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ABSTRACT
Phytohormone auxin plays an indispensable role in the plethora of plant developmental process
starting from the cell division, and cell elongation to morphogenesis. Auxins are transported to
different parts of the plant by different sophisticated transporter molecules known as ‘auxin
transporters’.There are four auxin transporter families that have been reported so far in the plant
kingdom which includes AUX/LAX (AUXIN-RESISTANT1–LIKES), PIN (PIN-FORMED, auxin efflux
carriers), ABCB ((ATP-binding cassette-B (ABCB)/P-glycoprotein (PGP)) and PILS (PIN-Likes). Auxin
influx and efflux carriers are distributed in a polar fashion in the plasma membrane whereas ABCB
and PILS are present in a non-polar fashion. Other than AUX/LAX, other auxin transporters harbor
N-and C-terminal conserved domains along with a variable hydrophilic loop in the transmembrane
domain. The AUX/LAX, ABCB and PIN transporters mediate long distance auxin transport whereas
PILS and PIN5 protein involved in intracellular auxin homeostasis.
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1. Introduction

Auxin is one of the most important plant hormone that plays
diverse roles in plants, starting from the cell division, differen-
tiation and it’s expansion to morphogenesis, organogenesis
and vascular differentiation. The study of auxin biology
dates back to the Darwinian era (1880) when Charles Darwin
along with his son Francis Darwin performed the famous
coleoptile experiments and reported about the movement of
plants in response to an unknown factor ‘influence’. They con-
ducted this study in more than 40 plant species and described
their findings in the book entitled ‘The Power of Movement in
Plants’ (1881). The unknown factor was later named as
‘auxin’. They predicted that auxin flow was basipetal i-e.
directed-from the shoot apex towards the roots. Since then
(post Darwinian era), it took around 100 years to identify
the auxin transporters. The cell-to-cell directional flow of
auxin requires both influx-and efflux carriers in the plasma
membrane and other intracellular auxin carriers to maintain
auxin transport and homeostasis within the cell. Without
efficient communication between the cells, tissues and organs,
evolution of complex functioning’s in a multi-cellular organ-
ism is inconceivable. Due to the absence of mobile cells in
plants, unlike animals, control of morphogenesis in plant is
guided by chemical signals, commonly known as plant hor-
mones. In recent times the auxin transport research has gained
considerable attention and lots of advancements have been
made in this field and also the role of auxin transporters in
plant development has been dissected extensively at the cellu-
lar and molecular levels, which will be the focus of this review.

2. Auxin transporters

The phytohormone auxin is a non-polar solute and hence
the transport of auxin across the membrane depends upon
it’s physio-chemical properties. Auxin (IAA) is a weak acid
and present as IAA+ (protonated) in its native state. The
pH, of apoplastic cellular environment of IAA molecule is
ranges in between 5 to 5.5 (Gout et al. 1992; Pin Ng et al.
2015) due to the presence of plasma membrane bound H+

ATPases and at this pH, 83% of the IAA molecules remain
in anionic (IAA−, dissociated) and 17% (IAA+, associated)
in cationic form (Zažímalová et al. 2010). The negative
charge (anion) of the IAA− molecule prevents it to pass
through the lipohilic plasma membrane and it only allows
the protonated (cation) IAA+ by passive diffusion (Zažíma-
lová et al. 2010; Pin Ng et al. 2015). However, around 83%
of the anionic IAA− cannot pass though the plasma mem-
brane and thus it requires auxin influx carriers to transport
these molecules inside the cells. Further, after entering the
cytosol, IAA encounters with the alkaline environment
(pH 7 to 7.5) of the cell (Gout et al. 1992; Zažímalová
et al. 2010; Pin Ng et al. 2015). The IAA remains in the anio-
nic (IAA−) form in the alkaline environment which makes it
difficult to pass out of the cell, making the cell a weak anioi-
nic chamber. To overcome this paradox, asymmetrical local-
ization of auxin transporter molecules is required in different
parts of the cell, to efflux IAA− out of the cell. To facilitate
the transport of IAA− molecule, cells require specialized
transporter molecules e.g. auxin efflux carrier (PIN) and
ATP-binding cassette-B (ABCB)/P-glycoprotein (PGP)
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transporters (Friml et al. 2004; Terasaka et al. 2005). The
cell-to-cell movement of auxin requires both influx and
efflux carrier proteins in the plasma membrane and also in
the intracellular spaces. The rate of non-polar auxin trans-
port is about 5–20 cm/h whereas the rate of polar auxin
transport is 5–20 mm/h (Michniewicz et al. 2007). To date,
three major auxin transporters families have been reported
which includes auxin influx carrier (AUXIN-RESIST-
ANT1–LIKES (AUX1/LAX), PIN-FORMED (commonly
known as an auxin efflux carriers, or PIN), and an ATP-
binding cassette-B (ABCB)/P-glycoprotein (PGP). Recently
identified auxin transporters from the intracellular spaces
have been named as PIN-LIKES (PILS) (Barbez et al. 2012;
Mohanta et al. 2015).

3. Auxin influx carrier (AUX/LAX)

The cellular movement of auxin is facilitated by the combined
activities of the auxin influx and efflux carriers. The existence
of auxin influx carrier came from the reports of Rubery and
Sheldrake in 1974 (Rubery and Sheldrake 1974) where satur-
able auxin uptake in crown gall suspension cells of Partheno-
cissus tricuspidata was observed. Further, evidence about the
presence of auxin transporters came when uptake of Indole-
3-acetic acid (IAA) by sealed zucchini membrane vesicles was
noticed and this was seen as an active process driven by the
proton motive forces with the help of an auxin influx carrier,
which was expected to be a proton symporter (Lomax et al.
1985). This hypothesis was later supported by Sabater and
Rubery (1987). It has been seen that AUX/LAX auxin trans-
porter homologs are present throughout the plant kingdom
and they may have evolved before the evolution of the land
plants as AUX/LAX-like sequences were also reported in sev-
eral unicellular and colony forming Chlorophyta as well (De
Smet et al. 2011; Swarup and Péret 2012).

3.1. Genomics, structure, polarity, and localization of
AUX/LAX

The AUX1 gene belongs to a small gene family and consists of
four members in Arabidopsis thaliana, which includes AUX1
and like-AUX1 (LAX) (LAX1, LAX2, and LAX3). These are
plant-specific proteins within the amino acid/auxin permease
super-family (Young et al. 1999; Peret et al. 2012). The gen-
ome of Oryza sativa (rice) encodes for five AUX/LAX trans-
porter in comparison to three AUX1/LAX transporters in
A. thaliana (Chai and Subudhi 2016). AUX/LAX proteins
harbor membrane-spanning transmembrane domains and
present in the plasma membrane as well as in sub-cellular
compartments (Figure 1, Table 1, Fig. S1). The AUX/LAX
proteins present in the plasma membrane have nine
(OsLAX5) and eleven (OsLAX3) transmembrane helices,
respectively while as others (AtAUX1, AtLAX1, AtLAX2,
AtLAX3, OsLAX1, OsLAX2, and OsLAX4) harbor ten trans-
membrane helices. The N-and C-terminal domains are pre-
sent in the extracellular spaces whereas the transmembrane
helices are embedded in the phospholipid bilayer. The
AtAUX1 contains 485 amino acids out of which around
219 amino acids reside within the transmembrane helices.
The AUX1/LAX proteins share a significant sequence simi-
larity and also contain conserved motifs (Fig. S2). A few of
the conserved motifs of AUX/LAX proteins are W-H-G-G-
S-x2-D-A-W-F-S–C-A-S-N-Q-V-A-Q-V-L-L-T-L-P-Y-S-F,
Q-L-G-M-x-S-G-I, F-Y-G-x-L-G-S-W-T-A-Y-L-I-S-V-L-Y-
x-E-Y-R, N-H-V-I-Q-W-F-E-V-L-D-G-L-L-G, G-L-x-F-N–
C-T-F-L-L-F-G-x-V-I-Q-L-I-x-C-A-S-N-I-Y-Y-I-N-D, D-
K-R-T-W-T-Y-I-F-G-A-C–C-A-T-T-V-F-I-P-S-F-H-N-Y-
R-I-W-S-F-L-G-L-x-M-T-T-Y-T-A-W-Y, Y-F-T-G-A-T-N-
I-L-Y-T-F-G-G-H-A-V-T-V-E-I-M-H-Y-A-M-W, T-L-T-x-
P-S-A, Y-W-A-F-G-D-x-L-L-x-H-S-N-A-x2-L-L-P, R-D-x-
A-V-I/V-L-M-L-I/V-H-Q-F-I-T-F-G-F-A-C-T-P-L-Y-F-V-
W-E-K, and R-L-P-V/I-V-x-P-I-W-F-x-A-I-I-F-P-F-F-G-P-

Figure 1. Pictorial representation of auxin transporters in the cell. PIN proteins are localized to the plasma membrane in a polarized fashion, whereas, AUX/LAX and
ABCB are present in the plasma membrane and also in the sub-cellular compartments. PILS proteins are confined to the endoplasmic reticulum.
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I-N-S-x-V-G-x-L-L-V-F-T-V-Y-I-I-P-x-L-A-H (Fig. S2). The
presence of conserved motifs in AUX/LAX signifies their con-
served roles in auxin signaling events. The details regarding
the functionalities of these conserved motifs are provided in
the supplementary file (Table S1).

The localization of AUX1 is either non-polar or polar,
which depends on the cell or the tissue types. For instant, it
is present in the apical position in protophloem, whereas in
the lateral root caps, it occupies the basal position. However,
no such polarity patterns were seen in the columella cells
(Bennett et al. 1996; Swarup et al. 2001). Besides this,
AUX1 also plays an important role in maintaining the cell
polarity in root hairs. The AUX1 is not only present in the
plasma membrane, but also in the sub-cellular compartments
such as endosomes and the Golgi complex (Figure 1) (Kleine-
Vehn et al. 2006). The plasma membrane localization of
AUX1 requires endoplasmic reticulum (ER) chaperon,
AUX_RESISTANT 4 (AXR4) (Dharmasiri et al. 2006).
Auxin transport inhibitor disrupts the polar distribution of
AUX1. Brefeldin A, a fungal toxin is the classic example of

auxin response factor (ARF) inhibitor that inhibits the
internal trafficking of AUX1 and leads to the disappearance
of PIN proteins from the plasma membrane (Shevell et al.
1994; Kleine-Vehn et al. 2006). However, this process is
fully reversible and it leads to constitutive cycling of PIN pro-
teins between plasma membrane and endosomes (Geldner
and Palme 2001).

3.2. Regulation and function of AUX/LAX

A few studies have demonstrated that organ-level signals are
required for the regulation of AUX1-mediated auxin trans-
port. For instance, Li et al. (2011) reported that shoots of
A. thaliana that are supplied with ammonium cation inhibit
the initiation of lateral roots (Li et al. 2011). This resulted due
to the fact that AUX1 is required for the formation of lateral
root, and the shoot supplied with ammonium suppressed the
expression of AUX1 gene in the vascular tissue (Li et al. 2011).
In contrast, application of A. thaliana shoots with iron trig-
gers the initiation of lateral roots by inducing the expression

Table 1. Sub-cellular localization of auxin transporter proteins in plants.

Protein Protein domain Sub-cellular localization

AUX/LAX
AtAUX/LAX Integral membrane protein Plasma membrane
AtLAX1 Integral membrane protein Plasma membrane
AtLAX2 Integral membrane protein Plasma membrane
AtLAX3 Integral membrane protein Plasma membrane
PIN
AtPIN1 Integral membrane protein Plasma membrane
AtPIN2 Integral membrane protein Plasma membrane
AtPIN3 Integral membrane protein Plasma membrane
AtPIN4 Integral membrane protein Plasma membrane
AtPIN5 Integral membrane protein Endoplasmic reticulum
AtPIN6 Integral membrane protein Plasma membrane
AtPIN7 Integral membrane protein Plasma membrane
AtPIN8 Integral membrane protein Plasma membrane
ABCB
AtABCB1 Integral membrane protein Plasma membrane
AtABCB2 Integral membrane protein Mitochondrial
AtABCB3 Integral membrane protein Plasma membrane
AtABCB4 Integral membrane protein Plasma membrane
AtABCB5 Integral membrane protein Plasma membrane
AtABCB6 Integral membrane protein Plasma membrane
AtABCB7 Integral membrane protein Plasma membrane
AtABCB9 Integral membrane protein Plasma membrane
AtABCB10 Integral membrane protein Plasma membrane
AtABCB11 Integral membrane protein Plasma membrane
AtABCB12 Integral membrane protein Plasma membrane
AtABCB13 Integral membrane protein Plasma membrane
AtABCB14 Integral membrane protein Plasma membrane
AtABCB15 Integral membrane protein Plasma membrane
AtABCB16 Integral membrane protein Plasma membrane
AtABCB17 Integral membrane protein Plasma membrane
AtABCB18 Integral membrane protein Plasma membrane
AtABCB19 Integral membrane protein Plasma membrane
AtABCB20 Integral membrane protein Plasma membrane
AtABCB21 Integral membrane protein Plasma membrane
AtABCB22 Integral membrane protein Plasma membrane
PILS
AtPILS1 Integral membrane protein Endoplasmic reticulum
AtPILS2 Integral membrane protein Endoplasmic reticulum
AtPILS3 Integral membrane protein Endoplasmic reticulum
AtPILS4 Integral membrane protein Not detected
AtPILS5 Integral membrane protein Endoplasmic reticulum
AtPILS6 Integral membrane protein Endoplasmic reticulum
AtPILS7 Integral membrane protein Endoplasmic reticulum
OsPILS1 Integral membrane protein Vacuole
OsPILS2 Integral membrane protein Endoplasmic reticulum
OsPILS5 Integral membrane protein Endoplasmic reticulum
OsPILS6a Integral membrane protein Vacuole
OsPILS6b Integral membrane protein Endoplasmic reticulum
OsPILS7a Integral membrane protein Endoplasmic reticulum
OsPILS7b Integral membrane protein Plasma membrane & Endoplasmic reticulum
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of AUX1 gene (Giehl et al. 2012). AUX1 is required for long-
distance auxin transport, from the shoot tip in a basipetal
fashion towards the roots, through vascular bundle whereas
LAX is involved in the maintenance of the local auxin gradi-
ents (Swarup et al. 2002; Swarup et al. 2004; Swarup et al.
2008).

The AUX/LAX encodes a putative auxin carrier domain
and a mutation in these proteins manifests in auxin-related
developmental defects (Table 2) (Bennett et al. 1996; Swarup
et al. 2004; Swarup et al. 2008). Characterization of aux1
mutant revealed that they are sensitive towards the appli-
cation of different auxins, however root gravitropic defect
of aux1 can be rescued only by the application of 1-naphtha-
lene acetic acid (1-NAA) (Yamamoto and Yamamoto 1998;
Marchant et al. 1999). It has been seen that aux1 mutants
are defective in the basipetal auxin transport and AUX1 is
expressed in columella, epidermis, and in the pericycle,
ahead of the first periclinal division (Swarup et al. 2001).
The direct experimental evidence of AUX1 function as an
auxin permease came from the study of Yang et al. (2006)

where they provided a direct empirical evidence for auxin
permease function of AUX1 where they expressed AUX1 in
Xenopus laevis oocyte and found a pH dependent increase
in IAA uptake (Yang et al. 2006). Later Carrier et al. (2008)
demonstrated the binding affinity of the IAA with AUX in
a pH-dependent manner where maximum binding was seen
between pH 5 and 6 (Carrier et al. 2008). This may also
explain the reason for the localization of AUX/LAX in the
endo-membrane of the sub-cellular compartments, as pH in
endosomes ranges from 4.5 to 6.5. Therefore, these proteins
may have evolved due to non-redundant expression and
became sub-fractionalized in order to participate in auxin-
related developmental processes in different tissues and
organs. The AUX/LAX is involved in regulating lateral root
development (De Smet et al. 2007; Swarup et al. 2008). The
aux1 mutant of A. thaliana produced 50% fewer lateral
roots than the control (Hobbie and Estelle 1995). It is inter-
esting to note that although AUX1 is very crucial for the
development of root hair, its expression is only seen in the
neighboring cells but not in the root hairs (Jones et al.

Table 2. Auxin transporter genes and their functions.

Genes Functional role References

AUX/LAX
AtAUX1 Cell elongation, gametophyte development, embryogenesis, embryonic root cell

organization
(Ugartechea-Chirino et al. 2010; Panoli et al. 2015; Robert
et al. 2015; Street et al. 2016)

AtLAX1 Vascular pattern, xylem differentiation, gametophyte development, phylotaxis (Bainbridge et al. 2008; Fàbregas et al. 2015; Panoli et al.
2015)

AtLAX2 Serration in leaf margin, vascular pattern in cotyledons, phylotaxis (Bainbridge et al. 2008; Peret et al. 2012; Kasprzewska
et al. 2015)

AtLAX3 Lateral root emergence, hook formation of hypocotyle, auxin homeostasis,
phylotaxis

(Bainbridge et al. 2008; Swarup et al. 2008; Mellor et al.
2015; Porco et al. 2016; Yu et al. 2016)

PttLAX1-3 Development of vascular cambium (Schrader et al. 2003)
PaLAX Root gravitropism (Hoyerová et al. 2008)
MtLAX1-5 Early nodule formation (de Billy et al. 2001; Schnabel and Frugoli 2004)
MtLAX3 Plant growth, development, root and nodule development (Revalska et al. 2015)
CsAUX1 Root gravitropism (Kamada et al. 2003)
LaAUX1 Development of etiolated hypocotyl (Oliveros-Valenzuela et al. 2007)
CgLAX1 Nodule formation (Péret et al. 2007)
CgLAX3 Nodule formation (Péret et al. 2007)
OsAUX1 Primary root and root hair elongation in Cd stress, lateral root initiation (Yu et al., 2015, Zhao et al., 2015)
ZmAUX1 Root development (Hochholdinger et al. 2000)
PINs
AtPIN1 Embryogenesis, phyllotaxy, vein formation, development of lateral organ, &

vascular development
(Müller et al. 1998; Benková et al. 2003; Reinhardt et al.
2003; Weijers et al. 2005; Scarpella et al. 2006)

AtPIN2 Root gravitropism, organogenesis (Chen et al. 1998; Luschnig et al. 1998; Müller et al. 1998;
Utsuno et al. 1998; Benková et al. 2003)

AtPIN3 Phototropism, gravitropism, and organ development (Friml, Wiśniewska, et al. 2002b; Benková et al. 2003)
AtPIN4 Embryogenesis, root patterning (Friml, Benková, et al. 2002a; Benková et al. 2003; Friml

et al. 2003; Weijers et al. 2005; Dhonukshe et al. 2007)
AtPIN5 Intracellular auxin homeostasis (Mravec et al. 2009)
AtPIN6 Auxin transport activity (Benková et al. 2003; Petrášek et al. 2006)
AtPIN7 Root development, embryogenesis (Benková et al. 2003; Friml et al. 2003)
MdPIN1 Inhibition of primary root, increased lateral root, enhanced phototropism and

geotropism
(An et al. 2016)

NtPIN4 Axillary bud growth (Xie et al. 2017)
OsPIN1 Adventitious root emergence & tillering, shorter plant height (Xu et al. 2005; Chen et al. 2012)
ABCBs
AtABCB1, AtABCB19 Dwarfism (Noh et al. 2001)
AtABCB4 Root hair development (Cho et al. 2007)
AtABCB14 Vascular development (Kaneda et al. 2011)
AtABCB19 Root gravitropism, post embryonic organ separation (Zhao et al. 2013; Cho et al. 2014)
OsABCB14 Iron homeostasis (Xu et al. 2014)
PILS
AtPILS1 Ectopic expression line shows dwarf and or bushy plant, defect in flower

development, sterility in T1 generation, homeotic transformation of flower
organ to flower buds, triplication of gynoecium, unfused carpel, enhanced
hypocotyls growth, higher lateral root

(Barbez et al. 2012)

AtPILS2 Lateral root development (Barbez et al. 2012)
AtPILS3 Ectopic expression line shows dwarf and or bushy plant, defect in flower

development, sterility in T1 generation, homeotic transformation of flower
organ to flower buds, triplication of gynoecium, unfused carpel. Reduced root
hair length

(Barbez et al. 2012)

AtPILS5 Reduced hypocotyls growth, gravitropism, hyposensitive root growth (Barbez et al. 2012)
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2009). Although, the expression of AUX1 was not seen in the
root hair cells, still aux1 mutant had relatively short root
hairs. This abnormal phenotype of aux1mutant later restores
to the wild type upon application of exogenous auxin. There-
fore, it clearly demonstrates its role in root hair development
(Jones et al. 2009). In the mutant of werewolf/myb23-that
lacked non-hair cells, expression of AUX1 was not detected
in the epidermis. These mutants had shorter root hairs that
could be restored to the wild-type by auxin treatment. There-
fore, it is clear that the non-hair cells, have a direct impact on
the development of root hairs and also affect the auxin con-
centration in root hair cells (Jones et al. 2009). In a simulation
study it was found that, expression of AUX1 in non-hair cells
increases the auxin concentration by more than ten times
compared to the adjacent hair cells, suggesting the role of
AUX1 in regulation of high auxin balance between non-hair
and hair cells to facilitates the growth and development of
roots (Jones et al. 2009; Swarup and Péret 2012).

Except AUX1, no other members of the AUX/LAX family
participate in the root gravitropic responses (Peret et al.
2012). LAX2 and LAX3 are only expressed in columella
cells. The lax2 and lax3 single mutant do not exhibit any
root gravitropic defects and lax2 aux1 double mutant does
not show any defects that are sever than aux1 single mutants
(Peret et al. 2012). However, LAX3 plays a significant role in
the regulation of lateral root development (Swarup et al.
2008). The lax3 mutant has a reduced number of lateral
roots. Swarup et al. (2008) reported that, LAX3 is expressed
in the epidermis and cortical cells, most specifically, in
front of the lateral root primordia (Table 2) (Swarup et al.
2008). Earlier Benková et al. (2003) reported that auxin max-
ima is located in the lateral root primordia and hence it is
possible that LAX3 expression can have a significant impact
in formation of auxin maxima (Benková et al. 2003). Besides
this, several cell wall remodeling genes are also co-expressed
with LAX3 (Swarup et al. 2008). Auxin from the lateral root
primordia enters the cortical cells and induces the expression
of the LAX3 gene. LAX3 protein in the plasma membrane
facilitates auxin uptake and reinforces its expression within
the same cell. Consequently, a higher level of auxin accumu-
lates in the cortical cells, which ultimately induces the
expression of cell wall remodeling enzymes. Proteins of
these family members are targeted towards the plasma mem-
brane, however, LAX2 and LAX3 failed in getting localized to
the plasma membrane that express AUX1 in tissues (Peret
et al. 2012). This suggests that there are some molecular fac-
tors present in the auxin influx carrier or there might be some
cell tissue-specific regulators that are operational during the
intracellular trafficking of different members of the AUX/
LAX family. Peret et al. (2012) suggested that there might
be specific molecular chaperones that are required for the
regulation and trafficking of specific AUX/LAX proteins
(Dharmasiri et al. 2006; Peret et al. 2012).

4. Auxin efflux carrier (PIN)

4.1. Genomics, structure, polarity, and localization of
PINs

The auxin efflux carrier (PIN) is an important protein that
coordinates and channels auxin transport. Upon influx of
auxin by AUX/LAX, it is highly important to efflux it out
so as it reaches the next cell and this is where the role of

the auxin efflux carrier becomes important. The auxin
efflux carrier is found in almost all land plants, including
bryophytes, Lycopodiopsidae, monocot and eudicots (Křeček
et al. 2009; Mohanta and Mohanta 2013; Singh et al. 2015). In
A. thaliana, there are eight members of the PIN gene family
that divided into four sub-groups while the crop plant
O. sativa encodes 12 PIN genes in its genome (Křeček et al.
2009; Wang et al. 2009). The A. thaliana PIN sub-groups
are PIN1 and 2; PIN3, 4 and 7; PIN6; and PIN5 and 8. In
O. sativa the PIN genes are named as OsPIN1a-d, OsPIN2,
OsPIN5a-c, OsPIN8, OsPIN9 and OsPIN10a-b (Wang et al.
2009). In terms of evolutionary plant lineage, PIN genes are
grouped into seven groups (Křeček et al. 2009). Their diverse
molecular phylogeny reflects their functional diversification
within the PIN sub-groups during the evolution. The length
of the PIN protein sequences ranges from 351 to 647 amino
acid residues. The exon-intron position of A. thaliana PINs
shows AtPIN1, AtPIN4 and AtPIN7 are close to each other.
Unlike AtPIN1, AtPIN1 shares much closer relation with
AtPIN3, AtPIN4, and AtPIN7. Although, genetic architecture
of the AtPIN1 gene correlates more with the AtPIN3, AtPIN4,
and AtPIN7 than with AtPIN2, but still, it is sub-grouped with
AtPIN2 at the protein level. This suggests that the structural
conservation at protein level is more important than the
sequence conservation at the genomic level. The homology
for A. thaliana PIN genes has been identified in most of the
land plants and the numbers of PIN genes vary greatly
among different species.

PIN proteins are membrane bound and have five to ten
membrane-spanning transmembrane helices. The number
of transmembrane helices present in different PIN proteins
are as follows; five in OsPIN8 and OsPIN10a, seven in
OsPIN5a, OsPIN5b and OsPIN5c, eight in AtPIN8, nine in
AtPIN1, AtPIN2, AtPIN3, AtPIN5, AtPIN6, AtPIN7,
OsPIN1c, and OsPIN2 and ten in AtPIN4, OsPIN1a,
OsPIN1b, OsPIN9 and OsPIN10b. The N- and C-terminal
domains of the PIN protein are connected by a central hydro-
philic loop. Depending upon the length of this hydrophilic
loop, PIN proteins are classified as a short or long-domain
PIN protein. The PIN protein whose hydrophilic loop con-
tains more than 50 amino acids is refereed as a long domain
PIN protein, whereas those having less than 50 amino acid
residues are refereed as a short domain PIN proteins. PIN1-
4, PIN6 and PIN7 and their close orthologs have a long hydro-
philic loop whereas PIN5, PIN8 and their close orthologs have
a short hydrophilic loop. Multiple sequence alignment shows
the presence of several conserved motifs in the N-and C-term-
inal region as well as in the dynamic hydrophilic region. The
long PINs possess conserved P-L-Y-x-A, D-Q-C–S-G-I-N-R,
A-V-P-x-L-x-F, A-A-D-x-L-x-K, L-D-x2-I-T-x-F-S-x3-L-P-
N-T, V-M-G-I-P-L-L-x-M-Y, L-M-x-Q-x-V-V-L-Q, I/V-W-
Y-x4-F-L-F-E, Q-F-P, V-D-x-D-V-x-S-L, P-R-x-S-N-L-x3-E-
I-Y-S and T-P-R motifs in the N-terminal end (Fig. S3). In
C-terminal domain they possess conserved P-V-x-D, P-x-S-
V-M-x-R-L-I-L, V-x-R-K-L-x-R-N-P-N-T-Y-x-S-L-x-G, M-
P-x-I-x3-S, L-G-M-x-M-F-S-x-G-x-F-x-A-x-Q, A-I-V-Q-A-
A-L-P, F-V-F-x2-E-Y, L-S-T-x-V-I, and L-P-I-T-x-Y-Y-I-x-
L-G motifs (Fig. S3). The short PINs have conserved P-L-Y,
E-Q-C-x2-V/I-N, and N/D-P-F/Y motifs at the N-terminal
end and G-x2-W-A, G-x-G-x2-M-F, A-I-x-Q-A, A-L-P-Q,
F-I/V-F-A-K-E-Y, and S-T-V-I motifs at the C-terminal end
(Fig. S4). Previous studies have also reported the presence of
conserved motifs in PIN proteins (Mohanta et al. 2014;
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Mohanta and Bae 2017). The long PINs are localized to the
plasma membrane in a polarized fashion, whereas the short
PINs are predominantly localized in the sub-cellular compart-
ments like endoplasmic reticulum (ER) (Figure 1) (Křeček
et al. 2009; Mravec et al. 2009; Ganguly et al. 2010; Bosco
et al. 2012; Ding et al. 2012). The long PINs are localized
asymmetrically in the plasma membrane for directional flow
of auxin and to create auxin gradients (Figure 1). PIN5 protein
is consistently localized to ER whereas PIN8 has a dynamic
localization and can be found in ER as well as in the plasma
membrane (Ganguly et al. 2010). This dynamic nature of
the short hydrophilic loop involved in the localization of
PIN8 to the plasma membrane varies with the cell type
(Ganguly et al. 2010). Molecular cues in the short hydrophilic
loop of PIN protein could be the possible reason for this. Simi-
larly, the long hydrophilic loop might also have diverse mol-
ecular signatures for trafficking of PIN proteins to the plasma
membrane, clathrin-mediated endocytosis, and also in var-
ious phosphorylation, and ubiquitylation events (Grunewald
and Friml 2010; Kleine-Vehn et al. 2011; Ganguly et al.
2012; Leitner et al. 2012).

PIN1, PIN3, PIN4, and PIN7 are localized to the basal side
of the cell facilitating basipetal auxin flow towards the root
cells (Friml, Benková, et al. 2002a; Friml, Wiśniewska, et al.
2002b; Blilou et al. 2005). Localization of PIN1 in the plasma
membrane of the leaf primordia which arise from the shoot
apical meristem establishes auxin maxima for the inception
of developmental events in leaf (Reinhardt et al. 2003). Apical
localization of PIN2 in root epidermal cells promotes auxin
transport from the root tip acropetally towards the upper
end (Luschnig et al. 1998; Muller 1998). Basal localization
of PIN2 in the root cortex along with the lateral localization
of PIN3 in the pericycle directs auxin flow back to the root
meristem (Blilou et al. 2005). In the root columella, PIN3
and PIN7 are redistributed due to the gravity vector which
causes gravitropic bending of roots in the plants (Friml, Wiś-
niewska, et al. 2002b; Kleine-Vehn et al. 2010). During photo-
tropism, the activity of PIN3 decreases on the illuminated side
of the hypocotyl to facilitate auxin transport to the non-illu-
minating side (Ding et al. 2011).

4.2. Regulation and function of PINs

The study of tissue-specific expression of O. sativa PIN genes
revealed that OsPIN genes were constitutively expressed in
stems, leaves and young panicles (Wang et al. 2009). OsPIN1a
andOsPIN1bwere highly expressed in the aforementioned tis-
sues, while low expression ofOsPIN1cwas seen in young pani-
cles and leaves. The OsPIN2 has weak expression in stem,
leaves, and young panicles whereas expression of OsPIN5a
was higher than OsPIN5b in young panicles (Wang et al.
2009). Higher expression of OsPIN9 was seen in the base of
the stem and root than other tissues. OsPIN10a was highly
expressed in all tissues except the roots whereas, OsPIN10b
was relatively highly expressed in the leaves (Wang et al.
2009). A GUS driven assay revealed, OsPIN1a was expressed
in root cap whereas,OsPIN1b, OsPIN1c andOsPIN9were pre-
dominantly expressed in the stele. OsPIN1b, OsPIN1c,
OspIN5a and OsPIN5b were detected in the meristems.
OsPIN1c exclusively expressed in the root primordia (Wang
et al. 2009). OsPIN1a, OsPIN1c and OsPIN10b were expressed
in flower veins of hull and anthers whereas,OsPIN1a had high
expression in root primordia and the vascular tissue (Wang

et al. 2009). The expression of OsPIN genes was also modu-
lated inO. sativa in the presence of exogenous auxin and cyto-
kinin (Singh et al. 2015). The expression pattern ofOsPIN5c is
very negligible in auxin and cytokinin treated root tissues. Sig-
nificant transcript accumulation of OsPIN1b, OsPIN2 and
OsPIN9 occurs in auxin and cytokinin treated O. sativa. In 7
days old seedlings treated with auxin, the expression of
OsPIN2 is up-regulated by four folds. OsPIN1b and OsPIN9
were significantly up-regulated in 7 days rice seedling upon
treatment with cytokinin while auxin treatment up-regulates
their expression at 14 and 21 days time period (Singh et al.
2015). Firml et al. (2003) reported the expression of PIN
genes during the embryogenesis of A. thaliana (Friml et al.
2003). AtPIN1 and AtPIN3 expressed in apical and columella
cells, respectively (Friml et al. 2003). The localization of
AtPIN4 protein was detected in the hypophysis and provascu-
lar initials of root meristem. The expression pattern ofAtPIN7
resembled to that ofAtPIN1 (Friml et al. 2003). To understand
the correlation between the AtPIN1 and AtPIN7 during early
embryogenesis, detection of AtPIN1 protein was seen from
one to sixteen-cell stage, in all newly formed cell boundaries.
No polarity patterns were seen at this stage, but polarity of
AtPIN1 was detected at thirty two cell stage. It was localized
to provascular cells facing towards the basal embryo pole.
AtPIN1 later shifted to the quiescent center cells on the
basal side. AtPIN7 was present in the apical and basal cells
during the post-zygotic division in the endomembrane
(Friml et al. 2003). AtPIN7 was found in the apical position
of the suspensor cell at thirty-two cell stage thus making it
as a polarity marker and later its position shifted to the basal
side of the suspensor cell post 32-cell stage, followed by its
appearance in the boundary wall. This concluded that the
accumulation of AtPIN1 in the proembryo cells and shift-
ing/reversal of AtPIN7 polarity are directly correlated with
the apical-to-basal reversal of auxin gradient (Jirí Friml et al.
2003). Besides this, analysis of pin7mutant revealed its partici-
pation in auxin distribution and the embryos with pin7
mutation failed to establish the apical-basal auxin gradient
(Jirí Friml et al. 2003). Mutational analysis revealed that
PIN1 and PIN4 are involved in organogenesis; PIN2 and
PIN3 participate in root gravitropism; PIN1 and PIN3 actively
participate in phototropism and PIN1, PIN3, PIN4 and PIN7
are involved in embryogenesis (Table 2) (Paponov et al.
2005). A. thaliana pin1 mutant (PIN-FORMED) lacks an
organ in the inflorescence which results in its deformed struc-
ture (Okada et al. 1991). Similarly, loss of PIN2 leads to defects
in root gravitropism and growth of root hairs, suggesting their
crucial role in diverse developmental process (Chen et al. 1998;
Luschnig et al. 1998; Muller 1998; Utsuno et al. 1998).

5. ATP-binding cassette transporters (ABCB)

5.1. Genomics, structure, polarity, and localization of
ABCBs

The POLYGLYCOPROTEIN (PGP) / MULTIDRUG
RESISTANCE (MDR)/ATP-binding cassette transporters of
B class (ABCB) proteins belong to the super family of
ABCB transporters and most of the plant ABCB proteins
characterized have been found to be auxin transporters
(Noh et al. 2001; Luschnig 2002; Terasaka et al. 2005; Geisler
and Murphy 2006). There are twenty one known ABCB
members out of which ABCB1, ABCB4 and ABCB19 are
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involved in auxin transport (Table 2) (Noh et al. 2001; Mul-
tani et al. 2003; Geisler et al. 2005; Terasaka et al. 2005; Geis-
ler and Murphy 2006; Cho et al. 2007). However, a recent
report revealed that ABCB14 and ABCB15 also participate
in polar auxin transport (Kaneda et al. 2011). Another
study suggests that ABCB1, ABCB4 and ABCB19 have
lower auxin exporting capacities compared to their counter-
part PIN proteins (Cho and Cho 2013). The model plant
A. thaliana has twenty one ABCB proteins whereas O. sativa
has twenty-two, Sorghum bicolor has twenty-four and Zea
mays has thirty-five (Chai and Subudhi 2016). All auxin-
transporting PIN proteins have been found in the same
clade during the phylogenetic analysis, whereas ABCBs fall
into three distinct clades (Cho and Cho 2013). The O. sativa
OsABCBs contain proteins ranging from 524 (OsABCB17) to
1482 (OsABCB12) amino acids. The molecular weights of
OsABCB varies from 56 (OsABCB17) to 158 (OsABCB12)
kDa and the isoelectric point ranges from 5.7 (OsOsABCB21)
to 9.3 (OsABCB11) (Chai and Subudhi 2016). The diverse
molecular weights and isoelectric points of ABCB proteins
allow them to participate in polar movement across the cell.
Besides this, such diverse molecular properties of ABCBs
might allow them to interact with cell polarity complex to
complete their function. ABCB localize to the plasma mem-
brane and are dynamically distributed there, this might be
due to their dynamic molecular weights, and isoelectric points
(Figure 1). Except OsABCB8 and OsABCB22, the majority of
the OsABCBs are predicted to be localizing to the plasma
membrane (Chai and Subudhi 2016). OsABCB12 and
OsABCB17 localize to the chloroplast. The OsABCBs have
4-13 membrane-spanning transmembrane helices and based
on their topological character of transmembrane domain,
they are divided into two groups (Chai and Subudhi 2016).
Most OsABCBs have two transmembrane helices at the N-
and C-terminal ends and are linked by a central loop of vari-
able length whereas OsABCB10, OsABCB16 and OsABCB17
have one cluster transmembrane helices (Chai and Subudhi
2016). The transmembrane helices of N- and C-termini are
conserved and the loops are highly variable (Chai and Sub-
udhi 2016). The transmembrane domain of the ABCB trans-
porter has a nucleotide binding domain as well (Geisler and
Murphy 2006). The ABCB19 is confined to the detergent-
resistant membrane (DRM) region of the plasma membrane
where glucosyl-ceramide and sitosterol are abundant (Titapi-
watanakun et al. 2009). ABCB19 defines the membrane struc-
ture and provides a platform for the stable localization of
PIN1 (Titapiwatanakun et al. 2009). Multiple sequence align-
ment shows the presence of conserved motifs in ABCB pro-
teins. The major conserved motifs present at the N-
terminal end of ABCB proteins were, A-x-V-G-x2-G-x-G-
K-S, E-R-F-Y-D-P, V-x-Q-E-P-x-L, I-x-E-N, V/I-G-E-x-G-
x2-L-S-G-G-Q-K-Q-R-I-x-I-A-R-A, P-x-I-L-L-L-D-E-A-T-
S-A-L-D-x-E-S-E-x2-V-Q-D-A-L-D, R-T-T-x-V/I-V/I-A-H-
R-L-x-T-I/V, and G-x3-E-x-G-x-H-x-E-L. The conserved
motifs present at the C-terminal ends were E-x2-W-F-D, V-
G-x-S-x2-G-K-S, R-F-Y-D, V-x-Q-E-P, G-Y-x-T-x-G-x2-G-
x-Q-L, G-Q-x-Q-R-I-A-x-A-R, I-x-L-x-D-E-A-x-S-x2-D
and T-x-V/I-V/I-A-H (Fig. S5). The G-x2-G-x-G-K-S domain
of conserved A-x-V-G-x2-G-x-G-K-S region is known as
Walker A motif and L-S-G-G-Q of conserved V/I-G-E-x-G-
x2-L-S-G-G-Q-K-Q-R-I-x-I-A-R-A motif is known as
Walker B motif (Holland and Blight 1999; Orelle et al.
2003). The underlined Q-K-Q-R-I-x-I-A-R-A, I-L-L-L-D-E-

A-T-S-A-L-D and G-Q-x-Q-R-I-A-x-A-R motifs are the
characteristic conserved sequences of ABC transporter family
(Guillemette et al. 2004). These two motifs are the character-
istic features of the ABC-ATPase protein and they collectively
constitute the nucleotide binding motif. These conserved
motifs might play a crucial role in transporting of auxin mol-
ecules across the plasma membrane. In animals, mutation in
ABCB protein leads to several serious genetic diseases and
over expression leads to multi-drug resistance in bacteria,
viruses and cancer (Stolarczyk et al. 2011). The P-glyco-
protein ABCB proteins contain a linker region having con-
sensus phosphorylation site, suggesting its functional
regulatory role (Davies and Coleman 2000). The ABC trans-
porter gets their energy from breakdown of ATP and act like
ATPases as well. Study led by Aryal et al. (2015) described
that ABC transporters are regulated through protein phos-
phorylation event (Aryal et al. 2015). In addition to the role
of auxin transport, ABC transporter protein AtABCG25
involved is in abscisic acid transport as well (Kuromori
et al. 2010).

5.2. Regulation and function of ABCBs

The ABC super-family consists of many universal transpor-
ters associated with the movement and transport of various
small molecules, nutrients and xenobiotics. A comparative
study between the bacterial and murine ABC transporter
with the plant ABCB transporter revealed an exceptionally
high degree of structural conservation. Although a remark-
able structural conservation was found between them, the
ABCBs exhibits limited substrate specificity in certain organ-
isms but are promiscuous in others. In some cells, ABCB
shows polarity while in others they do not (Geisler et al.
2005; Terasaka et al. 2005; Blakeslee et al. 2007; Cho et al.
2007; Wu et al. 2007; Mravec et al. 2008; Cho et al. 2012).
Unlike PIN and AUX/LAX, the ABCB proteins serve as either
facultative auxin influx/efflux carrier (ABCB21) or auxin
carrier with fixed direction (ABCB1, ABCB4 and ABCB19)
(Table 2) (Geisler and Murphy 2006; Cho et al. 2012; Kami-
moto et al. 2012). The facultative or directional auxin flow by
ABCBs depends on the cellular auxin level (Geisler and Mur-
phy 2006; Cho et al. 2012; Kamimoto et al. 2012). ABCB is
predominantly non-polar and could determine the amount
of auxin concentration available for PIN mediated polar
auxin transport (Mravec et al. 2008).

Although auxin transport is required for both short and
long-distance delivery of auxin, the long distance transport
from the shoot tip to the root is conducted by ABCB1 and
ABCB19 along with PIN1 and PIN7 (Gälweiler 1998; Friml
et al. 2003; Blakeslee et al. 2007). The polarity of ABCB local-
ization might be associated with the secondary cell wall and
early stages of cytokinesis rather than the cell plate formation
(Blakeslee et al. 2007; Titapiwatanakun et al. 2009). The
expressions of ABCB1 and PIN7 are predominantly restricted
to the shoot apex and both are persistent in their act during
auxin loading to the vascular stream (Zažímalová et al.
2010). The expression of ABCB19 and PIN1 occurs through-
out the plant and they maintain the auxin flow from the shoot
apex to the root apex (Zažímalová et al. 2010). Acropetal
auxin flow from the base of the root to the root tip is directed
by ABCB1 and PIN. Auxin gets distributed to the epidermal
cells (basipetal flow) and lateral root cap by the action of
ABCB1, ABCB4, ABCB19, AUX1, PIN1, PIN2, PIN3, and
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PIN4. Along with other auxin transporters, ABCB1 and
ABCB19 function in loading, while ABCB1, and ABCB4
along with PIN2 continue the auxin stream along the epider-
mal cells, cortical cells, and root cap to drive the cell division,
cell elongation and root hair development (Gälweiler 1998;
Muller 1998; Swarup et al. 2001; Friml, Benková, et al.
2002a; Geisler et al. 2005; Terasaka et al. 2005; Blakeslee
et al. 2007; Mravec et al. 2008). Although ABCB19 and
PIN1 are the principal mediators of polar auxin transport
along the axis (Gälweiler 1998; Blakeslee et al. 2007), the
retention of auxin in the stream of vascular transport is
mediated by the combined activities of ABCB19 and PIN3
which localized to the bundle sheath cells (Friml et al.
2002b, Blakeslee et al. 2007). The ABCB19 that localizes in
the endodermis and pericycle might have similar functions
in the root (Blakeslee et al. 2007). The long-distance auxin
flow, upwards from the root apex in the epidermal cells
above the elongation zone is mediated by ABCB transporters
(Geisler et al. 2005; Terasaka et al. 2005; Lewis et al. 2007;
Titapiwatanakun et al. 2009; Zažímalová et al. 2010).
ABCB4 regulates auxin homeostasis in root trichoblasts
(Cho et al. 2007; Yang and Murphy 2009). The ABCB4 has
import activity at low auxin concentrations. As the level of
auxin increases, its function is reversed and changes to export
activity (Yang and Murphy 2009). Hence the function of
ABCB4 is to maintain auxin homeostasis when AUX1 is
not present and it is confined to regions such as root hair
and elongating cell zones where auxin levels are usually stable.

Besides auxin transport, ABCB proteins also participate in
other diverse functions. OsABCB14 functions in both auxin
transport and iron homeostasis (Xu et al. 2014). Other
ABCBs are involved in calcium homeostasis, aluminum
detoxification, stomatal response to CO2 and secondary
metabolite transport (Sasaki et al. 2002; Shitan et al. 2003;
Lee et al. 2008). Several studies reported about the role of
direct interaction between AtABCB and PIN towards the
coordinated polar auxin transport (Bandyopadhyay et al.
2007; Blakeslee et al. 2007). Interactions of ABCB with PIN
are vital for embryogenesis and organogenesis (Mravec
et al. 2008). The abcbmutants have a defective cell elongation
and long-distance transport of auxin. However, only limited
defect is present in embryo development and organogenesis
(Noh et al. 2001; Geisler et al. 2003; Terasaka et al. 2005; Bla-
keslee et al. 2007). Lee et al. (2008) reported that ABCB14 is a
malate transporter and competitive transport occurs in con-
junction with auxin as well (Lee et al. 2008). The abcb14
mutants exhibit reduced malate-inhibitable auxin transport
in the shoot (Zažímalová et al. 2010).

A protein known as TWISTED DWARF1 (TWD1)
directly interacts with ABCB1 and ABCB19. The phenotype
of twd1 loss-of-function mutant is similar to the abcb1/
abcb19 mutants (Murphy et al. 2002; Geisler et al. 2003).
This shows that, TWD1 is an activator of membrane localized
ABCB complexes and alters conformational changes of ABCB
proteins (Geisler et al. 2003; Bouchard et al. 2006; Bailly et al.
2008). The localization of ABCB1, ABCB4 and ABCB19 in
the plasma membrane was severely compromised in twd1
mutant (Wu et al. 2010). TWD1 protein is localized to the
plasma membrane and endoplasmic reticulum. This suggests
that ER-localized TWD1 protein serve for trafficking of
ABCB protein and plasma membrane bound TWD1 modu-
late the activity of ABCB protein. TWD1 protein directly
binds to the PINOID (PID) and TWD1-PID interactions

regulate ABCB1-mediated auxin transport (Henrichs et al.
2012). In the absence of PWD1, PID phosphorylates the ser-
ine residue at position 634 in the ABCB linker domain and
increases ABCB1-mediated auxin signaling (Henrichs et al.
2012). When the serine amino acid at position 634 is replaced
by alanine (A), it leads to a defect in phosphorylation and
when substituted by glutamate (E), it results in mimicking
the phosphorylation. The substitution by A leads in reduced
auxin export activities whereas substitution by E enhances
auxin export activities (Henrichs et al. 2012). It has been
reported that, ABCB19 is the substrate of PHOT1, and
PHOT1-dependent phosphorylation of ABCB19 inhibits
auxin-efflux activity, which triggers production of higher
auxin levels above the hypocotyl apex (Christie et al. 2011).
Later these auxin is channeled by PIN3 to the shoot
elongation zone (Christie et al. 2011). Furthermore, the
endogenous plant flavonoids that emerged in the early land
plants obstruct with the principal mechanism of ABCB trans-
porters while PIN proteins are indirectly affected by flavo-
noids (Rausher 2006; Peer and Murphy 2007; Santelia et al.
2008). This suggests that plant flavonoids might have a selec-
tive force in the evolution of plasma membrane mediated
auxin efflux. The mdr1 mutant exhibits epinasty of the coty-
ledons and the first true leaves (Noh et al. 2001). Besides this,
it also produced waviness in the hypocotyls and roots (Noh
et al. 2001). Defects in ABCB4 produces longer root hairs
than the wild type, whereas abcb14 mutant produces slightly
altered vascular development in the florescence stem (Noh
et al. 2001; Cho et al. 2007). The abcb1 abcb19 double mutant
shows dwarfism in A. thaliana (Noh et al. 2001). The abcb19
and abcb1 abcb19 mutants display reduced root-directed
auxin transport relative to pin1.

Recently, Chai et al. (2016) identified and analyzed the
expression profiles of ABCB genes from O. sativa in response
to phytohormone stimuli and abiotic stresses (Chai and Sub-
udhi 2016). The authors reported twenty-two putative
OsABCB genes from the rice genome. Most of the them
were regulated by drought, salt and hormonal stimuli (Chai
and Subudhi 2016). From twenty-two OsABCB genes,
twenty-one were responsive to drought and salinity stress.
Only OsABCB22 was responsive to drought stress, but was
unresponsive to the salinity stress. Most of the OsABCB
genes were down regulated due to the salt/drought stresses,
whereas only a few of them were up-regulated (OsABCB5-7,
OsABCB9-13, and OsABCB15-20) in certain tissues.
OsABCB5, OsABCB12, OsABCB18, and OsABCB19 were
up-regulated under drought and salinity stresses. In moderate
drought conditions, the number of differentially expressed
OsABCB genes in roots and leaves were seventeen and eigh-
teen, respectively, whereas under severe drought stress, root
expressed twenty-four OsABCB genes whereas leaves
expressed only fifteen. Nevertheless, more genes were differ-
entially expressed in roots than in leaves (fifteen vs. ten,
respectively) (Chai and Subudhi 2016). The transcriptional
regulation of OsABCB genes due to the drought and salinity
stress indicates that they might be involved in the adaptation
to abiotic stresses. Upon auxin treatment, twenty of the
twenty-two OsABCB genes were expressed differently.
Among them, four were exclusively expressed in the leaves,
nine in the roots and ten in both leaves and roots (Chai
and Subudhi 2016). Most of these auxin-regulated OsABCB
genes were up-regulated and only four were down regulated
at various time points. All OsABCB genes were modulated
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due to abscisic acid (ABA) treatment. The modulation of
OsABCB genes by auxin and abscisic acid treatments reflect
their possible role in a hormonal cross talk, which enables
plant to adapt various stress conditions.

6. PIN-likes (PILS)

6.1. Genomics, structure, polarity, and localization of
PILS

Recently, a new family of auxin transporters have been
reported known as PIN-likes (PILS) protein family (Barbez
et al. 2012; Feraru et al. 2012; Mohanta et al. 2015). The topol-
ogies of PILS proteins are highly similar to the PIN proteins;
hence they were named as PIN-likes (PILS) protein. Unlike
PIN proteins, PILS also contain Interpro auxin carrier domain
(Barbez et al. 2012; Feraru et al. 2012; Mohanta et al. 2015).
A. thaliana and O. sativa contain seven PILS genes (Barbez
et al. 2012; Mohanta et al. 2015). The PILS proteins inA. thali-
ana range in size from 390 (AtPILS3) to 472 (AtPILS1) amino
acids (Feraru et al. 2012), whereas those in O. sativa range
from 414 (OsPILS1) to 1280 (OsPILS5) amino acids
(Mohanta et al. 2015). The molecular weight of OsPILS ranges
from 44.076 (OsPILS1) to 140.721 (OsPILS5) kDa, whereas
the isoelectric point lies between 6.91 (OsPILS5) to 8.38
(OsPILS1). The diverse range of molecular weight and isoelec-
tric points of different PILS protein enables them to localize to
different parts of the cell. AtPILS3, AtPILS4, and AtPILS5
genes contain nine introns whereas AtPILS1 contains eleven,
AtPILS6 contains eight and AtPILS7 contains seven introns
and AtPILS2 is intronless. Similarly, from seven OsPILS
genes, four (OsPILS1, OsPILS6a, OsPILS6b, and OsPILS7a)
of them have ten introns, while OsPILS5 has seven, OsPILS7b
has nine and OsPILS2 has only one intron. The orthologs of
the PILS2 gene either have one intron or it may be intronless.
Phylogenetic analyses of OsPILS and AtPILS have revealed
that the orthologs of A. thaliana AtPILS3 and AtPILS4 are
absent in O. sativa (Mohanta et al. 2015).

Unlike PIN proteins, the PILS are also membrane bound
proteins that are present inside as well as outside of the mem-
brane of sub-cellular compartments (Figure 1, Table 2)
(Mohanta et al. 2015). Except OsPILS5, all other PILS pro-
teins contain ten transmembrane helices. In addition,
OsPILS5 has only four transmembrane helices and the
major part of the OsPILS5 is present outside of the mem-
brane. The PILS proteins are characterized by the presence
of two hydrophobic transmembrane domains at the N-and-
C-terminal end (Feraru et al. 2012). The hydrophobic regions
are organized into five transmembrane helices which are
flanked by a short hydrophilic loop directed towards the cyto-
sol (Feraru et al. 2012). Amino acid sequence analysis reveals
the presence of a conserved N-x-G-N motif at the N-terminal
end (Mohanta et al. 2015). The C-terminal of OsPILS has
conserved A-P-L and G-G-N-L-G-x-x-G consensus
sequences (Mohanta et al. 2015). The central hydrophilic
loop is very dynamic and devoid of any conserved consensus
sequence. Instead, it contains a conserved threonine amino
acid in the hydrophilic loop (Mohanta et al. 2015). However,
PIN protein does not have any conserved motifs in the loop
(Křeček et al. 2009). A comparative study between PIN and
PILS protein, has indicated that they share only 10-18%
sequence identity (Feraru et al. 2012). These authors classified
the PILS proteins based on the presence of generic

phosphorylation site (non-kinase specific, viz serine, threo-
nine and tyrosine), and kinase-specific phosphorylation site.
Further, they grouped them as, (1) with less than ten phos-
phorylation sites (PILS5 and PILS7), (2) carrying between
ten and fifteen sites (PILS2, and PILS6), and (3) which has
more than fifteen phosphorylation sites (PILS1, PILS3 and
PILS4). The grouping of PILS based on the phosphorylation
site indicates their functional diversification and shows that
phosphorylation based mechanisms might play a crucial
role in their functional diversity. Although the hydrophilic
loop is variable in nature, but the presence of a conserved
threonine residue in the hydrophilic loop is the most likely
target phosphorylation site for upstream kinases (Mohanta
et al. 2015). Except AtPILS4, all PILS proteins of A. thaliana
localize to the membrane of sub-cellular compartment endo-
plasmic reticulum (Barbez et al. 2012). Studies with the N-and
C-terminal fusion proteins of AtPILS4 revealed their absence
from ER or the plasma membrane. Similar to the AtPILS,
OsPILS proteins of O. sativa also localize to the sub-cellular
compartments. The OsPILS2, OsPILS5, OsPILS6b and
OsPILS7a localize to the endoplasmic reticulum whereas
OsPILS1 and OsPILS6a localizes to the vacuole and OsPILS7b
localize to the plasma membrane and in endoplasmic reticu-
lum (Table 2) (Mohanta et al. 2015).

6.2. Regulation and function of PILS

Barbez et al. (2012) reported that AtPILS genes are broadly
expressed in various tissues, including seedlings, rosette
leaves, stems, cauline leaves, flowers and siliquae (Barbez
et al. 2012). Except AtPILS1, all of the AtPILS express in seed-
lings, whereas the expression of AtPILS1, and AtPILS5 was
very low in rosette leaves. Lower expression levels were also
detected in stems for AtPILS1, AtPILS2, AtPILS3 and
AtPILS5. In cauline leaves, the expression of AtPIL1 was
very less and in siliquae low expression was observed for
AtPILS1, AtPILS5 and AtPILS7 (Barbez et al. 2012). Barbez
et al. (2012) demonstrated that the expressions of AtPILS2-
AtPILS7 were transcriptionally up-regulated by auxin treat-
ment in wild-type seedlings (Barbez et al. 2012). More specifi-
cally, AtPILS2, AtPILS3 and AtPILS5 were highly up-
regulated suggesting their role in auxin-mediated signaling
process. Rice seedlings treated with 5 µM IAA shows differen-
tial modulation of OsPILS genes. From the transcript analysis
it was found that all OsPILS genes were up-regulated in leaf
tissues, whereas same genes were down regulated in the 21
days old root tissues (Mohanta et al. 2015). This suggests
that there is significant impact of OsPILS genes in plant
development on 21 days (Mohanta et al. 2015). However, a
significant variation in expressions of OsPILS genes was
also observed in cytokinin treated leaf and root tissues
(Mohanta et al. 2015).

The phytohormone mediated differential expression of
AtPILS led Barbez et al. (2012) to deeply investigate their
functional role in auxin signaling, by expressing AtPILS1
and AtPILS3 using viral 35S constitutive promoter (Barbez
et al. 2012). The ectopic expression of AtPILS1 or AtPILS3
produces dwarf and /or bushy plants with severe deformity
in flower development (Table 2) (Barbez et al. 2012). The
flowers displayed severe patterning defects with homeotic
transformation of flower organs into new flower buds,
unfused carpels and triplication of the gynoecium. The T1
generation of the over expressed AtPILS1 and AtPIL3 were
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sterile. However, the over expressed p35S::AtPIL5 lines pro-
duced moderately fertile flowers. AtPILS2 and AtPILS5 were
abundantly expressed at the seedling stages; therefore mutant
analysis was performed on these genes. They found enhanced
hypocotyl growth in pils2 pils5 double mutants. However,
dark grown p35S::PILS5:GFP expressing plants had reduced
hypocotyls. The PILS2 and PILS5 exhibits an overlapping
expression in the root transition zone and PILS5 gain of func-
tion experiments manifest in agravitropic growth of hypoco-
tyls (Barbez et al. 2012). The pils2 single mutant and the pils2
pils5 double mutant makes longer roots than the wild-type
seedlings, whereas over expression of AtPILS5 results in rela-
tively short roots (Barbez et al. 2012). The pils2, and pils5
single mutant and the pils2 pils5 double mutant display a
higher lateral root density, whereas the PILS5 gain-of-func-
tion mutant had reduced lateral roots. To understand the
role of the auxin response element (AuxRE) DR5 in the pils
mutant, pils2-2 and pils5-2 knockout mutants were expressed
with pDR5rev:GFP (Barbez et al. 2012). Such plants display
higher signal in lateral roots, but no alteration in the DR5
activity was seen in the main root tip. However, moderately
expressing p35S::PILS5::GFP seedlings exhibit reduced auxin
responses in the root tip and lateral root. It was observed
that pils2 pils5 loss-of-function mutant show hypersensitive
root growth whereas PILS5 gain-of-function mutant pro-
duces hyposensitive root growth (Barbez et al. 2012). The
pils2 pils5 double mutant had relatively higher auxin export
activity which revealed a reduced auxin holding capacity in
pils2 pils5 loss-of-function mutants. In BY cell line study it
was reported that the ratios of auxin-glutamate (Glu) to
auxin-aspartate (Asp) conjugate shifted towards the free
auxin in pils2 and pils5 loss-of-function mutants. The p35S::
PILS5::GFP expressing line shows reduced auxin response
in the root tip. A significant shift was found in the auxin-
Glu and auxin-Asp to free auxin ratios in p35S::PILS5::GFP
seedlings which indicates higher rate of auxin conjugation
and hence conjugation-based auxin metabolism (Barbez
et al. 2012). Study led by Béziat et al. (2017) reported the
role of PILS protein in light mediated reduction in nuclear
auxin signaling for transition of plant growth (Béziat et al.
2017). PILS2 and PILS5 lead to asymmetric gene expression
during apical hook formation (Béziat et al. 2017). pils2 single
mutant show delayed onset of apical hook development
whereas pils1 pils2 double mutant show strong delay in apical
hook formation (Béziat et al. 2017). However, pils1 pils2 pils3
triple mutant do not show apical hook opening that might be
due to functional divergence of distinct PILS genes (Béziat
et al. 2017). In addition, PILS proteins also regulate the
reduction of nuclear auxin signaling during apical hook for-
mation (Béziat et al. 2017).

7. Conclusion and future perspective

The role of auxin signaling is of pivotal importance in plant
growth, development, tropism and gravitropic responses.
However, it has not been elucidated how PINs and ABCB
proteins localize in the plasma membrane in a polar and
non-polar fashion, respectively. Also localization of PILS to
the endo-membrane is not clear. Understanding the molecu-
lar mechanisms that govern their polarity patterns and also
their non-polar distribution is important. It is also important
to study the role of various conserved motifs in different
auxin transporter proteins to find out the possible auxin

binding domains. It is also necessary to find the signaling
sequences of AUX/LAX, PIN, ABCB and PILS proteins.
The role of important signal sequences, including palmitoyla-
tion and myristoylation event cannot be ruled out for the
localization of auxin transporters in the plasma membrane.
Because palmitoylation and myristoylation events play a cru-
cial role in membrane attachment and protein trafficking.
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