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Geometric property-based convolutional
neural network for indoor object detection

Xintao Ding1,2 , Boquan Li2,3 and Jinbao Wang1,2

Abstract
Indoor object detection is a very demanding and important task for robot applications. Object knowledge, such as
two-dimensional (2D) shape and depth information, may be helpful for detection. In this article, we focus on region-based
convolutional neural network (CNN) detector and propose a geometric property-based Faster R-CNN method
(GP-Faster) for indoor object detection. GP-Faster incorporates geometric property in Faster R-CNN to improve the
detection performance. In detail, we first use mesh grids that are the intersections of direct and inverse proportion
functions to generate appropriate anchors for indoor objects. After the anchors are regressed to the regions of interest
produced by a region proposal network (RPN-RoIs), we then use 2D geometric constraints to refine the RPN-RoIs, in
which the 2D constraint of every classification is a convex hull region enclosing the width and height coordinates of the
ground-truth boxes on the training set. Comparison experiments are implemented on two indoor datasets SUN2012 and
NYUv2. Since the depth information is available in NYUv2, we involve depth constraints in GP-Faster and propose 3D
geometric property-based Faster R-CNN (DGP-Faster) on NYUv2. The experimental results show that both GP-Faster
and DGP-Faster increase the performance of the mean average precision.
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Introduction

Indoor object detection is a very demanding and important

task for robot applications. Generally, object detection

contains two main tasks: the localization and classification

problems.1 Object detection is not an easy task due to the

uncertainty of the location of the interest object. In this

work, we focus on the indoor object detection.

Our work is motivated by two questions on the robot

application. First, is the geometric property helpful for

mobile robot to detect indoor object? Second, if the first

answer is positive, how can the geometric property be used

to detect indoor object? Since the depth information is not

always available, we employ the shape of the bounding box

as a universal geometric property to improve the perfor-

mance of the indoor object detection.

In the last two decades, object detectors based on

convolutional neural networks (CNNs)2–6 have achieved

state-of-the-art results on various challenging bench-

marks.7,8 As a representative region-based CNN detector,
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Faster R-CNN4 uses a region proposal network (RPN) to

generate proposals. The regions of interest (RoIs) produced

by RPN (RPN-RoIs) are chosen to train the proposals if (1)

an RPN-RoI overlaps a ground-truth box with a highest

intersection-over-union (IoU) overlap and (2) its IoU over-

lap is greater than a threshold. Every selected RPN-RoI is

assigned a training label, which is the ground-truth label

with the highest IoU overlap. Although the selection strat-

egy of RPN-RoI is efficient, it does not focus on the geo-

metric property of the candidates. The knowledge of the

indoor object, such as geometric shape and context, may be

helpful for detection. In this study, we use the shape of the

bounding box as a two-dimensional (2D) geometric prop-

erty to improve Faster R-CNN for the indoor object

detection.

We first run over the indoor dataset to result in the

widths and heights of the annotated bounding boxes.

Then, we put them in the first quadrant of the Cartesian

plane with their left-bottom points at the origin. The 2D

geometric constraint of every classification is a convex

hull region enclosing corresponding right-upper points.

Figure 1 shows the 2D constraints of the 18 indoor classes

collected from SUN2012 (http://groups.csail.mit.edu/

vision/SUN/) database.9 The black points show the coor-

dinates composed by the widths and heights of the anno-

tated bounding boxes.

From Figure 1, it can be seen that the scales and aspect

ratios on the indoor classes vary in a large range. The

“cushion,” “bottle,” “desk lamp,” “pillow,” and

“television” are small objects. The “door” and “bottle” are

thin objects with large aspect ratios, while “ceiling” and

“table” are thick objects with small aspect ratios.

In this study, we propose 2D geometric property-

based Faster R-CNN method (GP-Faster) for indoor

object detection. For indoor applications, small objects,

such as “bottle,” “pillow,” and “television”, are common

targets in indoor scene. Because the coverage of the

anchors generated from standard Faster R-CNN cannot

fit the size of the small indoor objects, we first use mesh

grids to generate appropriate anchors for small indoor

objects, in which the grids are the intersections of direct

and inverse proportion functions. After the anchors are

regressed to RPN-RoIs, we then use the 2D constraints

to refine the RPN-RoIs, that is, the width and height

coordinates of the RPN-RoIs that fall in their 2D con-

straints are employed as inliers. The 2D constraints may

remove outliers in RPN-RoIs. Extensive experiments

implemented on SUN20129 and NYUv2 (https://cs.nyu.

edu/~silberman/datasets/nyu_depth_v2.html)10 demon-

strate that GP-Faster is able to improve detection per-

formance for indoor object. The geometric property is

helpful for region proposal.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r)

Figure 1. The 2D geometric constraints of the 18 indoor classes of SUN2012. The black points show the width and height coordinates
of the annotated bounding boxes. (a) wall, (b) window, (c) floor, (d) ceiling, (e) plant, (f) door, (g) curtain, (h) painting, (i) chair, (j)
person, (k) table, (l) cushion, (m) bottle, (n) desk lamp, (o) bed, (p) pillow, (q) sofa, and (r) television.
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Our main contributions are summarized as follows:

1. We use mesh grids to generate anchors with the help

of direct and inverse proportion functions.

2. We use the shape of the bounding box as a universal

geometric property to improve region proposals for

classification.

3. We use geometric constraints to remove the RPN-

RoIs that may produce negative predictions.

4. Compared with Faster R-CNN, our GP-Faster

approach increases the performance of the mean

average precision (mAP).

Related work

There are an increasing number of recent studies that focus on

CNN-based indoor object detection. Gopan and Aarthi

designed a CNN to identify bottles in the indoor environ-

ment.11 Mordan et al. designed a context-based residual aux-

iliary block to combine ResNet and single-shot multibox

detector for indoor object detection.12 Zheng et al. combined

CNN and recurrent neural network (RNN) to implement

indoor semantic segmentation.13 Ammirato et al.14 first

extracted CNN features from the target and scene images,

and then, fed the features to a target-driven instance detector

for object detection. Ehsan and Nahvi detected indoor people

violence based on a combination of motion trajectory and

spatiotemporal features.15 Zhou et al. proposed a multimodal

fusion deep CNN framework for object detection and seg-

mentation.16 The CNN-based indoor detectors usually pay

much attention to the architectures of their networks and do

not focus on application scenario. For indoor applications, the

property of the indoor object may be helpful for detection.

Because mobile robot usually needs to detect indoor

object for their navigation and service, many kinds of lit-

erature focus on vision-based object detection for robot.

Reyes et al. proposed a CNN method based on You Only

Look Once5 to detect object for pepper.17 Zhu et al. pro-

posed a CNN-based indoor landmark detector with the help

of a topological matching algorithm.18 Together with clas-

sical classifier, Jiang et al. proposed a CNN-based tracking

method for person-following robot.19 Loghmani et al. pro-

posed a two-stream fusion method for robot vision,20 in

which the features of the two CNN streams of RGB and

depth images are fed into an RNN to detect objects. Sam-

pedro et al. proposed a fully autonomous aerial robotic

solution for search and rescue missions in indoor environ-

ments.21 After employing Mask-RCNN6 for image seg-

mentation, Kowalewski et al. presented a full solution

that produces object-level semantic perception of the envi-

ronment for indoor mobile robot.22 Although the vision-

based detectors show advances in robot vision, many of

them tend to assemble techniques.

Because geometric property is helpful for object under-

standing, geometric property is used in both traditional

method23–25 and CNN-based method.26–28 Wu and Wang

employed geometric property to detect elliptical object.23

Batool and Chellappa applied geometric constraints to

localize curvilinear shapes for wrinkles detection.24 Ismail

et al. estimated the indoor spatial layout using the vanishing

point and then detected the object by studying the relation

of the scene to the object.25 Pham et al. first predicted a

boundary map using a CNN and then employed a hierarchical

segmentation tree to produce geometric and object segmenta-

tion.26 Mizginov and Danilov combined generative adversar-

ial networks and three-dimensional (3D) geometric modeling

to detect traffic target.27 Cai et al. employed geometric prior

knowledge to improve a CNN-based method for planar object

detection.28 Since a kind of road object (e.g. car or bus) is

usually in a standard size and the surveillance camera is static,

the scale distribution of the class in the video frames can be

estimated after the horizon is estimated by scene geometry.

Amin and Galasso applied the scale distributions over the

road classes to prune proposals.29 However, the method is

not appropriate for indoor objects due to the nonuniqueness

of the scale distribution in indoor scene. The indoor robot

moves in room and the indoor objects, such as wall, floor,

or ceiling, may be not in standard size. A same object may be

occurred in an image at the same position but in different pixel

sizes. Although geometric properties are used for object

detection, the CNN-based study of geometric property for

indoor object detection is insufficient. Motivated by the appli-

cation of the robot vision, we use geometric property to

improve CNN-based detector in this study.

Proposed method

In our design, the main task of GP-Faster is to use 2D

geometric property to improve region proposals. The main

design of GP-Faster is shown in Figure 2. The blue modules

show the loss of training. The red modules show our

improvements. The FG prob in Figure 2 is the abbreviation

of foreground probability, which is reshaped from a soft-

max layer. With the help of direct and inverse proportion

functions, we first use mesh grids to generate appropriate

anchors for indoor object location in the module of anchors

generation. With the help of geometric prior knowledge,

we then incorporate 2D geometric constraints in Faster

R-CNN to train proposals for classification, as the module

of geometric constraint shown in Figure 2.

Generating appropriate anchors

Faster R-CNN produces anchors to regress the bounding

boxes of objects. Each anchor is generated with a scale s

and an aspect ratio r, where s2 ¼ wh is the size of the

anchor and r ¼ h=w is the ratio of the height to the width

of the anchor. Let san ¼ ðs1; s2; � � � ; smÞ be a group of scales

and ran ¼ ðr1; r2; � � � ; rnÞ be a group of aspect ratios. The

anchors are generated by all the combinations of ri 2 ran

and sj 2 san, that is, ðri; sjÞ; i ¼ 1; 2; � � � ; n; j ¼ 1; 2; � � � ;m.

The main design of the anchors is to choose appropriate san
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and ran so that the generated anchors can be easily

regressed to ground boxes. In this study, we use mesh grids

that are the intersections of direct and inverse proportion

functions to generate anchors.

Figure 3 shows the generation schedule of our design. The

points show the widths and heights of the ground-truth boxes

of the 18 indoor classes in SUN2012, in which the images are

rescaled such that their shorter side is 600 and the other side is

no more than 1000. The constraints of aspect ratios can be

regarded as directly proportional functions as follows

h ¼ riw; i ¼ 1; 2; � � � ; n: ð1Þ

They are shown as the black lines in Figure 3. Similarly,

the size constraints of the anchors can be regarded as

inverse proportion functions

h ¼
s2

j

w
; j ¼ 1; 2; � � � ;m: ð2Þ

The curves in Figure 3 show the size constraints. The

width and height of every anchor are determined by

equations (1) and (2) with a certain combination

ðri; sjÞ; i ¼ 1; 2; � � � ; n; j ¼ 1; 2; � � � ;m, that is, for a given

scale and aspect ratio, the width and height of the generated

anchor are the solution of the following equations

h ¼ riw

h ¼
s2

j

w

:

8><
>: ð3Þ

The anchors on each feature point are the intersections

of the direct and inverse proportion functions, as the inter-

section of the lines and curves shown in Figure 3.

Different from the common dataset, there are a con-

siderable number of small objects in the indoor dataset.

As shown in Figure 3, there are a large number of black

points near origin. Although Faster R-CNN uses

bounding-box regression to adjust the error from an

anchor box to a ground-truth box, the regression may

be powerless when the error between them is too large.

An anchor that overlaps a ground-truth box with a high

IoU overlap is employed to train the regression. In other

words, an object cannot be involved in training if there

is no anchor overlapping it with a high IoU overlap. In

this study, we design inverse proportion curves near

origin to trap the small ground boxes, as the red curves

shown in Figure 3.

GP-Faster designs the scales of the anchors as follows

san ¼ ðs1; s2; � � � ; smÞ

s:t:

s1 < s2 < � � � < sm

bss1 � cs

bssm � dmin=2

8>><
>>:

ð4Þ

Figure 2. The training framework of our proposed GP-Faster. The red modules show our improvements. GP-Faster: geometric
property-based Faster R-CNN method.

Figure 3. The generation schedule of the anchors. The points
show the widths and heights of the ground-truth boxes. The black
lines show the aspect ratios of the anchors. The curves show the
sizes of the anchors.
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where bs ¼ 8 is the base size, cs is the zoom scale from the

input image to the last shared convolutional layer, and dmin

is the length of the shorter side of the input image.

2D geometric constraints

To improve the inliers ratio on RPN-RoIs, we use 2D geo-

metric constraints to refine RPN-RoIs, as shown in Fig-

ures 1 and 2. We first prepare 2D geometric prior

knowledge. For convenience, let the coordinate of the j’th

annotated object in the i’th training image Ii be

pij ¼ ðwij; hijÞ, which is the width and height of the

annotated box. Let the class of pij be gcðpijÞ, and Pk ¼
fpijjgcðpijÞ ¼ kg be the set of pij with gcðpijÞ ¼ k; k ¼
0; 1; � � � ;K � 1 on the training set, and K is the number

of classes. We use Graham scan to obtain the convex hull

of Pk.
30 Let the resulting boundary of the convex hull be

Bk � Pk , which is a list of convex polygon vertexes. The

geometric prior knowledge, which is the boundary of the

convex hull of all the classes, is prepared as follows:

1. Run over the training set to obtain the point sets

Pk ¼ fpijjgcðpijÞ ¼ kg; k ¼ 0; 1; � � � ;K � 1.

2. Obtain Bk ; k ¼ 0; 1; � � � ;K � 1 using Graham scan.

We then use the prepared prior knowledge to result in

2D constraint. Faster R-CNN uses anchors for bounding

box regression. Not only the anchors inside of the region

of Bk but also the anchors near outside of the region of Bk

may be used for box regression. Let the current training

image be Ii, the anchors set of the resulting RPN-RoIs be

ARPN ¼ fat; t ¼ 0; 1; � � � ;N RR � 1g, correspondingly, the

coordinates of the anchors be RRPN ¼ frtg ¼ fðwt; htÞ;
t ¼ 0; 1; � � � ;N RR � 1g. We use the ray-tracing method30

to check a point rt 2 RRPN is inside or outside of the poly-

gon Bk. Let the region inside of Bk be RðBkÞ, dðrt;BkÞ be the

distance from rt to Bk. If rt is in RðBkÞ, then let

dðrt;BkÞ ¼ 0; otherwise, the distance is the minimum dis-

tance from rt to lp, which is the line segment of Bk, that is

dðrt;BkÞ ¼
min
lp2Bk

dðrt; lpÞ; rt =2 RðBkÞ

0; rt 2 RðBkÞ
:

(
ð5Þ

The 2D constraint of rt 2 RRPN is as follows

dðrt;BkÞ � T gsðBkÞ; k ¼ 0; 1; � � � ;K � 1; ð6Þ

where Tg is a threshold, sðBkÞ is the region area bounded in

Bk.

To implement the refinement of RPN-RoIs, let the num-

ber of RoIs we choose in RPN-RoIs be N RoI. Our main task

is to select N RoI RoIs in RRPN using the 2D constraints. The

involved refinement parameters of GP-Faster are RRPN

and thresholds: Tg, N RoI, T IoU, T BGL, and T BGH, where

T IoU is a threshold of IoU overlap; T BGL and T BGH are,

respectively, the lower and upper boundary thresholds used

for background selection. The set of RoIs for classification

contains two parts, that is, foreground FRoI and background

BRoI. The refinement of RPN-RoIs using 2D geometric

constraints is implemented as follows:

1. Initialize FRoI and BRoI with :.

2. For at 2 ARPN induced from the current training

image Ii, obtain maxIoUðat; bihÞ, where bih is the

bounding box of the h’th annotated object in Ii.

3. Add at to FRoI, that is, FRoI ¼ FRoI [ fatg, if at

satisfies

(a) maxIoUðat; bihÞ � T IoU,

(b) the 2D constraint equation (6), where dðrt;BkÞ
is the distance from rt to Bk, k ¼ gcðpijÞ,
j ¼ arg

h

maxIoUðat; bihÞ.

4. Add at to BRoI, that is, BRoI ¼ BRoI [ fatg, if at

satisfies T BGL � maxIoUðat; bihÞ < T BGH.

5. Repeat steps 2 to 4 until all the at have been

processed.

6. Update FRoI by randomly choosing NF elements in

FRoI, where N F ¼ minðf RoIN RoI;CardðFRoIÞÞ, f RoI

is a fixed ratio of the foreground in RoIs, and

Cardð�Þ is the cardinality of �.
7. Update BRoI by randomly choosing NB elements in

BRoI, where N B ¼ N RoI � NF .

8. The set of RoIs is RoI ¼ FRoI [ BRoI.

The geometric constraints are only employed to train

models. They are not used for model test. After the

refinement of RPN-RoIs is implemented, the resulting

RoIs are fed to full connections to result in training loss.

Overall, GP-Faster generates appropriate anchors and

implements 2D geometric refinement on the training set

for improvement.

Implemental details

Besides thresholds N RR, T IoU, T BGL, T BGH, and N RoI, two

main parameters san and Tg are introduced in this work,

where san and Tg are, respectively, the scales to generate

anchors and the threshold used for 2D constraints. T IoU,

T BGL, and T BGH are, respectively, set to 0.5, 0, and 0.5,

which are set the same as those in Faster R-CNN. Overall,

N RR, N RoI, san, and Tg are the four parameters that we tune

in this work.

We tune the parameters on SUN2012 using VGG16.31

After comparing the classes of the datasets Indoor09,32

SUN2012,9 and NYUv2,10 we use 18 common indoor

classes for implementation. They are “wall,” “window,”

“floor,” “ceiling,” “plant,” “door,” “curtain,” “painting,”

“chair,” “person,” “table,” “cushion,” “bottle,” “desk

lamp,” “bed,” “pillow,” “sofa,” and “television” (Figure 1).

The model is trained on the 18 classes of the SUN2012

training set. It is evaluated on corresponding classes of the

SUN2012 test set using mAP. Because the object occluded

is listed as a new class in SUN2012, the eight classes in

SUN2012, including “person occluded,” “person sitting

Ding et al. 5



occluded,” “person,” “person standing,” “person walking,”

“person crop,” “person sitting,” and “person sitting crop,”

are fused to the class “person.” Similarly, the eight classes,

including “chair occluded,” “chair,” “chair crop,”

“armchair,” “armchair occluded,” “swivel chair,”

“armchair crop,” and “deck chair,” are fused to the class

“chair.”

The publicly available VGG16 model pretrained on

ImageNet2 is used for initialization. We train and test net-

works on images of a single scale in which the shorter side

is 600 pixels. We initialize a learning rate of 0.001 and

make the learning rate drop 10 times after every 80 k

iterations on the dataset. A total of 100 k training itera-

tions are run.

We run experiments to tune the training parameters N RR,

N RoI, Tg, and san based on VGG16. Every model is tested

with the same group of parameters ðNd
pre
NMS;Nd

post
NMSÞ ¼

ð24 k; 1200Þ, where Nd
pre
NMS and Nd

post
NMS are, respectively,

the number of top-scored RPN proposals before and after

applying nonmaximum suppression (NMS) in the stage of

detection. Table 1 summarizes ablation results on the four

parameters. The Rec and Pre in Table 1 are, respectively, the

abbreviations of the recall and precision. Together with

ground truth, the numbers of true-positive and false-

positive samples are used to calculate the recall and pre-

cision of every class. A predicted detection is regarded as

a true positive if the predicted class label is the same as the

ground-truth label and the IoU overlap between the pre-

dicted bounding box and the ground-truth one is greater

than 0.5, otherwise, the detection is a false positive one.

The results of Rec and Pre listed in Table 1 are the

averages of the recalls and precisions over all the classes.

The ablation results on N RR and N RoI are listed in the first

three lines in Table 1. In Table 1, the results on Tg are

listed in lines 3, 4, and 5, and the results on san are listed in

lines 3, 6, and 7.

As shown the first three lines in Table 1, the mAP

obtained by N RR ¼ 512 and N RoI ¼ 256 is 50.1%, there-

fore, N RR ¼ 512 and N RoI ¼ 256 take advantage in mAP.

Although the ablation experiments on Tg with three differ-

ent levels show that Tg ¼ 2� 10�4 is in favor of mAP,

Tg¼ 10�4 results in a greater recall with the same preci-

sion, as shown the lines 3, 4, and 5 in Table 1. In addition,

Tg¼ 10�4 results in a mAP of 50.1%, which is only 0.1%

smaller than that obtained by Tg ¼ 2� 10�4. T g¼ 10�4 is

employed as a reasonable geometric parameter in this

study. As shown the ablation results on san listed in lines

3, 6, and 7 in Table 1, san ¼ ð2; 4; 8; 16; 32Þ takes advan-

tage in mAP. Overall, the parameters san, N RR, N RoI, and Tg

are, respectively, tuned to be (2, 4, 8, 16, 32), 512, 256, and

10�4 for VGG16-based GP-Faster.

Besides the four parameters, extended experiments

show that N
pre
NMS and N

post
NMS, which are, respectively, the

number of top-scoring boxes to keep before and after

applying NMS to RPN proposals in the stage of training,

is desired to be tuned for ResNet101-based GP-Faster. The

RPN parameters N
pre
NMS, N

post
NMS, san, N RR, N RoI, and Tg are,

respectively, tuned to be 24 k, 4 k, (2, 4, 8, 16, 32), 448,

448, and 10�4 for ResNet101-based GP-Faster.

Experiments and results

We evaluate our method on two datasets: SUN20129 and

NYUv2.10 Our experiments are implemented based on

the framework of Faster R-CNN.4 Both VGG1631 and

ResNet10133 are employed as our backbone networks.

The VGG16-based and ResNet101-based experiments

are, respectively, carried out on Caffe34 and Tensor-

Flow.35 The publicly available VGG16 and ResNet101

models pretrained on ImageNet are used for correspond-

ing initialization. For the sake of brevity, the standard

Faster R-CNN implemented with the backbone networks

of VGG16 and ResNet101 are, respectively, abbreviated

as Faster16 and Faster101. We use a 1-GPU implemen-

tation, and thus, the minibatch size of RPN is 1. The

VGG16 models are trained starting from conv3_1 using

an end-to-end schedule. The ResNet101 models are

trained starting from block2, that is, the parameter FIX-

ED_BLOCKS is set to 1. We use a momentum of 0.9

and a weight decay of 5� 10�4. All the implementation

results are reported on a dual-core i-3 4160 CPU (3.6

GHz) equipped with 16 GB RAM and an NVIDIA

GTX1080 GPU.

Experiments and results on SUN2012

In this section, we evaluate GP-Faster on the SUN2012.

We initialize a learning rate of 0.001 and make the learn-

ing rate drop 10 times after every 60 k iterations. A total of

100 k training iterations are run. To implement compar-

isons, we first run standard Faster R-CNN on the 18

classes collected from the SUN2012 set. Then, we run

GP-Faster using the parameters in the aforementioned

section. Table 2 presents our experimental results on the

test set of SUN2012. The standard metric mAP is the

average precision evaluated at IoU ¼ 0.5. The columns

Table 1. The ablation experiments of GP-Faster16 on the
SUN2012 test set.

NRR NRoI san Tg

mAP
(%)

Rec
(%)

Pre
(%)

256 128 (2, 4, 8, 16, 32) 10�4 46.0 65.7 27.5
448 196 (2, 4, 8, 16, 32) 10�4 49.8 74.0 19.1
512 256 (2, 4, 8, 16, 32) 10�4 50.1 73.8 20.7
512 256 (2, 4, 8, 16, 32) 0 49.9 73.2 20.6
512 256 (2, 4, 8, 16, 32) 2� 10�4 50.2 73.3 20.7
512 256 (8, 16, 32) 10�4 49.3 71.9 22.2
512 256 (4, 8, 16, 32) 10�4 50.0 73.8 20.3

mAP: mean average precision; Pre: precision; Rec: recall.
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of GP-Faster16 and GP-Faster101 show the results of our

method using VGG16 and ResNet101 as the backbone

networks, respectively.

As provided in Table 2, we compare our method with

the standard Faster R-CNN. GP-Faster outperforms Faster

R-CNN. GP-Faster16 and GP-Faster101 achieve mAPs of

53.9% and 56.5%, respectively. Compared with the base-

line Faster R-CNN, corresponding improvements of the

mAPs are, respectively, 6.8% and 6.4%. It can be seen that

the 2D geometric property provides extra auxiliary

discrimination.

Figure 4 shows some detection results on the SUN2012

test set. The implementation models are Faster16 and GP-

Faster16 (53.9% mAP). A score threshold of 0.6 is used to

draw the detection bounding boxes. The blue and red col-

ors, respectively, show the detections launched by Faster16

and GP-Faster16.

Figure 4 demonstrates that the 2D geometric property is

helpful for indoor object detection. On the one hand, some

positive objects are undetected by Faster16, but they are

detected by GP-Faster16, such as “painting” and “door” in

Figure 4(a), “desk lamp” in Figure 4(c), “window” and

“door” in Figure 4(d), “door,” “plant,” and “chair” in

Figure 4(e), “painting” and “curtain” in Figure 4(i),

“pillow” in Figure 4(j). On the other hand, GP-Faster16

corrects some false detection of Faster16, such as “chair”

in Figure 4(b), “person” in Figure 4(f), “desk lamp” in

Figure 4(g), “table” and “chair” in Figure 4(h). The

Table 2. Detection results on the SUN2012 test set (%).

Object Faster16 Faster101 GP-Faster16 GP-Faster101

Wall 57.8 59.1 64.6 65.5
Wind 43.7 48.7 53.4 56.3
Floor 70.3 72.1 74.4 75.6
Ceiling 76.1 76.8 77.6 81.5
Plant 26.4 31.3 35.5 40.3
Door 28.8 33.0 35.1 35.6
Curtain 54.4 55.6 59.3 62.3
Painting 50.1 55.1 50.8 55.7
Chair 53.0 56.9 62.6 65.4
Person 56.7 61.2 65.6 69.1
Table 26.3 30.0 32.4 35.4
Cushion 44.6 50.6 57.1 57.8
Bottle 10.6 3.7 8.7 12.0
Desk lamp 73.4 72.6 76.2 79.5
Bed 67.7 73.3 76.7 76.2
Pillow 33.7 38.3 46.6 51.7
Sofa 34.7 38.8 51.1 46.4
TV 39.6 43.9 43.0 51.1
mAP 47.1 50.1 53.9 56.5

mAP: mean average precision.

Figure 4. (a–j) Detection examples of Faster16 and GP-Faster16 on the SUN2012 test set. A score threshold of 0.6 is used to draw the
detection bounding boxes. The blue and red colors, respectively, show the detections launched by Faster16 and GP-Faster16.
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detection results suggest that GP-Faster is more powerful

than Faster R-CNN on indoor object detection.

Experiments and results on NYUv2

In this section, we implement our proposed method on the

NYUv2 dataset. The standard split of 795 training images

and 654 testing images is employed for experiments in this

work. To compare with the state-of-the-art methods12,36,37

on the NYUv2 dataset, 19 classes are extracted for experi-

ments. After the images are rescaled such that their shorter

side is 600 pixels, Figure 5 shows the 2D constraints of the

19 classes. The scale parameter san on NYUv2 is set to

ð4; 8; 16; 32Þ. We initialize a learning rate of 0.001 to train

the model. The total iterations and the step size of the

learning rate are, respectively, set to 20 k and 30 k.36 The

geometric parameter Tg for GP-Faster on the dataset is set

the same as that on SUN2012.

Since NYUv2 is composed of pairs of RGB and depth

frames that have been synchronized and annotated with

dense labels for every image, we take the depth information

into account in this section. After running over the depth

frames of the dataset, we first extract the depths of all the

objects with the help of the dense annotation. The depth

constraint of every class is a maximum depth on corre-

sponding objects. To avoid nontarget invasion from the

background in the bounding box of RPN-RoI, a similar box

with a quarter area centered in the RPN-RoI box is then

cropped, and the depth values on the horizontal and vertical

lines that are centered in the cropped box are used to

approximate the object depth. The depth constraint is

employed to refine RPN-RoI. In detail, the approximated

object depth is required to be not greater than its corre-

sponding class depth. Figure 6 shows our depth constraint.

Figure 6(a) shows a depth frame. Figure 6(b) shows the

depth of the “table” in Figure 6(a). Figure 6(c) shows an

RPN-RoI of the “table” that overlaps with the “table” in

Figure 6(a) with a certain IoU overlap. The color bar shows

the depth values in meters in Figure 6(b) and (c). In

Figure 6(c), the depth values on the red and white lines

in the black box are employed to approximate the depth

of the “table.”

After combining 2D geometry and depth constraints to

refine RPN-RoIs, we propose 3D geometric property-based

Faster R-CNN (DGP-Faster) in this section. DGP-Faster16

and DGP-Faster101 are, respectively, implemented with

the backbone networks of VGG16 and ResNet101. For

DGP-Faster, the geometric parameter Tg is set to

2� 10�4. In addition, N
pre
NMS ¼ 12 k, N

post
NMS ¼ 2 k,

N RR ¼ 512, and N RoI ¼ 256 are used for GP-Faster16 and

DGP-Faster16. As for GP-Faster101 and DGP-Faster101,

the four parameters are, respectively, set to be 24 k, 4 k,

512, and 256. Table 3 provides our detection results on the

test set of NYUv2.

Figure 5. The 2D geometric constraint of 19 indoor classes on
NYUv2.

Figure 6. (a–c) Illustration of the depth constraint.
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As presented in Table 3, we compare our method with

the state-of-the-art models. After implementing Faster16

and Faster101 on the dataset of NYUv2, we obtain

the baseline results, which are, respectively, 32.8%
and 41.0%. As given in Table 3, GP-Faster16 and

GP-Faster101, respectively, achieve mAPs of 34.7% and

41.9%. Compared with the baseline results, corresponding

improvements on mAP are, respectively, 1.9% and 0.9%. It

can be seen that the 2D constraints are also helpful for

indoor object detection on the NYUv2 dataset. In addition,

DGP-Faster16 and DGP-Faster101, which involve depth

constraints in training, achieve mAPs of 35.5% and

43.3%, respectively. Compared with 2D geometric

property-based detectors, DGP-Faster16 improves the

mAP by 0.8% and DGP-Faster101 improves the mAP by

1.4%. DGP-Faster101 achieves the greatest mAP and out-

performs all the state-of-the-art detectors in mAP. It can be

seen that the depth constraint provides extra auxiliary dis-

crimination. Overall, both the 2D geometry and depth con-

straints are helpful for indoor object detection.

We evaluate the inference time of our detectors on

NYUv2. Although geometric constraints are not used for

model test, our detection parameters Nd
pre
NMS and Nd

post
NMS

are, respectively, set to 24 k and 1200, in which their

default values are, respectively, 12 k and 600 in standard

Faster R-CNN. The detection speed of Faster16 is approx-

imately 10 fps. The detection speed of GP-Faster and DGP-

Faster is approximately 4 fps. The main contribution of the

inferiority may be the number of RoIs that are doubled.

Although our proposed detectors are slower than the stan-

dard Faster R-CNN, geometric constraints do not directly

contribute to the detection inferiority.

Discussion

To improve the performance of the indoor mobile robot, we

proposed GP-Faster and DGP-Faster, which incorporates

geometric property in Faster R-CNN to improve the detec-

tion performance. Faster R-CNN chooses RPN-RoIs to

train the proposals. However, on the one hand, some out-

liers in RPN-RoIs are chosen as candidates. On the other

hand, some small indoor objects cannot be covered by

anchors generated by the standard Faster R-CNN. In this

study, we employed the shape of the bounding box as a

universal property and used geometric constraint to refine

RPN-RoIs. In addition, we use mesh grids to generate

appropriate anchors for indoor objects with the help of

direct and inverse proportion functions. The comparison

experiments implemented on the SUN2012 and NYUv2

datasets showed that GP-Faster improved the performance

of the mAP. The experiments on NYUv2 showed that

DGP-Faster achieved a further step in performance. It sug-

gests that both the 2D geometric property and depth infor-

mation are helpful for mobile robot to detect indoor object.

However, the depth information is not always available,

DGP-Faster may be limited for implementation in some

applications.

Conclusions

In this article, a geometric property-based Faster R-CNN is

proposed for indoor object detection. With the help of

direct and inverse proportion functions, we first use mesh

grids to generate appropriate anchors for indoor objects.

After the anchors are regressed to RPN-RoIs, we then use

the geometric constraints to refine the RPN-RoIs, in which

Table 3. Detection results on the NYUv2 test set (%).

Object RCNN3,36 D-RCNN36 D-MH37 D-ROCK12 Faster16 GP-Faster16 DGP16 Faster101 GP-Faster101 DGP101

Bathtub 16.9 44.4 16.8 23.5 41.4 23.7 39.1 42.2 29.5 36.4
Bed 45.3 71.0 62.3 61.8 54.6 59.5 59.6 72.5 69.9 71.2
Bookshelf 28.5 32.9 41.8 43.0 35.1 42.1 37.7 42.7 45.6 45.3
Box 0.7 1.4 2.1 1.5 3.0 10.0 10.1 10.1 6.9 11.8
Chair 25.9 43.3 37.3 51.8 41.3 41.6 41.5 45.8 49.9 50.1
Counter 30.4 44.0 43.4 42.5 32.6 36.1 32.0 47.0 48.8 51.3
Desk 9.7 15.1 15.4 19.5 14.9 15.8 11.3 24.2 21.4 21.9
Door 16.3 24.5 24.4 35.7 23.0 27.9 30.1 35.2 31.6 32.8
Dresser 18.9 30.4 39.1 22.9 32.0 38.7 39.3 43.4 44.3 49.5
Garbage bin 15.7 39.4 22.4 39.0 28.6 31.9 31.0 38.4 40.0 36.6
Lamp 27.9 36.5 30.3 39.8 32.1 31.0 36.4 39.4 43.2 45.5
Monitor 32.5 52.6 46.6 40.0 39.6 45.5 42.4 42.6 49.2 50.5
Night stand 17.0 40.0 30.9 37.7 23.6 32.1 32.2 42.5 46.8 46.2
Pillow 11.1 34.8 27.0 38.5 26.8 33.0 31.7 33.1 39.3 36.8
Sink 16.6 36.1 42.9 36.6 32.3 28.9 31.4 42.5 44.0 46.8
Sofa 29.4 53.9 46.2 49.8 46.1 46.8 41.3 58.3 56.6 58.8
Table 12.7 24.4 22.2 22.0 22.5 21.4 22.6 26.9 30.8 29.3
TV 27.4 37.5 34.1 47.1 35.5 40.7 43.9 38.0 42.9 43.0
Toilet 44.1 46.8 60.4 53.1 58.2 52.2 60.4 54.5 56.0 59.5
mAP 22.5 37.3 34.0 37.1 32.8 34.7 35.5 41.0 41.9 43.3

mAP: mean average precision; DGP16: DGP-Faster16; DGP101: DGP-Faster101.

Ding et al. 9



the geometric constraints may contain 2D size and depth

information. The geometric constraints can remove some

outliers in RPN-RoIs. With the help of geometric property,

our proposed GP-Faster and DGP-Faster increase the mAP

performance.
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