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Abstract 

Fragment molecular orbital (FMO) calculation is a useful ab initio method for analyzing 
protein–ligand interactions in the current structure-based drug design. When multiple ligands 
exist for one receptor, a post-FMO calculation tool is required because of large numbers of 
interaction energy decomposition terms calculated using this method. In this study, a method 
that combines self-organizing maps (SOM) and hierarchical clustering analysis (HCA) was 
proposed to analyze the results of the FMO energy components. This method could effectively 
compress the high-dimensional energy terms and is expected to be useful to analyze the 
interaction between protein and ligands. A case study of antitype 2 diabetes mellitus target 
DPP-IV and its inhibitors was analyzed to verify the feasibility of the proposed method. After 
performing dimensional compression using SOM and further grouping using HCA, we 
obtained superclasses of the inhibitors based on the dispersion energy (DI), which showed 
consistency with structural information, indicating that further analyses of detailed energies 
per superclass can be an effective approach for obtaining important ligand–protein 
interactions. 
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1. Introduction 

The fragment molecular orbital (FMO) method [1,2] was developed for quantum chemical 
calculations of macromolecular systems in realistic environments and has recently been used in 
various fields. This method significantly reduces the computational cost of quantum chemical 
calculations by dividing the macromolecular systems into small fragments; appropriate fragmentation 
can yield minimal loss in accuracy compared with the full quantum chemical calculation. Because 
this approach is a molecular orbital calculation-based method, it can explicitly capture effects, such 
as polarization and charge–transfer interactions, which cannot be accurately evaluated using classical 
mechanical methods based on empirical parameters. 

In FMO calculations, the molecular orbitals of monomer and dimer fragments and the 
interfragment interaction energy (IFIE) are calculated [3]. The energy can be further decomposed 
into electrostatic (ES), exchange repulsion (EX), charge transfer (CT), dispersion (DI), polarization 
(PL) interactions, and higher-order term using the pair interaction energy decomposition analysis 
(PIEDA) method [4]. These estimated energies are crucial in the structure-based drug design. In the 
FMO method, chemical bonds between the α- and carbonyl carbons are split and the intermolecular 
interaction energies are calculated using split fragments. In protein–ligand complexes, the total value 
of IFIE and its components between the ligand and protein fragments can be interpreted as the ligand–
protein interaction [5]. So far, the sum of IFIE shows good correlations with the experimental indices 
of binding energies in several studies [6,7]. More recently, FMO calculation results have been 
collected in a public database; this database is being linked with Protein Data Bank Japan [8] and 
these results can be used for large-scale investigations [9]. 

However, the analyses of IFIE and decomposition results using FMO are not simple. For instance, 
because of many fragment pairs, the obtained values are in a high-dimensional space. If large 
numbers of ligands are computed to obtain IFIE between the ligands and one target protein, numerous 
results will be obtained and the analysis of large numbers of interaction energies will be challenging. 
Hence, a semiautomatic method for classifying ligands and extracting vital interactions of receptor–
ligand complexes is required. Until now, various machine learning methods, such as hierarchical 
cluster analysis (HCA) [10], partial least squares (PLS) [11], and singular value decomposition 
analysis [12], have been used to analyze high-dimensional IFIE results. More recently, the dimension 
reduction of IFIE results using self-organizing map (SOM) and multidimensional scaling (MDS) has 
been reported for analyzing complexes of an estrogen receptor and its inhibitors [13]. These studies 
achieved good results; however, they used total IFIE values and not energy components obtained 
using PIEDA. Hence, we attempted to use energy components and machine learning methods for 
obtaining accurate results. 

In this study, a dimension reduction method combining SOM and HCA was proposed for post-
FMO calculation analysis, particularly for the energy components calculated using PIDEA. This 
method is expected to create appropriate ligand groups and facilitate the analysis of protein–ligand 
interactions. Moreover, to prove the usefulness of our method, the proposed method was employed 
to study the interaction between well-investigated diabetes target dipeptidyl peptidase-IV (DPP-IV) 
and its inhibitors. 

2. Concepts and Explanations of the Methodology 

2.1 Overall 
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The aim of creating a new method to effectively analyze post-FMO calculation results, 
particularly the energy decompositions of PIEDA, is the efficient usefulness of FMO and PIEDA in 
drug designs. PIEDA provides vital information about chemical interactions that may be crucial for 
inhibitor optimization, de novo drug design, and protein–ligand interaction investigation. 

The decomposed components, particularly DIs, which majorly refer to the magnitude and nature 
of π−π stacking and CH–π interactions, are reflected by the ligand–protein interacting shapes. 
Therefore, ligands can be classified based on the DI matrices calculated using ligand–protein 
complexes. Further, the intensive analyses of these derived classes may have biochemical meanings. 

In the proposal method, precalculated ligand–protein IFIE obtained using the FMO method and 
energy components from decompositions of PIEDA must be prepared. Based on energy component 
matrices, e.g., IFIE-DIs, ligands are clustered using SOM and HCA. The aggregated profile of each 
SOM grid indicates the importance of specific IFIE-DIs for clustering (Figure 1). 

 
 

 

Figure 1. An illustration of the proposed method 

2.2 PIEDA 

In PIEDA, IFIE is divided into energy components based on the molecular orbitals that can easily 
acquire a physical meaning. The energy components are divided into ES, EX, CT, PL, DI, and higher-
order terms. However, PL and higher-order terms are not considerably large and rarely develop into 
vital interactions. Therefore, these terms are grouped with CT as CT + mix; however, CT + mix is 
dominated by CT values. Based on the energy components, we can interpret the existing interaction. 
For instance, DI usually refers to the π−π stacking or CH–π interaction, ES refers to the electrostatic 
interaction, and ES + (CT + mix) refers to hydrogen bonding. However, because PIEDA components 
do not exactly correspond to these chemical interactions, we cannot determine the interaction type 
using only PIEDA components. Therefore, when investigating the interaction modes, a 
comprehensive determination based on the molecular structure is required. 

In the proposed method, the protein–ligand complexes must be precalculated using the FMO 
method and the IFIE values should be divided using PIEDA. Because the weak interactions between 
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the ligand and protein fragments can be considered less crucial, a cutoff value of ±3 kcal/mol was set 
to exclude them. For ease of interpretation, only IFIE-DIs were adopted for SOM. If missing IFIE-
DIs exist owing to mutation or missing residues in the protein, these values can be imputed using the 
mean IFIE-DIs of other complexes. However, if the number of missing values is more than a quarter 
of the sample size, the imputation can be incorrect. Therefore, in such a case, IFIE-DIs with several 
missing values should be excluded. 

 

2.3 SOM 

SOM is a single-layer neural network with nodes along the n-dimensional grid, usually a two-
dimensional grid, and can be considered an unsupervised dimensional compression method. This 
method projects high-dimensional distributions of input data to lower dimensions while maintaining 
the similarity relation. The resulting feature map represents a good approximation of the input space, 
and the placement of nodes is topologically related to the input space. The map density corresponds 
to the input space density, i.e., if a region of the input space has more data points, it is represented by 
more nodes. The aggregated profile (property) of SOM grids allows us to select vital features from 
the input space. 

SOM used in the proposed method was principal component initialized. The initial grids were 
arranged in a rectangular geometry, with the axes on the first and second principal components of 
PCA. The aspect ratio of the grid numbers was set close to the ratio of the standard deviations of the 
first and second principal components. Batch training was performed 1000 times (epochs) using the 
Kohonen’s algorithm. The α value was set to 0.05–0.005, and the Euclidean distance function was 
defined as the distance measure between data. 

2.4 HCA 

HCA is the most basic method for clustering a set of dissimilarities between objects. In the 
algorithm, objects are initially defined as clusters and then most similar clusters are continuously 
combined using agglomeration methods until one cluster remains. The final results of this method 
are shown as a dendrogram (tree diagram), and the tree should be cut for classification. 

Because SOM does not exhibit a hierarchical structure, SOM results (group average of grids) 
were used as inputs for HCA. By cutting the dendrogram at 10 kcal/mol, supper classes of ligands 
can be obtained. 

2.5 Packages and implementation 

The analysis protocol was implemented under R version 4.0.1. The primary packages used are 
SOM (kohonen version 3.0.10), PCA (stats version 4.0.1), HCA (stats version 4.0.1), and graphics 
(ggplot2 version 3.3.1 and viridis version 1.1.1). 

3. Case Study: Analysis of DPP-IV and its Inhibitors 

3.1 Overall 

To achieve a concise view of the proposed method, we applied it to DPP-IV and its inhibitors, 
which are prominent in the drug development for type 2 diabetes mellitus (T2DM) [14]. As T2DM 
is a prevalent lifestyle-related disease, drug discovery campaigns have been conducted. Thus, 
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numerous cocrystallographical structures of the complexes of DPP-IV and candidate inhibitors, along 
with the inhibitory activities, have been reported, thus rendering it suitable for a study case. Here, a 
flow explaining the use of the proposed method in the post-FMO calculation analysis was presented. 
Moreover, whether critical interactions can be summarized along with the clustering of ligand 
structures was confirmed. 

3.2 Structures of complexes 

In this case study, 34 X-ray cocrystallographic data of the complexes of DPP-IV and its inhibitors 
were collected (SI A. Table S1). DPP-VI is a serine exopeptidase with a catalytic ligand binding site, 
including pockets, namely, S2ʹ, S1ʹ, S1, S2, and S2 extend. DPP-IV inhibitors are not a homogenous 
class of molecules and can be classified into 1–3 based on the binding pockets (Figure 2). 

 

Figure 2. Ligand binding site of DPP-IV 
Based on the X-ray crystal structure of DPP-IV in complex with its peptide substrate (PDB 
ID:2nu8). 

3.3 Flow of analyses 

Figure 3 shows the flow of the proposed method, including preprocessing. 
First, the collected cocrystallographical data of the complexes of DPP-IV and its inhibitors were 

preprocessed using MOE 2019 [15]. Only one chain remained if multiple chains exist. Water atoms 
exhibiting a higher B-factor than the average of receptor heavy atoms were removed. Hydrogen atoms 
were added using the Protonate 3D module, and the hydrogen structure was optimized using the 
AMBER10:EHT force-field calculations, where the other atoms were fixed. 

Second, FMO calculations were performed at the FMO2-MP2/6-31G* level using ABINIT-MP 
open (version. 1 Rev. 20) [16]. Fragmentation was performed as a single-residue split using automatic 
fragmentation implemented in ABINIT-MP, in which the ligand was treated as a single fragment. For 
computational accuracy, the target must be divided into fragments at the bonds between α- and 
carbonyl carbons; hence, the fragment unit of the carbon and oxygen atoms of the ester bond is shifted 
by one residue from the residue name, i.e., the amide group at the N-atom side of α-carbon is assigned 
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to the same fragment. Additionally, the PIEDA option was selected to calculate the interacting 
components of IFIE. 

Then, the proposed method was used, and SOM was applied to the IFIE-DI matrix. Although the 
proposed method is based on IFIE-DI, we also confirmed the results using other energy terms (Figure 
S1–S3). In this step, the SOM grids were generated and optimized using the hyperparameters 
mentioned earlier (section 2.3), and the profile of the SOM grids can be obtained. From these profiles, 
we can determine the vital interactions in clustering ligands. This visualization was easy to confirm. 

Finally, the SOM grids were provided as inputs to HCA. The final dendrogram was established, 
and by cutting the dendrogram at 10 kcal/mol, superclasses were created.  

 

Figure 3. Flowchart of the analyses of DPP-VI and its inhibitors using the proposed method 

3.4 Results of analyses 

Figure 4 shows the main results of the case study. The FMO calculation and PIEDA 
decomposition were verified before conducting the analysis using the proposed method. In all the 
complexes, the convergence of monomers and dimers was obtained, suggesting correct calculations. 
No IFIE-EX greater than 20 kcal/mol was observed, indicating no strong EX interaction between the 
inhibitor and protein fragment. 

Figure 4a shows the final projections of IFIE-DIs on the SOM grids. When the classes of 
inhibitors were mapped on the SOM grids, clustering was correctly generated. Although SOM is an 
unsupervised learning, using IFIE-DIs as inputs can lead to clustering with biochemical meanings. 
In other words, these SOM clusters of IFIE-DIs can separate inhibitors into different special classes, 
which is particularly important for comparing multiple inhibitors in the drug design process. When 
we generated the SOM grids of other PIEDA components, the clustering did not match the inhibitor 
classes (SI B. Figure S1–S3). As mentioned above (section 2.2), DI is a value obtained from the 
perturbation term, referring to the π−π stacking or CH–π interaction, and is an attractive force 
commonly found in the inhibitor–protein interaction. While other terms depend on the electric 
charges of the inhibitors, these interaction magnitudes can be extreme and unsuitable when the 
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inhibitors are highly charged. 
 

 

Figure 4. Results of analyses of DPP-IV inhibitors 
a) SOM grids. The label, label colors, and distance represent the PDB ID, DPP-IV inhibitor class 
(red: class 1, green: class 2, blue: class 3), and average distance from the adjacent SOM grid point, 
respectively. b) Heatmap of SOM grid profile for crucial residues. c) Dendrogram created using 
HCA. d) Superclass map in SOM grids. 

 
Furthermore, the SOM grid profile was obtained (Figure 4b). This visualization provided 

information on vital IFIE-DIs for clustering. For instance, strong DIs were detected between the 
inhibitor and SER630, TYR631, TYR662, GLU206, GLU205, and TYR666, which are fragments in 
the S1 and S2 pockets. Compared with other classes, large absolute values of IFIE-DIs between the 
inhibitor and fragment TYR547 were observed on the SOM grids of class 2 inhibitors and those 
between the inhibitor and fragment PHE357 on the SOM grids of class 3 inhibitors were confirmed. 
Conversely, in the grid profile of class 1, IFIE-DIs between the inhibitor and fragments TYR547 and 
PHE357 showed small absolutes. Slight differences can also be observed. For instance, a slightly 
stronger DI interaction between ligands and TRP629 was found on the SOM grids of class 3, while 
a slightly weaker DI interaction was observed between ligands and ARG358 on the SOM grids of 
class 2. These numerical and visualized results can be useful to demonstrate vital protein–inhibitor 
interactions. 

Next, we can confirm the superclasses created by applying HCA to the generated SOM grid. HCA 
constructed a dendrogram, and by cutting it at 10 kcal/mol, five superclasses were obtained (Figure 
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4c). By mapping these superclasses to the SOM girds (Figure 4d) and comparing the real ligand 
classes, superclass 1 consists of class 2 inhibitors, superclass 2 comprises class 1 and 2 inhibitors, 
and superclasses 3–5 comprise class 3 inhibitors. Based on these results obtained using the proposed 
method, important fragment combinations for superclasses can be extracted (Table 1, SI C.). 

Table 1. Important fragments characterizing the superclasses of DPP-IV inhibitors 
Superclass TYR547 (S2ʹ) PHE357 (S2 extend) TRP629 (S2ʹ) SER630 (S2ʹ) 

1 0 + 0 0 
2 0 0 0 0 
3 + 0 0 0 
4 + 0 + + 
5 + 0 0 + 

*0 denotes a no/weak interaction; + denotes a strong interaction. 

Table 2. Interactions between DPP-IV inhibitors and proteins on a cluster-by-cluster basis 
obtained using PIEDA and molecular structure confirmation 

Pocket Fragments 
Superclass 

1 2 3 4 5 
S1 TYR662 p p p p P 

 TYR666 p p p p P 
S1ʹ SER630 - h - - - 
S2 GLU205 e e e e e 

 GLU206 e e e e e 
 ARG125 e e e e e 

S2ʹ TYR547 - - p p p 
 TRP629 - - - p - 

S2 extend PHE357 p - - - - 
*e: electrostatic interaction; p: π-orbital interaction; h: hydrogen-bonding interaction 
 

Further analyses post the proposed method can be conducted in a bird’s eye view of all the 
interactions between the protein and inhibitors. As mentioned here, inhibitors can be automatically 
clustered into superclasses, and the relevant vital fragments can be extracted using the proposed 
method (SOM + HCA). Further analyses of IFIE-DIs as well as other PIEDA components using these 
important fragments can be conducted. For instance, when we verified the PIEDA components, the 
characters of the protein–inhibitor interactions can be further investigated (Table 2). 

4. Discussion 

FMO calculations and PIEDA decompositions have recently been highlighted as tools for rational 
drug designs. All the calculations are based on the ab initio methodology, providing a superior 
approach compared with traditional force-field-based calculations. However, based on the algorithm 
on which several fragment pairs are generated and calculated, the analysis of the results requires a 
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considerable effort, particularly when a series of ligands for one specific receptor are under 
investigation. Therefore, there is an unmet need to develop a simple method that can address multiple 
inhibitors. 

In this study, we proposed a method that combines SOM and HCA to perform post-FMO/PIEDA 
calculation analysis. We assumed that the DI terms were more strongly associated with the shape of 
interaction interfaces compared with the other PIEDA components and clustered inhibitors based on 
IFIE-DIs. SOM generated grids fitting the input IFIEs, and the grid profiles provided information on 
vital fragments for clustering. For establishing additional superclasses, we applied HCA to the SOM 
grids. 

Herein, a case study of DPP-IV and its inhibitors was presented to explain the feasibility of the 
proposed method and its results. The proposed method could correctly cluster the inhibitors and 
extract vital interactions. We also examined the possibility of using other PIEDA components. Based 
on our assumption, we could not automatically generate clusters corresponding to the real inhibitor 
classes when using other energy terms. Based on the results obtained using our method, further 
analyses can extract all types of critical interactions using vital fragments in protein–inhibitor 
interactions. 

In drug designs, comparisons of a series of candidate compounds are critical. Lead optimizations 
are frequently conducted. However, this step requires considerable time and effort. The proposed 
method can assist in the analyses of molecular structures. More recently, the FMO database has been 
published for free use. Henceforth, with the accumulation of FMO calculation results, the studies on 
the protein–inhibitor interaction using ab initio method can be more widely conducted. The proposed 
method can be used in such studies. 

In conclusion, we proposed a method for post-FMO/PIEDA calculation analysis. We believe this 
method can be widely used in future drug designs. 
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