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Abstract
To learn the optimal collision avoidance policy of merchant ships controlled by human experts, a finite-state Markov
decision process model for ship collision avoidance is proposed based on the analysis of collision avoidance mechanism,
and an inverse reinforcement learning (IRL) method based on cross entropy and projection is proposed to obtain the
optimal policy from expert’s demonstrations. Collision avoidance simulations in different ship encounters are con-
ducted and the results show that the policy obtained by the proposed IRL has a good inversion effect on two kinds of
human experts, which indicate that the proposed method can effectively learn the policy of human experts for ship
collision avoidance.
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Introduction

In robotics, kinds of collision avoidance techniques have

been widely tested in fields, such as smart cars, military

robots, entertainment, and service robots, in different envir-

onments. These collision avoidance methods are quite spe-

cific to individual scenarios. Various collision avoidance

methods could be broadly classified into two categories,

that is, classical and reactive methods.1 Early scholars

mainly focused on classical methods, such as artificial

potential field (APF),2 cell decomposition,3 roadmap plan-

ner, A* algorithm,4,5 and so on. The major shortcoming of

these classical methods is high computational costs and

failure to respond to the uncertainty present in the environ-

ment, leading to changing control instructions. In recent

years, reactive methods have been accepted as the most

popular tool for unmanned vehicle collision avoidance,

including Q-learning,6 artificial neural network, genetic

algorithm (GA),7 particle swarm optimization (PSO), ant

colony,8 and some other evolutionary optimization algo-

rithms,9 even model predictive control (MPC).10 Especially

for moving obstacles and multiple vehicles, MPC and

sliding-mode control could achieve better robustness

to disturbance. As reactive methods could deal with
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uncertainty present in dynamic environment much better

than classical methods, most of the existing approaches for

ship collision avoidance belong to reactive methods.11

With the rapid development of intelligent ships, the col-

lision avoidance at sea becomes more and more prominent.

Scholars have carried out a lot of research on collision

avoidance12,13 of unmanned surface vehicles (USVs) in

recent years, achieving good collision avoidance perfor-

mance in relatively simple static environments. However,

as the kinematics of merchant ships are so different from

USVs of which the sizes are small, the collision avoidance

law for merchant ships is much more complex obviously.

To gain a proper collision avoidance action for a mer-

chant ship in a specified encounter environment, the obvi-

ous solution is to establish the state-action mapping

relations. For a single ship in dynamic environments, the

state action corresponding to Q-value tables for simple

discrete state-action decision problems, such as optimal

policy search and path planning, have been put forward.

Based on the ship kinematics and Q-learning, Yoo and

Kim14 conducted an automatic ship autopilot control pro-

gram from start points to end points, among static obsta-

cles, taking the currents into consideration. Chen et al.15

treated the discretized ship rudder angle as a Q-learning

action, corresponding to the ship’s position states with grid

map, and verified the effectiveness of the Q-learning for

collision avoidance path planning. Zheng et al.16 estab-

lished a Markov decision process (MDP) discrete state

strategy optimization method based on multiweight

apprentice learning, achieving the scheduling policies,

which perform close to experts’ experience. Heuristic

optimization-based algorithms include GA,17 and PSO,18

which have clear and simple structures, being widely used

in collision avoidance for intelligent unmanned vehicles.

These algorithms usually search the collision-free paths

according to the gradient descent direction of a set objec-

tive function. In addition, some hybrid methods have also

been tested. Shen et al.19 combined deep Q-learning and A*

algorithm to propose an intelligent collision avoidance

method for unmanned vessels, considering the ship’s char-

acteristics and bumper areas. Human experience was intro-

duced into A* grid map to improve the search efficiency,

which obtains good collision avoidance performance in a

complex environment.

Nowadays, machine learning and artificial intelligence

tend to be important tools to solve real-time decision-

making problems. With the development of deep reinforce-

ment learning recently, scholars have also applied these

methods to the controlling of unmanned ships. Based on

deep Q-learning networks (DQN), Cheng and Zhang20 pro-

posed four kinds of objective functions, consisting the

reward function and testing the collision avoidance algo-

rithm of vessels. Abbeel21 put forward the walking control

policies for a quadruped robot using inverse reinforcement

learning (IRL). With the application of deep learning in the

deterministic policy gradient method, the decision-making

actions of reinforcement learning can also be approximated

as continuous actions using some functions. Continuous

action reinforcement learning methods, such as Deep

Deterministic Policy Gradient (DDPG) and Asynchronous

Advantage Actor-Critic (A3C), have been tested in control

and decision-making problems. Xu et al.22 used the DDPG

method to learn collision avoidance behavior in the contin-

uous state and action space, and obtained an effective colli-

sion avoidance strategy. Kim et al.23 also applied the

DDPG algorithm to carry out ship collision avoidance pol-

icies, using the relative motion parameters between the own

ship and the target ships (other ships in the area except the

own ship), and the distance between the own ship and the

target track. The state-space simplifies the complexity of

learning tasks. In the literature,24 a constrained DQN is

proposed to reduce the complexity of the action space by

adding constraints based on some collision avoidance rules

on the sea, which improves the learning rate of DQN. Gen-

erally, the machine learning methods not only have the

advantages of strong learning ability but also have the dis-

advantages of large requirements of training samples. How

to obtain and exploit the training samples with high effi-

ciency and accuracy is the key issue in the application of

machine learning in ship collision avoidance.

The International Rules for Collision Avoidance at Sea

(COLREGs) is the basic rule for ship collision avoidance

handling on the sea. To make decisions in different ship

encounters for maritime safety, Li et al.25 constructed a

dynamic personifying intelligent decision-making structure

for vessel collision avoidance system, considering rules and

human experience. Liu et al.26 established the shortest path

model to realize collision avoidance through path planning

based on COLREGs. However, the practical collision avoid-

ance of merchant ships has the following characteristics:

(1) Large size, large hysteresis and inertia

Since merchant ship has the characteristics of large size,

small redundancy space, and large hysteresis and inertias, it

is difficult to generate proper collision avoidance decision

using conventional algorithms.

(2) Complexity and uncertainty of ship collision

avoidance scenarios

The COLREGs does not specify all encounter scenarios

and may even result in close-quarter situations in several

encounter scenarios.

The above characteristics result in the specialty and

complexity of collision avoidance of merchant ships.

Therefore, the navigation experiences of human experts are

still of great significance for learning a collision avoidance

policy. To make use of human experts’ experience, the

most challenging work is to gain the reward functions of

machine learning algorithm. Abbeel and Ng27 proposed an

appealing framework for apprenticeship learning. The

reward function, while unknown to the apprentice, is
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assumed to be a linear combination of a set of state features,

which can be observed directly. Although it may be diffi-

cult to directly and correctly define the reward function, it

is usually much easier to specify the state features on which

the reward function depends. With this setting in mind,

Abbeel and Ng put forward IRL algorithm to generate a

policy that performs at least as well as a human expert with

respect to the unknown reward function. Essentially, IRL

algorithm is an efficient method for mimicking the expert’s

behavior, which was widely tested in many kinds of robots.

To improve the safety and rationality of the ship colli-

sion avoidance at sea, an IRL algorithm is proposed in this

study to learn an approximate reward function and a colli-

sion avoidance policy that approaches the expert’s demon-

stration operations. Two kinds of expert demonstration

operations (safety and efficiency) are learned by the pro-

posed IRL method in simulation tests, and the results indi-

cate that the proposed IRL method can obtain a good

collision avoidance policy, which has the similar perfor-

mance with human experts.

Ship collision avoidance modeling

Collision avoidance of large merchant ships in open waters

follows the principle of “using rudder instead of car,” that

is, only relying on steering to realize collision avoidance.28

Therefore, the service speed of the ship is adopted in the

entire collision avoidance process in this article and the

rudder angle is the action in collision avoidance.

To ensure the accuracy of the collision avoidance

model, the following four assumptions are made as follows:

(1) The speed of the ship is stable and constant, and the

maneuverability of the ship is also stable; (2) it is consid-

ered that the collision avoidance process can be simplified

to three steering actions before the clearance, that is, two

rudder commands to change the course and one rudder

command for resailing; (3) ship motions in three degrees

of freedom are considered in the collision avoidance pro-

cess, that is, the sway, surge and yaw; and (4) the ship is

located in still water without considering the impact of

large wind and waves.

Ship maneuverability model

In this study, the most widely used KVLCC2 ship model29

is selected as the object, and the ship maneuvering motion

model is established to verify the training effect of machine

learning on expert demonstration operation. Considering

the accuracy and computational complexity, we establish

the following nonlinear Nomoto model for KVLCC2

T _r þ r þ ar3 ¼ Kd ð1Þ

where K and T are the maneuverability indicators of

KVLCC2, a is the nonlinear coefficient, d is the rudder

angle, r and _r are the heading rate and accelerate, respec-

tively. The Nomoto model represents the relationship

between the ship heading and rudder, which is widely

used in ship control. Assuming that h ¼ ½ x y  �T and

v ¼ ½ u v r �T are the position and velocity vectors of the

ship, then, the kinematic model of the ship is

_h ¼ Rð Þv

Rð Þ ¼
sinð Þ cosð Þ 0

�cosð Þ sinð Þ 0

0 0 1

2
664

3
775 ð2Þ

where  is the heading angle. When the ship is sailing at the

service speed, the surge speed u � U and the sway speed

v � 0, where U is the service speed. Then, the final ship

maneuverability model can be obtained based on equations

(1) and (2).

Modeling of ship collision avoidance process

As shown in Figure 1, the geodetic coordinate system is

defined as X � O� Y , and the body-fixed coordinate sys-

tem of the ship is defined as x0 � o0 � y0. The heading

angle  can be defined by the angle between the surge u

and the positive x-axis. The own ship’s fixed coordinate

system x1 � o1 � y1 is established at the predicted collision

point, and the relative position angle q is defined by the

angle between the course direction of the approaching ship

and the positive x1 axis.

Focusing on the mathematical expression of state-

action space, the ship encounter state, collision avoidance

policy, and rudder actions should be expressed in high-

dimensional space for collision avoidance. The state-

action dimension needs to be reduced as much as possible

to avoid the dimensional disaster problem in machine

learning, and the ship collision avoidance process should

be simplified to reduce the difficulty of learning.

Generally, the collision encounters are detected by the

perception system of a ship and the responsibility of colli-

sion avoidance is determined based on COLREGs. If the

target

Figure 1. The coordinate system of ship collision avoidance.
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own ship is the given-way ship and has the responsibility of

collision avoidance, the decision result, that is, the rudder

command will be applied at the point of the last-minute

action to avoid collision and stabilize the course. The

detailed process of a typical collision avoidance is shown

in Figure 2.

Firstly, the first steering time is defined by the moment

that the own ship needs to steer to increase the heading

velocity and change the course for avoidance; secondly,

the second steering time is defined by the moment that

another rudder angle is applied in the opposite direction

to rapidly reduce the heading velocity if there is no colli-

sion risk; when the heading velocity of the ship is reduced

to a certain extent, a middle rudder is adopted to keep the

course, that is, the third steering time; finally, the own ship

returns back to the original path by trajectory tracking when

the two ships have passed the closest positions, which have

the distance of closest point of approach (DCPA).

Remark: DCPA is the minimum distance between the

closet points of the own ship and the approaching ship in

two-ship encounters, which is an important indicator of

collision risk.

In summary, the actions to be decided include the first

steering time, the first rudder angle, the second steering

time, and the second rudder angle. Besides, the third steer-

ing time is automatically decided when the heading velo-

city is reduced to a certain setting threshold.

Ship collision avoidance based on inverse
reinforcement learning

Markov decision process of ship collision avoidance

A multistage MDP is shown in Figure 3 and can be

described by tuples fS;A;P;Rg, where S is the state, A is

the action, P is the state-transition probability, and R is the

reward for the state action. The collision avoidance process

can be described by a typical MDP.

Generally, the positions, speeds, and courses of the own

ship and other ships can be used for the definition of the

state S. In aspect of the positions and courses, it is consid-

ered that the relative position and course of each target ship

is limited. The circumference of the own ship is divided

into seven sectors by 22.5�, 85�, 95�, 202.5�, 265�, 275�,
and 337.5� referring to the dividing method of collision

avoidance responsibility in COLREGs, as shown in

Figure 4(a). At the decision-making moment, the relative

position of the target ship is located in one of the seven

sectors based on the relative position angle q and coded as

state s1. In aspect of the speed state, the speed ratios of own

ship and target ships are regarded as another state s2, which

is shown in Figure 4(b). Then, the state S in MDP consists

of s1 and s2.

A ¼ ½a1; a2; :::; an� is the action space of the collision

avoidance, each action aj represents a possible action

option for the current state S, which includes the rudder

angle and moment. To reduce the complexity of calcula-

tion, the rudder angle value is discretized in this study.

After taking an action A, the ship gets a reward

R : S ! R, where R is a mapping function from state S to

a real number in R. Assuming that
Y

denotes a set of rules

for any possible selection of the action based on the state,

and a policy p 2
Y

denotes a sequence of rules from the

state to the action. Then, the goal of solving the MDP

problem is to select a policy to maximize the value func-

tion, that is, the discounted sum rewards under this policy p
at the decision-making moment

VpðsÞ¼E
X1
t¼0

gtRðstÞjs0 ¼ s; at*pðstÞ; stþ1*Pðst; atÞ
" #

ð3Þ

where VpðsÞ is the state value function under the policy p,

which represents the discounted sum of R, g is the discount

factor to reduce the impact of future state on the current

state, E½�� represents the expectation, and Pðst; atÞ represent

the state-transition equations obtained by the established

ship maneuverability model. Therefore, the optimization

problem in MDP is

p� ¼ arg max
p2P

VpðsÞ ð4Þ
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Figure 2. The collision avoidance process.

Figure 3. Markov decision process.
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where p� is the optimal policy, which satisfies

Vp� ðsÞ � VpðsÞjp 2 P; s 2 S. Bellman30 has proved the

existence of the maximum value function Vp� ðsÞ, and it

does not change with time in a certain environment.

Construction of the state features

The state features are the indicators of MDP process to

construct the final reward, which are very important for

reinforcement learning. In the collision avoidance of large

ships at sea, the most significant indicators to characterize

the process of collision avoidance include two major

aspects: (1) DCPA, which is the distance to closest points

of approach between two ships and (2) the maximum head-

ing changes of two ships. The former indicator represents

the safety level of collision avoidance, while the latter

indicator represents the efficiency level.

Similarly, to reduce the complexity of the machine

learning, the finite-state features are set, as given in

Table 1. Each state feature represents the proportion of

collision avoidance samples in a certain interval to large

numbers of stochastic collision avoidance samples,

which were conducted by simulation programs, thus, all

of the 27 state features of ship collision avoidance pro-

cess are defined.

Stochastic policy optimization based on cross entropy

The reinforcement learning for MDP is an optimum

policy searching process. The idea of introducing

noise cross-entropy (CE) algorithm31 is to randomize

a deterministic optimization problem and solve it

using rare event simulation and optimization tech-

niques. The main steps of CE are as follows: (1) Gen-

erating random data samples and (2) generating new

samples with a certain distribution and optimizing the

sample distribution.

Without losing generality, the reward function R of rein-

forcement learning can be represented by a linear combi-

nation function

RðsÞ ¼ RW ðsÞ ¼
Xn

k¼1

!k�kðsÞ ¼ W T � f ð5Þ

where W ¼ ð!1; !2; :::; !nÞ is the weight matrix for the

state s and f is the state feature.

For a random weight matrix W ¼ ð!1; !2; :::; !nÞ, a set

of random policies
Y
¼ ½p1;p2; . . . ;pn � is generated by

CE algorithm. Then, the state features f are obtained by

executing the action ai mapped by each policy pi under the

current state si. After that, the immediate reward can be

calculated by equation (5), and the value function can be

updated by equation (3).

In each iteration of CE, the policy
Y

t
is obtained using

the Gauss distribution in high-dimensional space, and the

mean and variance of
Y

t
are as follows

�tþ1 ¼
1

b

Xb
i¼1

pi
ðtÞ

s2
tþ1 ¼

1

b

Xb
i¼1

ðpi
ðtÞ � �tþ1ÞT ðpi

ðtÞ � �tþ1Þ
ð6Þ

where b is the sample selection ratio of the policy, that is,

only b policies with the largest value function are taken in

(a) (b)

Figure 4. State definition of MDP: (a) state definition of relative position and (b) state definition of RSO. MDP: Markov decision
process; RSO: relative speed ratio.

Table 1. State features of collision avoidance.

State
features Description

’1–’15 The sample proportions of DCPA range from 0–100 m,
100–200 m,� � �, 1400–1500 m, respectively.

’16–’21 The sample proportions of heading change of the own
ship range from 0–10�, 10–20�,� � �, 50–60�,
respectively.

’22–’27 The sample proportions of heading change of the target
ship range from 0–10�, 10–20�,� � �, 50–60�,
respectively.
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each iteration and the sample mean and variance of the b
policies are calculated as the mean and variance of the

random policies for the next iteration. The CE algorithm

converges fast, but it is easy to fall into suboptimal solu-

tion. To deal with this problem, Szita and Lörincz32 intro-

duce Z noise component in the variance and achieve better

global optimization results

s2
tþ1 ¼

Xb
i¼1

ðpi
ðtÞ � �tþ1ÞT ðpi

ðtÞ � �tþ1Þ

b
þ Ztþ1 ð7Þ

where Ztþ1 ¼ C � ðt þ 1Þ þ d and C; d are the constants.

The calculation steps of the noise CE algorithm can be

denoted in Algorithm 1.

Expert policy approximation based on projection
method

As a search process of reinforcement learning, the noise CE

method needs to search the optimal policy on the premise

of defining the weight matrix of the reward function. The

projection method27,33 is used in this study to obtain the

approximated reward of expert policy using the weight

matrix W as the medium.

Firstly, the state feature expectations of expert demon-

stration samples are calculated

�E � �̂¼
1

k

Xk

i¼1

X1
l¼0
glf ðslÞ ð8Þ

where k is the expert demonstration sample size and

f ðslÞ is the state feature of samples s at time l. Then,

the weight vector W ð0Þ is initialized randomly, and an

initial strategy �ð0Þ is generated randomly. Based on

W ð1Þ ¼ �E � �ð0Þ��ð0Þ ¼ �ð0Þ, the first generation weight

vector W ð1Þ and the state feature mean ��ð0Þ are obtained.

After that, the weight matrix W can be updated by the

following equation

W ðiÞ ¼ �E � ��ði�2Þ

�
�ði�1Þ � ��ði�2Þ� �T

�E � ��ði�2Þ� �
�ði�1Þ � ��ði�2Þ� �T

�ði�1Þ � ��ði�2Þ� � �ði�1Þ � ��ði�2Þ
� �

ð9Þ

Moreover, the flowchart of projection algorithm is

shown in Figure 5.

The state feature expectation corresponding to the pol-

icy p� can become close to the state feature expectation of

the expert demonstration sample based on the projection

method.

In summary, the reward function is obtained by

projection-based IRL, and the CE-based RL method is used

to search the optimal policy. The reward function is

updated by the difference between the expectations of state

features of the current policy and the expert demonstration

until the convergence condition is satisfied. The final flow-

chart of the policy search is shown in Figure 6.

Simulation experiments

Acquisition of the expert demonstration samples

To conduct the IRL simulation experiments, large amounts

of expert demonstration samples are acquired. A simulation

software for ship collision avoidance operation based on

the established ship maneuverability model is developed,

as shown in Figure 7.

The software generates different encounter scenarios

and judges the responsibility of collision avoidance accord-

ing to the COLREGs. If the own ship has the responsibility

of avoidance, the experts need to drag the horizontal slider

to control the rudder angle of own ship to change the

course. The software will automatically add the simulation

results into training samples.

Validation of the proposed projection-based inverse
reinforcement learning method

To reduce the randomness, fixed encounter scenarios are

adopted. In range of 0–360�, as shown in Figure 4(a), the

interval of the relative position angle of the target ship is

2.88�. The other ship’s speeds are set as 4, 6, 8, 12, 14, 18,

25, and 30 knots, respectively. The own ship’s speed is set

as 10 knots, that is, the service speed. With this kind of

method, 1000 encounter scenarios are designed and used in

the simulation software to obtain demonstrations by

experts, and these typical encounter scenarios were called

base scenarios. In fact, on the one hand, the movements of

ships are so complex that it is impossible to establish all

encounter scenarios. In our research, testing set scenarios

was classified according to the encounter situation judg-

ment methods in COLREGs. On the other hand, as the

directions and speeds of target ships are the major concerns

of captains, the states of MDP in our research only consist

Algorithm 1. The noise CE algorithm

6 International Journal of Advanced Robotic Systems



of s1; s2, and the training set data were conducted by soft-

ware, removing lots of random events. As a result, the state

features could be determined by initial states and policies.

In addition, the experts are divided into two categories,

that is, the safety experts and efficiency experts. The safety

experts give priority to the safety in collision avoidance,

Figure 6. Flowchart of the policy searching.

Figure 5. Flowchart of projection algorithm.
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who usually use a larger rudder angle to achieve a larger

DCPA and heading change, so as to keep the two ships as

far away as possible to ensure the safety. While the effi-

ciency experts give priority to the efficiency, who usually

use a smaller rudder angle to shorten the ship’s voyage

under the premise of the safety between two ships, so as

to improve the economy.

Demonstrations of these two kinds of experts are

obtained by four sailors and experts using the simulation

software. The discount factor is set as g ¼ 0:99. The

sample selection ratio of the CE algorithm is set as

b¼10% and the noise factor is set as Zt ¼ 0:2 � t þ 1.

The obtained 1000 samples of different encounter sce-

narios are used for learning of each policy p in the IRL

method. The software runs on a computer with I7-6700

(four-core, eight-thread) CPU and the features in IRL

method converge in about 6000 s. The feature deviations

between the demonstrations and the learned policy are

shown in Figure 8.

It can be seen from Figure 8 that the feature deviations

can converge to a good level within about eight iterations.

Moreover, the comparison of the state features between the

convergent policy and the expert demonstrations is shown

in Figures 9 and 10.
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Figure 8. The feature deviation curve.

Figure 7. Interface of the simulation software for ship collision avoidance.
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In Figure 9, the maximum error between the state fea-

tures of the safety expert demonstrations (the white bar)

and those of the policy trained by IRL (the gray bar) is less

than 5%, which indicates that the proposed IRL method can

obtain a collision avoidance policy similar to the safety

expert. In the aspect of the DCPA, the expectation of the

sixth feature represents the sample proportion of DCPA

between 500 m and 600 m, which is the largest expectation

with respect to DCPA and shows that the collision avoid-

ance samples given by the safety experts are mostly con-

centrated in this area. The sample distribution of DCPA

between 600 m and 1200 m is more uniform than that

between other ranges, which indicates that the searched

policies achieve a larger distance between two ships during

more collision avoidances, corresponding to larger DCPAs.

In the aspect of the heading change, the largest expec-

tations are the 16th, 22nd, 21st, and 27th feature expecta-

tions. The 16th and 22nd feature expectations are the

sample proportions of that the own ship and target ships

keeping course, respectively, corresponding to the keeping

course scenarios, in which the target ship has avoidance

responsibility. The 21st and 27th feature expectations rep-

resent the sample proportions of that the maximum heading

change of the own ship and target ships varies between 40�

and 50�, respectively. It can be seen that the safety experts

prefer to control the heading change between 40� and 50�.
In Figure 10, the maximum error between the state fea-

tures of the efficiency expert demonstrations (the white

bar) and those of the policy trained by IRL (the gray bar)

is also less than 5%. In the aspect of the DCPA, the fifth

feature expectation is the largest expectation with respect to

DCPA, which indicates that the collision avoidance sam-

ples given by efficiency experts are more likely to be com-

pleted with a medium DCPA (about four to five times the

length of the ship). In the aspect of the heading change, the

largest expectations are the 20th and 26th feature expecta-

tions except for the 16th and 22nd features for keeping the

course, which indicates that more samples have the heading

change between 30� and 40�, indicating that efficiency

experts prefer to choose less DCPAs and heading changes

to achieve higher efficiency level.

Simulation verification of random collision avoidance

To show the decision-making performance of the proposed

IRL method in different collision avoidance scenarios more

intuitively, 1000 base scenarios, including head-on, cross-

ing, and overtaking encounters, are selected as typical ship

encounter scenarios. The learned policies through IRL are

used to control ships during collision avoidance, and the

results are compared with the demonstrations of safety

experts and efficiency experts in the same encounter scene,

as shown in Figures 11 to 16. In Figure 11(a), 12(a), 13(a),

14(a), 15(a), and 16(a), the red curves are the expert

demonstrations and the black curves are the ship trajec-

tories controlled by the learned polices. It can be seen that

the simulation results of learned polices are very close to

those of the safety experts and efficiency experts. From

Figure 11(b), 12(b), 13(b), 14(b), 15(b), and 16(b), it can

be seen that the rudder angle of the IRL policy is also

similar to that of the expert demonstrations, although the

steering time is slightly different.

In addition, the DCPA and maximum heading angle

changes of expert demonstrations and learned policies are

plotted as a box diagram, as shown in Figure 17. It can be

seen that the DCPA values of the safety experts and corre-

sponding safety IRL policy are about 480 m, which are

larger than those of the efficiency experts and correspond-

ing efficiency IRL policy (about 400 m), indicating that the

safety experts and safety IRL policy achieve more safe

avoidance results. On the contrary, the efficiency experts

and efficiency IRL policy adopt smaller rudder change

values to realize collision avoidance with smaller heading

angle changes, which means that the own ship can return to

the original route faster after collision avoidance is com-

pleted. Both own ship and target ship were controlled by

the same policy in the simulation software. For example,

the target ship in safety experts’ demonstrations is

Figure 11. Simulation results in head-on encounter compared with safety experts. (a) Trajectories of two ships in head-on encounter
compared with safety experts. (b) Headings and rudders of two ships in head-on encounter compared with safety experts.
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controlled by safety IRL policy. For the same policy, the

statistical average heading changes of other ships are less

than the own ship since the speeds of other ships in most

samples are faster than that of own ship and the experts tend

to steer with smaller rudder angles in advance for high-

speed ships.

Simulation comparisons of the proposed inverse
reinforcement learning method and normal
reinforcement learning method

To compare the performance of IRL and concise reinforce-

ment learning applied in collision avoidance scenarios,

Figure 12. Simulation results in crossing encounter compared with safety experts. (a) Trajectories of two ships in crossing encounter
compared with safety experts. (b) Headings and rudders of two ships in crossing encounter compared with safety experts.

Figure 13. Simulation results in overtaking encounter compared with safety experts. (a) Trajectories of two ships in overtaking
encounter compared with safety experts. (b) Headings and rudders of two ships in overtaking encounter compared with safety experts.

Figure 14. Simulation results in head-on encounter compared with efficiency experts. (a) Trajectories of two ships in head-on encounter
compared with efficiency experts. (b) Headings and rudders of two ships in head-on encounter compared with efficiency experts.

Zheng et al. 11



Figure 15. Simulation results in crossing encounter compared with efficiency experts. (a) Trajectories of two ships in crossing
encounter compared with efficiency experts. (b) Headings and rudders of two ships in crossing encounter compared with efficiency
experts.

Figure 16. Simulation results in overtaking encounter compared with efficiency experts. (a) Trajectories of two ships in overtaking
encounter compared with efficiency experts. (b) Headings and rudders of two ships in overtaking encounter compared with efficiency
experts.
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concise reinforcement learning was also tested. It is diffi-

cult to define the reward functions in collision avoidance.

As the state features of MDP is a 27-dimension vector, a

linear combination reward function based on state features

could be defined as follows

RðsÞ ¼ R½� ðsÞ� ¼
Xn

k¼1

!k�kðsÞ ¼ W T � � ð10Þ

where W¼ ð!1;!2 ; . . . ;!nÞ is the weight vector and f is

the state feature of test samples conducted by reinforce-

ment learning. As the weight W could influence the reward

function value directly, it could be defined according to the

safety requirements for navigation. The feature expecta-

tions of reinforcement learning in the specific collision

avoidance scenarios are shown in Figure 18.

How to conduct the collision avoidance according to

COLREGs is the major challenge in our research for rein-

forcement learning. For example, in some encounter sce-

narios, ships, on one hand, should obey COLREGs, turning

to special direction instead of the other direction to avoid

potential collision. On the other hand, the responsibility of

collision avoidance is so complex that in different encoun-

ter scenarios, own ship need not avoid collisions. As a

result, it is difficult for reinforcement learning to generate

proper policies. Therefore, we develop an expert system,

which could judge whether the avoidance action is right

based on COLREGs. If the avoidance action does not obey

COLREGs, the expert system could generate determine

factor as the hard constraints. In Figure 18, the state fea-

tures of reinforcement learning are similar with the state

features of efficiency expert, showing that the weight vec-

tor of reward function prefers efficiency more than safety

on the basis of satisfying with the safety requirements of

COLREGs. Similarly, other optimization algorithms, such

as A*, APF, and GA, also need hard constraints based on

the expert system of COLREGs.

On the contrary, it is relatively easy for human to control

a ship to avoid collision in most encounter scenarios, espe-

cially in some complex scenarios. Human experts’ prior

knowledge about collision avoidance is so valuable that it

could improve the validity and practicability of algorithm.

IRL is more suitable to collect collision avoidance policies.

In summary, the IRL algorithm proposed in this article

can easily obtain the decision-making policies of human

experts, so that the algorithm has a similar collision avoid-

ance performance with human drivers.

Conclusions

An IRL method through CE-based policy optimization and

projection-based policy approximation is proposed in this

study to realize ship collision avoidance. The main works

of this article are concluded as follows:

1. The ship maneuverability model is established, and

the expert demonstration operation software is

developed to obtain collision avoidance samples

through the expert operation.

2. The distributions of DCPA and maximum heading

angle change are taken as the state features, and the

collision avoidance policy of expert demonstrations

is obtained by the proposed IRL method. The

learned policy has similar performance with the

expert demonstrations, which indicates that the pro-

posed IRL method is suitable for collision avoid-

ance policy training of merchant ships.

However, the practicability of the IRL method also

depends on the reasonableness of expert demonstrations.

Therefore, it is necessary to follow the captain’s driving

habits of real merchant ships and collect real operation data

extensively to expand the samples for IRL so as to find a

reasonable trade-off between the safety and efficiency for

autonomous collision avoidance. Subsequently, further

research on the proposed IRL method will focus on data

collection of real ship navigation data collection.
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