrates that our pro-

posed algorithm performs better in terms of tracking accu-

racy and real-time performance when compared with the

state-of-the-art asynchronous event-corner tracker and with

no compromise on the feature tracking lifetime.

In the future, there are still some works for us to do, such

as improving the tracking accuracy and lifetime perfor-

mance, such as by adding scale-invariant property to the

descriptor, so that the feature tracking algorithm could ful-

fill the demand of visual odometry pipeline and even a

SLAM system. And also, learning-based methods for event

feature generation may be a great direction for further

research.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed the receipt of the following financial sup-

port for the research, authorship, and/or publication of this article:

This work was supported by the National Key Research and

Development Program of China [2017YFB1001901] and by

National Natural Science Foundation of China [Grant No.

61903377].

ORCID iDs

Ruoxiang Li https://orcid.org/0000-0002-6684-2011

Ruihao Li https://orcid.org/0000-0002-9839-1489

References

1. Cadena C, Carlone L, Carrillo H, et al. Past, present, and

future of simultaneous localization and mapping: toward the

robust-perception age. IEEE Trans Robot 2016; 32(6):

1309–1332.

2. Zhou T, Brown M, Snavely N, et al. Unsupervised learning of

depth and ego-motion from video. In: 2017 IEEE conference

on computer vision and pattern recognition (CVPR), Hono-

lulu, HI, USA, 21 July 2017–26 July 2017, pp. 6612–6619.

Los Alamitos, CA, USA: IEEE.

3. Li R, Liu Q, Gui J, et al. Indoor relocalization in challenging

environments with dual-stream convolutional neural net-

works. IEEE Trans Auto Sci Eng 2018; 15: 651–662.

4. Tong Q, Li P, and Shen S. VINS-Mono: A robust and versa-

tile monocular visual-inertial state estimator. IEEE Trans

Robot 2017; PP(99): 1–17.

5. Younes G, Asmar D, Shammas E, et al. Keyframe-based

monocular SLAM: design, survey, and future directions.

Robot Auto Sys 2017; 98: 67–88.

6. Lichtsteiner P, Posch C, and Delbruck T. A 128�128 120 db

15� s latency asynchronous temporal contrast vision sensor.

IEEE J Solid-State Circuits 2008; 43(2): 566–576.

7. Brandli C, Berner R, Yang M, et al. A 240�180 130 db 3� s

latency global shutter spatiotemporal vision sensor. IEEE J

Solid-State Circuits 2014; 49(10): 2333–2341.

8. Mitrokhin A, Fermüller C, Parameshwara C, et al. Event-

based moving object detection and tracking. In: 2018 IEEE/

Table 3. The event processing ability of the ACE tracker and our proposed event feature generation and tracking algorithm, including
the mean rate of events (mean event-rate), the mean rate of the event-corners (mean corner-rate), and the mean time for a single
feature matching (time per feature).a

Datasets
Mean event-rate (ev/s) Mean corner-rate (ev/s) Time per feature (ms/ev)

ACE Ours ACE Ours ACE Ours

shapes_rotation 65236 113012 2855 5995 278.04 80.76
shapes_translation 70667 111170 3203 5884 264.54 83.18
shapes_6dof 64997 95172 3125 5360 269.62 88.04
dynamic_rotation 179366 282281 3250 5544 257.27 70.05
dynamic_translation 255690 316904 3256 4755 243.11 71.93
dynamic_6dof 251609 332970 3285 5305 238.45 64.44
poster_rotation 183331 306422 3503 5987 262.50 60.94
poster_translation 236475 326620 3844 5675 231.68 57.60
poster_6dof 258344 375016 3796 6002 220.85 53.06
boxes_rotation 295339 394796 4327 6301 196.16 50.59
boxes_translation 300323 384416 4078 5918 199.69 51.77
boxes_6dof 317866 430091 4121 6201 208.21 48.85
hdr_poster 212706 322970 3567 5451 254.51 61.17
hdr_boxes 316174 437711 3801 5711 229.65 49.64

aThe better results are highlighted in bold.

Li et al. 11

https://orcid.org/0000-0002-6684-2011
https://orcid.org/0000-0002-6684-2011
https://orcid.org/0000-0002-6684-2011
https://orcid.org/0000-0002-9839-1489
https://orcid.org/0000-0002-9839-1489
https://orcid.org/0000-0002-9839-1489

RSJ international conference on intelligent robots and sys-

tems (IROS) (eds T Maciejewski, C Monje, D Tsai, et al.),

Madrid, Spain, 1–5 October 2018, pp. 1–9. Los Alamitos,

CA, USA: IEEE.

9. Vidal AR, Rebecq H, Horstschaefer T, et al. Ultimate SLAM?

Combining events, images, and IMU for robust visual SLAM

in HDR and high-speed scenarios. IEEE Robot Auto Lett

2018; 3(2): 994–1001.

10. Sun Y, Liu M, and Meng MQH. Improving RGB-D slam in

dynamic environments: a motion removal approach. Robot

Auto Sys 2017; 89: 110–122.

11. Sun Y, Liu M, and Meng MQH. Motion removal for reliable

RGB-D slam in dynamic environments. Robo Auto Sys 2018;

108: 115–128.

12. Gallego G, Delbrück T, Orchard G, et al. Event-based vision:

a survey. IEEE Trans Pattern Anal Mach Intell 2020. DOI:

10.1109/TPAMI.2020.3008413.

13. Gehrig M, Shrestha SB, Mouritzen D, et al. Event-based

angular velocity regression with spiking networks. In: 2020

IEEE international conference on robotics and automation

(ICRA) (eds A Howard, H Admoni, K Althoefer, et al.),

NODUS, Paris, France, 31 May 2020–31 August 2020, pp.

4195–4202. Los Alamitos, CA, USA: IEEE.

14. Zhou Y, Gallego G, and Shen S. Event-based stereo visual

odometry. IEEE Transactions on Robotics, DOI: 10.1109/

TRO.2021.3062252. 2021.

15. Stoffregen T, Gallego G, Drummond T, et al. Event-based

motion segmentation by motion compensation. In: Proceed-

ings of the IEEE/CVF international conference on computer

vision, Seoul, Korea (South), 27 October-2 November 2019,

pp. 7244–7253. Los Alamitos, CA, USA: IEEE.

16. Mitrokhin A, Hua Z, Fermuller C, et al. Learning visual

motion segmentation using event surfaces. In: Proceedings

of the IEEE/CVF conference on computer vision and pattern

recognition (CVPR). Seattle, WA, USA, 13-19 June 2020, pp.

14402–14411. Los Alamitos, CA, USA: IEEE.

17. Rebecq H, Ranftl R, Koltun V, et al. High speed and high

dynamic range video with an event camera. IEEE Trans Pat-

tern Anal Mach Intell 2021; 43(6): 1964–1980. DOI: 10.

1109/TPAMI.2019.2963386.

18. Pan L, Scheerlinck C, Yu X, et al. Bringing a blurry frame

alive at high frame-rate with an event camera. In: Proceed-

ings of the IEEE/CVF conference on computer vision and

pattern recognition, Long Beach, CA, USA, 15-20 June

2019, pp. 6813–6822. Los Alamitos, CA, USA: IEEE.

19. Choi J, Yoon KJ, et al. Learning to super resolve intensity

images from events. In: Proceedings of the IEEE/CVF con-

ference on computer vision and pattern recognition, Seattle,

WA, USA, 13-19 June 2020, pp. 2765–2773. Los Alamitos,

CA, USA: IEEE.

20. Falanga D, Kleber K, and Scaramuzza D. Dynamic obstacle

avoidance for quadrotors with event cameras. Sci Robot 2020;

5(40): eaaz9712.

21. Hagenaars JJ, Paredes-Vallés F, Bohté SM, et al. Evolved

neuromorphic control for high speed divergence-based land-

ings of MAVs. IEEE Robot Auto Lett 2020; 5(4): 6239–6246.

22. Sun R, Shi D, Zhang Y, et al. Data-driven technology in

event-based vision. Complexity 2021; 2021: 6689337.

23. Mueggler E, Rebecq H, Gallego G, et al. The event-camera

dataset and simulator: event-based data for pose estimation,

visual odometry, and SLAM. Int J Robot Res 2017; 36(2):

142–149.

24. Manderscheid J, Sironi A, Bourdis N, et al. Speed invariant

time surface for learning to detect corner points with event-

based cameras. In: Proceedings of the IEEE conference on

computer vision and pattern recognition, Long Beach, CA,

USA, 15-20 June 2019, pp. 10237–10246. Los Alamitos, CA,

USA: IEEE.

25. Lowe DG. Distinctive image features from scale-invariant

keypoints. Int J Comput Vis 2004; 60(2): 91–110.

26. Bay H, Ess A, Tuytelaars T, et al. Speeded-up robust features

(SURF). Comput Vis Image Und 2008; 110: 346–359.

27. Calonder M, Lepetit V, Strecha C, et al. BRIEF: binary robust

independent elementary features. In: European conference on

computer vision, Heraklion, Crete, Greece, 5-11 September,

2010, pp. 778–792. Berlin, Heidelberg: Springer.

28. Rublee E, Rabaud V, Konolige K, et al. ORB: an efficient

alternative to SIFT or SURF. In: 2011 international confer-

ence on computer vision, Barcelona, 6 November 2011–13

November 2011, pp. 2564–2571. Los Alamitos, CA, USA:

IEEE.

29. Rosten E and Drummond T. Machine learning for high-speed

corner detection. In: European conference on computer

vision (ECCV), Graz, Austria, May 7-13, 2006, pp.

430–443. Berlin, Heidelberg: Springer.

30. Clady X, Ieng SH, and Benosman R. Asynchronous event-

based corner detection and matching. Neural Networks 2015;

66: 91–106.

31. Vasco V, Glover A, and Bartolozzi C. Fast event-based Harris

corner detection exploiting the advantages of event-driven

cameras. In: 2016 IEEE/rsj international conference on intel-

ligent robots and systems (IROS) (eds W Burgard, T Arai, F

Arai, et al.), Daejeon, Korea, 9–14 October 2016, pp.

4144–4149. Los Alamitos, CA, USA: IEEE.

32. Mueggler E, Bartolozzi C, and Scaramuzza D. Fast

event-based corner detection. In: 28th british machine vision

conference (BMVC) (eds TK Kim, S Zafeiriou, Gl Brostow,

et al.), London, 4-7 September 2017, pp. 1–8. Durham, UK:

BMVA Press.

33. Li R, xi Shi D, Zhang Y, et al. FA-Harris: a fast and asyn-

chronous corner detector for event cameras. In: 2019 IEEE/

RSJ international conference on intelligent robots and sys-

tems (IROS) (eds T Maciejewski, C Monje, D Tsai, et al.),

The Venetian Macao, Macau, 3–8 November 2019, pp.

6223–6229. Los Alamitos, CA, USA: IEEE.

34. Scheerlinck C, Barnes N, and Mahony R. Asynchronous spa-

tial image convolutions for event cameras. IEEE Robot Auto

Lett 2019; 4(2): 816–822.

35. Harris C and Stephens M. A combined corner and edge detec-

tor. In: Alvey vision conference, pp. 10–5244. Princeton, New

Jersey, USA: Citeseer.

12 International Journal of Advanced Robotic Systems

36. Alzugaray I and Chli M. Asynchronous corner detection and

tracking for event cameras in real time. IEEE Robot Auto Lett

2018; 3(4): 3177–3184.

37. Alzugaray I and Chli M. ACE: an efficient asynchronous

corner tracker for event cameras. In: 2018 international con-

ference on 3D vision (3DV), Verona, Italy, 5–8 September

2018, pp. 653–661. Los Alamitos, CA, USA: IEEE.

38. Benosman R, Clercq C, Lagorce X, et al. Event-based visual

flow. IEEE Trans Neural Netw Learn Syst 2014; 25(2):

407–417.

39. Lagorce X, Orchard G, Galluppi F, et al. HOTS: a hierarchy

of event-based time-surfaces for pattern recognition. IEEE

Trans Pattern Anal Mach Intell 2016; 39(7): 1346–1359.

40. Tedaldi D, Gallego G, Mueggler E, et al. Feature detection

and tracking with the dynamic and active-pixel vision sensor

(DAVIS). In: 2016 2nd international conference on event-

based control, communication, and signal processing

(EBCCSP), Krakow, Poland, 13–15 June 2016, pp. 1–7. Los

Alamitos, CA, USA: IEEE.

41. Kueng B, Mueggler E, Gallego G, et al. Low-latency visual

odometry using event-based feature tracks. In: 2016 IEEE/RSJ

international conference on intelligent robots and systems

(IROS) (eds W Burgard, T Arai, F Arai, M Bennewitz, et al.

), Daejeon, Korea, 9–14 October 2016, pp. 16–23. Los Alami-

tos, CA, USA: IEEE.

42. Zhu AZ, Atanasov N, and Daniilidis K. Event-based feature

tracking with probabilistic data association. In: 2017 IEEE

international conference on robotics and automation (ICRA)

(eds A Okamura, F Arai, F Arrichiello, et al.), Singapore, 29

May–3 June 2017, pp. 4465–4470. Los Alamitos, CA, USA:

IEEE.

43. Zhu AZ, Atanasov N, and Daniilidis K. Event-based visual

inertial odometry. 2017 IEEE conference on computer vision

and pattern recognition (CVPR), Honolulu, HI, USA, 21–26

July 2017, pp. 5816–5824. Los Alamitos, CA, USA.

44. Gehrig D, Rebecq H, Gallego G, et al. Asynchronous,

photometric feature tracking using events and frames.

In: Proceedings of the european conference on computer

vision (ECCV) (eds V Ferrari, M Hebert, C Sminchisescu

and Yair Weiss), pp. 750–765. Berlin, Heidelberg:

Springer.

45. Li K, Shi D, Zhang Y, et al. Feature tracking based on line

segments with the dynamic and active-pixel vision sensor

(DAVIS). IEEE Access 2019; 7: 110874–110883.

46. Alzugaray I and Chli M. Asynchronous multi-hypothesis

tracking of features with event cameras. In: 2019 interna-

tional conference on 3D vision (3DV), Québec City, QC,

Canada, 16–19 September 2019, pp. 269–278. Los Alamitos,

CA, USA: IEEE.

47. Jammalamadaka SR and Sengupta A. Topics in circular sta-

tistics, volume 5. Singapore: World Scientific, 2001.

48. Gehrig D, Rebecq H, Gallego G, et al. EKLT: Asynchronous

photometric feature tracking using events and frames. Int J

Comp Vis 2019; 128: 601–618.

Li et al. 13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

