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A long short-term memory neural
network model for knee joint
acceleration estimation using
mechanomyography signals

Chenlei Xie1,2,3 , Daqing Wang1, Haifeng Wu4 and Lifu Gao1

Abstract
With the growth of the number of elderly and disabled with motor dysfunction, the demand for assisted exercise is
increasing. Wearable power assistance robots are developed to provide athletic ability of limbs for the elderly or the
disabled who have weakened limbs to better self-care ability. Existing wearable power-assisted robots generally use
surface electromyography (sEMG) to obtain effective human motion intentions. Due to the characteristics of sEMG
signals, it is limited in many applications. To solve the above problems, we design a long short-term memory (LSTM) neural
network model based on human mechanomyography (MMG) signals to estimate the motion acceleration of knee joint.
The acceleration can be further calculated by the torque required for movement control of the wearable power assistance
robots for the lower limb. We detect MMG signals on the clothed thigh, extract features of the MMG signals, and then, use
principal component analysis to reduce the features’ dimensions. Finally, the dimension-reduced features are inputted into
the LSTM neural network model in time series for estimating the acceleration. The experimental results show that the
average correlation coefficient (R) is 94.48 + 1.91% for the estimation of acceleration in the process of continuously
performing under approximately p/4 rad/s. This approach can be applied in the practical applications of wearable field.
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Introduction

With the aggravation of the population aging process, the

number of elderly people is growing rapidly. The world’s

population aged over 60 will grow from 12% in 2015 to

22% by 2050.1 On the other hand, the number of amputees

has increased due to vascular diseases, traffic accidents,

work-related injuries, and accidental injuries. According

to the Sixth National Census, the total number of people

with disabilities was approximately 85.02 million in China

by the end of 2010, of which 24.72 million were physically

disabled, ranking first among all types of disabilities.2
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Therefore, it is urgent to solve the problems of inconveni-

ence of life and travel caused by the weakening of the limbs

of the above people, which is a major social problem that

needs to be solved at present.

Many scholars and institutions have used wearable robot

technology to research wearable power assistance robots in

the elderly or the disabled fields. Wearable power assis-

tance robots are developed to provide athletic ability of

limbs for the elderly or the disabled who have weakened

limbs to better self-care ability.3 It is great significance and

application prospects to meet the growing current situation

of elderly and physically disabled people.

With the development of signal detection, signal pro-

cessing, and data fusion technology, wearable power assis-

tance robots have gradually evolved from a passive way of

accepting human instructions to a way of actively recogniz-

ing and understanding human motion intentions. Early

active and passive wearable power assistance robot prod-

ucts mainly use angle, force, acceleration, and other phys-

ical information as control sources. Since the external

kinematic parameters can only passively reflect people’s

motion intentions, the actual information obtained lags

behind human motion.4 Biological signals can intuitively

reflect the intention and state of human motion and pre-

cede the occurrence of macromotion. If the physiological

signals of the human body can be used as control sources,

the control of the wearable power assistance robot and the

human body will be more coordinated and smoother. The

research of modern human anatomy has shown that the

surface electromyography (sEMG) signal is closely

related to muscle activity. The sEMG signal can be gen-

erated about 30–100 ms before muscle activity. The

sEMG signal can be used to estimate and evaluate muscle

function, muscle strength, and fatigue state.5 Through col-

lecting and processing the sEMG signals of the skin sur-

face, the features of the signals can be extracted as the

source of control signals for the wearable power assis-

tance robot control system.6 However, most of the sEMG

sampling electrodes require to be attached on the skin,

which restricts its application.7

The research has shown that not only sEMG signals are

produced but also a low-frequency mechanical vibration

signal is produced following the muscle activity.8,9

Researchers use mechanomyography (MMG) to describe

the mechanical vibration signal. MMG signal can provide

information about the number of muscle motor units and

the excitation rate.10 The MMG signal reflects the charac-

teristics of muscle activity during motion. Through effec-

tive features extraction and classification of MMG signal,

the intention of human motion can be predicted in advance.

Researchers have tried to control the wearable power assis-

tance robots based on the MMG signals.11 MMG is a vibra-

tion signal generated by muscle contraction during

motion.12 The MMG signal acquisition does not need to

be very accurate with the placement of sensors.13 At the

same time, using the MMG signals has such advantages as

the low cost of acquisition system, anti-interference, and

robustness. In addition, the data can be effectively collected

by tying the sensor to the relevant parts through clothes

without directly contacting with the skin so that data col-

lecting is not affected by the change in resistance caused by

sweat or the temperature of the skin surface.14 MMG sig-

nals are more applicable to applications in sports, wear-

ables, and so on.

Alves and Chau15 made use of two acceleration sensors

to detect the MMG signals of forearm muscle activity, and

the recognition rate of the classifier reached 89 + 2% for

three types of hand motion. Silva et al.16 constructed clas-

sifiers based on the MMG signals for controlling the clos-

ing and opening of a prosthesis. The accuracy reached

approximately 70%. Zeng17 used only a single acceleration

sensor to detect the MMG signals of forearm muscle activ-

ity. Through principal component analysis (PCA) and the

construction of a quadratic classifier, the recognition rate of

hand motion reached approximately 80% in real-time pros-

thetic hand control experiments. Ibitoye et al.18 built a

support vector regression model based on MMG signals

to estimate the knee torque induced by neuromuscular elec-

trical stimulation. When using the Gaussian support vector

kernel, the decision coefficient between the actual torque

and the estimated torque reached 94%. Dzulkifli et al.19

constructed a neural network model based on the quadricep

MMG signals to predict the knee torque to solve the situ-

ation that the muscle torque could not be quantified inde-

pendently. It was found that the average accuracy of the

predicted knee joint elongation torque reached 79 + 14%,

which provided a safer automatic control for the standing of

patients with a complete spinal cord injury. Youn and

Kim20 used acceleration sensors (ADXL202JE) to record

the MMG signals of the brachioradialis and biceps muscles.

Meanwhile, they extracted features of the MMG signals as

inputs to the neural network model. Then, the bend force of

the elbow joint was estimated by the neural network

algorithm.

In this study, we take the knee joint as the research

object and design a long short-term memory (LSTM)

neural network21 that uses MMG signals for estimating the

motion acceleration of knee joint. The acceleration can be

further calculated by the torque required for movement

control of the wearable power assistance robots for the

lower limb. We detect the MMG signals on the clothed

thigh. Some time- and frequency-domain features of the

MMG signals are extracted, and then, PCA22 is used to

reduce the features’ dimensions. Finally, the dimension-

reduced features are inputted into the LSTM neural net-

work model in time series for estimating the acceleration

of knee joint.

The rest of the article is organized as follows. In the

second section, we introduce the LSTM neural network.

In the third section, the experiment and signal preproces-

sing are described, including the experimental procedure,

the MMG signal preprocessing, the feature extraction, the
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features dimension reduction, and the implementation of

the LSTM neural network model. The experimental results

and discussion are presented in the fourth section. Finally,

the conclusion is shown in the fifth section.

Long short-term memory neural network

Recurrent neural network (RNN) is a neural network for

processing sequence data.23 RNN remembers the previous

information. The previous information is applied to the

calculation of the current output. Figure 1 shows the struc-

ture of the RNN. The neurons of the hidden layer are con-

nected. The input of the current time hidden layer includes

not only the input of the current time but also the output of

the previous moment hidden layer. Figure 2 shows the

unfolding of a neuron of the hidden layer on the input

sequence. The output value O of a certain neuron of the

hidden layer at the current moment not only depends on the

input x of the neuron at the current moment but also

depends on the output value Ot�1 and the memory value

St�1 of the hidden layer at the previous moment.

The LSTM neural network is a deformed structure of

RNN. The LSTM neural network combines long-time and

short-time series-related information through subtle gate

control to better preserve the long-time series-related infor-

mation and to control the gradient flow, which solves the

problem of gradient disappearance to a certain extent. The

unit composition of the LSTM block is shown in Figure 3.

Each LSTM block is equal to a neuron in the hidden layer

of RNN. The LSTM neural network uses a gate structure to

remove or increase the memory information of a block, to

retain the important information, and to remove the unim-

portant information. The LSTM block consists of the forget

gate, input gate, and output gate. These units are connected

in series to learn and store long-term and short-term series-

related information.

The first unit is the forget gate, which decides how much

information of unit memory St�1 from the previous block is

retained ~St�1 in the current block. The forget gate includes

a sigmoid function and a pointwise multiplication opera-

tion. The sigmoid function is as follows

f t ¼ s ðW f ðOt�1; xtÞ þ bf Þ ð1Þ

where Wf is the weight parameter, Ot�1 is the output of the

previous hidden layer, xt is the input for the current block,

and bf is a bias term.24

~St�1 is expressed as follows:

~St�1 ¼ f t � St�1 ð2Þ

where ft is the result from formula (1), St�1 is the unit

memory from the previous block, and ~St�1 is the memory

preservation from the previous block to the current block.25

The second unit is the input gate, which decides how

much information of the input xt is saved to the unit mem-

ory St at the current moment.26 The input gate includes a

sigmoid function, a tan h function, and a pointwise multi-

plication operation. The sigmoid function is as follows

it ¼ sðW iðOt�1; xtÞ þ biÞ ð3Þ

where it is the decision vector of the unit memory at the

current moment, Wi is the weight parameter, and bi is a bias

term.

The tan h function is as follows

~St ¼ tan h ðW cðOt�1; xtÞ þ bcÞ ð4Þ

where S~t is the candidate information of the unit memory at

the current moment, Wc is the weight parameter, and bc is a

bias term.26

The pointwise multiplication operation is as follows

Figure 1. The structure of the RNN. RNN: recurrent neural
network.

Figure 2. The unfolding of a neuron of the hidden layer.

Figure 3. Unit composition of the LSTM block. LSTM: long short-
term memory.
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St ¼ it � ~St þ ~St�1 ð5Þ

where St is the output of unit memory at the current block.

The third unit is the output gate, which decides how

much information of the unit memory St is outputted to the

output Ot at the current block.26 The output gate includes a

sigmoid function, a tan h function, and a pointwise multi-

plication operation. The sigmoid function is as follows

ht ¼ sðW hðOt�1; xtÞ þ bhÞ ð6Þ

where ht is the part of the unit memory output at the current

block, Wh is the weight parameter, and bh is a bias term.

The tan h function and the pointwise multiplication

operation are as follows

Ot ¼ tan h ðStÞ � ht ð7Þ

where Ot is the output at the current block.

Finally, the output Ot and the output of the unit memory

St at the current block are inputted into the next moment

hidden layer. The process is repeated. The difference

between the output of LSTM neural network and the real

training samples is minimized by learning and optimizing

the weight parameters and bias terms of the model.

Experiment and signal preprocessing

Experimental procedure

The right knee joint acceleration is estimated while the

right knee joint is performing isokinetic knee extension and

flexion motions in this experiment. Meanwhile, the Medi-

cal Ethics Committee of Hefei Institutes of Physical

Sciences authorized the experiment. We select four healthy

young people as experimental participants, who aged

between 24 and 30 years. We refer to the knee joint swing

angle (approximately 60�) during normal walking. In the

sitting position, participants are required to continuous

extension and flexion of the knee joint under approximately

p/4 rad/s (SV) and p/2 rad/s (FV) for 30 s, as shown in

Figure 4. Each participant has a complete rest between two

different speed experiments.

According to the anatomy of human motion, we select

the superficial muscles that control the continuous

motion of the knee joint for MMG signal detection.

We select semitendinosus, biceps femoris, vastus med-

ialis, vastus lateralis, and rectus femoris from the thigh,

as shown in Figure 5.

Figure 6 shows the collection and store system of data.

According to the previous experiment, the MMG sensor is

made by a triaxial accelerometer (model ADXL335).27

The positive direction of the z-axis is placed perpendicular

to the skin outward. The output of z-axis measures the

MMG signal. Five MMG sensor positions are selected

to be in the corresponding muscle’s central region and are

bound to the clothes by kneepad-like straps. The accelera-

tion sensor is made by a dual-axis accelerometer evalua-

tion board (model ADXL203EB), which measures the real

linear acceleration of the knee joint to calculate the angu-

lar acceleration and the torque.28 The acceleration sensor

is placed on the clothes against the medial ankle joint of

the shin (the X-axis is perpendicular to the shin and points

forward in front of the body), and it is bound to the leg by

kneepad-like straps for following the rotation of the knee

joint. The acceleration is calculated according to change

in the acceleration sensor data of the motion of knee

extension and flexion, which marks the acceleration cate-

gory label. A collector (model NI USB-6215) collects

signals of the MMG sensors and acceleration sensor. The

collection frequency of the data is 2000 Hz. The collector

is connected to the host computer through the USB inter-

face. Meanwhile, the data are shown and saved by the

program of the host computer.

Signal preprocessing

We use sliding window and stepping methods to continu-

ously read signal flow. With reference to the previous

Figure 4. Knee joint continuous motion.

Figure 5. Muscle diagram—1: semitendinosus; 2: biceps femoris;
3: vastus medialis; 4: vastus lateralis; and 5: rectus femoris.
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related research,14 we chose a 250 ms (500 samples) sliding

window and 62.5 ms (150 samples) increment. For the

MMG signals, we use a 5–100 Hz third-order Butterworth

band-pass filter to filter out the human motion trajectory

and environmental noise. Figure 7 shows the filter effect on

the MMG data of the rectus femoris. For the acceleration

signal, we use a 1.5-Hz fourth-order Butterworth low-pass

filter to filter out high-frequency noise. Figure 8 shows the

filter effect on the acceleration data.

Feature extraction and dimensions reduction

In this experiment, we extract features from the set sliding

window of each MMG signal. Root mean square, mean

absolute value, zero-crossing rate, slope sign change, and

waveform length of the MMG signals are selected as the

time-domain features.29 Median frequency,30 mean power

frequency,30 and mean frequency29 of the MMG signals are

selected as the frequency-domain features. Sample entropy

and Spearman’s correlation coefficients of the MMG sig-

nals are selected as other features.31

To improve the speed of data processing, the

48-dimensional time and frequency domain feature data

constructed from five MMG sensors data are reduced

dimensionally by the PCA. To implement the PCA, we call

the PCA function in MATLAB 2018A. Principal compo-

nents of the training samples whose cumulative contribu-

tion rate is more than 90% are obtained as new input

features of the training model. The new features contain

18 principal components. Figure 9 shows the contribution

rate of the principal components. Meanwhile, the corre-

sponding transformation matrix of training samples is

obtained. The test samples are multiplied by the transfor-

mation matrix to obtain the new features of the test sam-

ples. The new feature data of the training samples are

normalized using the Z-score method32 and then are

inputted into the LSTM neural network model. The new

Figure 6. Collection and store system of data.

Figure 7. Filter effect on the MMG data. MMG:
mechanomyography.

Figure 8. Filter effect on the acceleration data.
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feature data of the test samples are normalized using the

mean and standard deviation of the training samples.

Implementation of the long short-term memory
neural network model

The implementation process of the LSTM neural network

model is shown in Figure 10. The five-channel original

MMG and acceleration signals are filtered by Butterworth

filter. The feature extraction of the MMG signals is per-

formed by the sliding window method. The feature data are

reduced dimensionally by the PCA and then normalized

using the Z-score method. In addition, the corresponding

category labels are generated by the mean value of the

acceleration data in each sliding window. Each participant

can yield nearly 390 sets of valid time-series data (accel-

eration-MMG). According to the time series, we select the

first 80% of valid data as the training samples. Then, we

select the last 20% of valid data as the test samples.

To implement the LSTM neural network, we call deep

learning toolbox in MATLAB 2018A. The designed LSTM

neural network is shown in Figure 11. The LSTM neural

network that we design contains four layers. First, the time-

series features are inputted into the input layer according to

the time sequence. Second, the input layer is connected to

the LSTM layer. Third, the LSTM layer is connected to the

fully connected layer. Fourth, the fully connected layer is

connected to the regression layer. Finally, the regression

layer outputs the estimated acceleration. The input layer

contains 18-dimensional feature data according to the

result of the PCA algorithm. The LSTM layer contains

400 neurons. During model training, we set the number

of iterations is 400, and the initial learning rate is 0.005.

After 200 iterations, the learning rate decreases according

to a fading factor of 0.2. Meanwhile, to compare the

superiority of the LSTM neural network model, we set

up 50 and 100 neurons in the fully connected layer to carry

out comparative experiments.

According to the time series, we input the training sam-

ples of each participant into the LSTM neural network to

train the neural network model. According to the time

series, we input the test samples of each participant into

the trained model, respectively. We, respectively, calculate

the correlation coefficient (R) and root mean square error

(RMSE) of the test samples to assess the accuracy. Finally,

the neural network model with the highest R is selected.

The calculation formulas of R and RMSE are as follows

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
ðŷi � yiÞ2

r
ð8Þ

R ¼ Cov ðŷi; yiÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D ðŷiÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
D ðyiÞ

pq
ð9Þ

where ŷi is the estimated value of the i’th test sample; yi is

the observed value of the i’th test sample; D ðŷiÞ is the

variance of the estimated value of the test samples; D(yi)

is the variance of the observed value of the test samples;

and Cov ðŷi; yiÞ is the covariance between the estimated

value and the observed value of the test samples.

Experimental results and discussion

Tables 1 and 2 present R values on the test samples under

SV and FV for four participants, when the fully connected

layer contains 50 and 100 neurons, respectively. The mean

of R is 88.43% under SV and FV for four participants, when

the fully connected layer contains 50 neurons. The experi-

mental results with 50 neurons are better than the experi-

mental results with 100 neurons in the fully connectedFigure 9. The contribution rate of the components.

Figure 10. Implementation process of the LSTM neural network model. LSTM: long short-term memory.
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layer. The LSTM neural network model with 50 neurons in

the fully connected layer has better generalization ability.

Finally, we select the LSTM neural network model with 50

neurons in the fully connected layer. The following discus-

sion is the experimental results based on containing 50

neurons in the fully connected layer.

Figure 12 (a) to (e) shows the waveform cross-section of

the filtered MMG signals from the test samples under SV.

The 77 sets of MMG signal values are obtained by the

Table 1. Comparison of the R values of the different neural
network model on the test samples under SV for four
participants.

P1 P2 P3 P4

100 Neurons 96.06% 91.53% 95.74% 93.17%
50 Neurons 96.64% 93.05% 95.54% 92.71%

P: participant.

Table 2. Comparison of the R values of the different neural
network model on the test samples under FV for four
participants.

P1 P2 P3 P4

100 Neurons 85.06% 75.69% 76.59% 90.50%
50 Neurons 85.48% 76.15% 76.87% 90.97%

P: participant.

Figure 11. The structure of the LSTM neural network. LSTM: long short-term memory.
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sliding window and stepping methods from approximately

11,700 MMG signal values. We observe that the waveform

of MMG signals change similarly with knee flexion and

extension motion. The selected MMG signals can effec-

tively reflect the motion information of knee joint.

Figure 8(f) shows the estimated value and the observed

value of the acceleration from the test samples under SV.

The high correlation between the filtered observations of

acceleration and the estimated values of acceleration shows

that the model we designed performs well. The model that

used the MMG signals can effectively control the motion

acceleration of knee joint.

Figures 13 and 14 show the R and RMSE of the LSTM

neural network model on the test sample under SV and FV

for four participants. For the average of four participants, R

is 94.48 + 1.91%, and RMSE is 0.0849 + 0.0130 under

SV, while R is 82.37 + 7.13%, and RMSE is 0.0503 +
0.0166 under FV. We observe that a better R can be

obtained under SV. The standard deviation of R is also

relatively small under SV. RMSE is similar under SV and

FV. The LSTM neural network model can better estimate

the motion acceleration of knee joint under SV. The results

show that the LSTM neural network model has high fitting

ability under SV. The results show that it is feasible to

estimate knee joint acceleration using the MMG signals

based on the LSTM neural network model.

Conclusions

In this study, we design an LSTM neural network model

based on the MMG signals to estimate the motion

acceleration of knee joint. Performance of the model is

compared under SV and FV for four participants. The

experimental results show that the model can better esti-

mate the motion acceleration of knee joint under SV. The

whole results show that the LSTM neural network model

performs well. This approach promotes the application of

the angular acceleration and the torque required for move-

ment control of the wearable power assistance robots for

the lower limb. Meanwhile, it improves the flexibility,

comfort, and wearable ability of the wearable power assis-

tance robots for the lower limb.
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