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REVIEW ARTICLE

Avoidance and suppression of plant defenses by herbivores and pathogens

Juan M. Alba, Joris J. Glas, Bernardus C.J. Schimmel and Merijn R. Kant*

Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam
(UvA), PO Box 94240, 1090 GE Amsterdam, The Netherlands

(Received 30 November 2010; final version received 29 December 2010)

Plants are nutritious and hence herbivores and phytopathogens have specialized to attack and consume them. In
turn, plants have evolved adaptations to detect and withstand these attacks. Such adaptations we call ‘defenses’
and they can operate either directly between the plant and the plant consumer or indirectly i.e. when taking effect

via other organisms such as predators and parasitoids of herbivores. Plant defenses put selection pressure on
plant-consumers and, as a result, herbivores and pathogens have evolved counter-adaptations to avoid, resist, or
manipulate plant defenses. Here we review how plant consumers have adapted to cope with plant defenses and we

will put special emphasis on the phenomenon of suppression of plant defenses.

Keywords: plant defense; herbivory; pathogenesis; resistance; adaptation; defense repression

Introduction

Plants are nutritious and hence herbivores (Awmack
and Leather 2002) and phytopathogens (Divon and
Fluhr 2007) have specialized to consume them. In
turn, plants have evolved diverse adaptations to
detect and withstand plant consumers and these
adaptations we call ‘defenses’ and they are divided
in so-called ‘constitutive’ and ‘induced’ defenses
which can operate either ‘directly’ or ‘indirectly’: the
direct defenses are those that play a role in the
antagonistic interactions that involve only the plant
and its attacker (Howe and Jander 2008) while the
indirect defenses take effect via other organisms such
as foraging predators and host-searching parasitoids
of herbivores which are attracted and/or arrested to
plants with prey and hence liberate plants from their
attackers either above ground (Sabelis et al. 2001) or
below ground (Rasman et al. 2005).

Induction of plant defenses

The discrimination between constitutive and induced
defenses is artificial since many defenses fall in both
classes and traits associated with defenses can have
roles in other primary and secondary physiological
processes as well. Defenses are, in principle, those
plant traits that make a plant more palatable for
a plant consumer when absent. Constitutive defenses
are, for example, wax layers, trichomes, and thorns
but can also be secondary metabolites (Strauss et al.
2002) and protective coatings (Shepherd et al. 2005).
However, although called ‘constitutive,’ since they
are present also when the plant has not experienced
an attack, it was found that sometimes these con-
stitutive barriers are reinforced upon herbivory or

pathogenesis as well: for example, upon grazing by
large herbivores several Acacia species were found to
produce more and longer thorns in their canopy
(Milewski and Madden 2006) and black mustard
Brassica nigra was found to increase its number of
trichomes upon herbivore feeding (Traw and Dawson
2002). Hence the difference between constitutive and
induced defenses is not absolute. In most cases,
induction of defenses is caused by the consumption-
related activities of the attacker. However, such an
induced reinforcement of preexisting defenses and
establishment of novel defenses can occur already
before a plant-consumer has actually probed its
substrate as it was shown that insect eggs (Hilker
and Meiners 2010); insect walking activities (Bown
et al. 2002; Peiffer et al. 2009), or insect pheromones
(Fatouros et al. 2008) can elicit changes in plants
associated with defenses.

Elicitation of plant defenses

Most research has focused on the effect that salivary
and/or digestive secretions of plant consumers have
on the induction of plant defenses but also other
consumption-related substances such as honeydew-
sugars secreted by phloem feeding insects can be
taken up by plants (Williams and Benson 1996) and
have the potency to elicit defenses (Mosblech et al.
2008). Secreted salivary and digestive enzymes come
into contact with damaged leaf tissue (Schilmiller and
Howe 2005) during insect chewing and regurgitation
(Peiffer and Felton 2009); when injected into host
tissue via the stylets of, for example, aphids (Miles
1999; Will et al. 2009; Bos et al. 2010) or nematodes
(Bellafiore et al. 2008); when deposited onto a leaf
surface during stylet-sheath formation (Miles 1972;
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Carolan et al. 2009); when injected via pathogen type-
III or type-IV secretion apparatus or when deposited
onto plant tissue via pathogen type-II secretion
(Abramovitch et al. 2006). These secretions have in
common that they can contain substances that serve
to digest plant material in order to obtain nutrients
and energy as well as substances that interact with
plant defensive substances. In turn, these substances
or conjugates can also be recognized by plants in such
a way that they elicit a defense response.

Signal transduction in plant defenses

Plants respond to the combination of plant-consumer-
derived elicitors and mechanical damage via sequen-
tial accumulation of plant hormones (O’Donnell et al.
2003), i.e. jasmonic acid (JA), ethylene (Et), and
salicylic acid (SA) often accompanied by changes in
abscisic acid (ABA) and auxin levels (Pieterse et al.
2009) followed by the accumulation of toxins either
synthesized by the plant at the feeding site (Ferrari
et al. 2003) or distally in which case they are
transported to the feeding site (Baldwin and Karb
1995). Together with these toxins also protective
enzymes accumulate at the feeding site (Zhu-Salzman
et al. 2008) and in some cases they were found to
exhibit synergistic properties as it was found that the
toxin nicotine of the wild tobacco species Nicotiana
attenuata restrains a herbivore’s compensatory-
feeding response evoked by plant-borne inhibitors
of herbivore digestion (Steppuhn and Baldwin 2007).
While prolonged pathogen infection can give rise to
local cell death, i.e. the hypersensitive response (HR),
and thereby prevents further spreading of pathogens
(Dangl and Jones 2001) prolonged arthropod feeding
was found to result in the production and release of
plant volatiles potent in establishing indirect defenses
by guiding foraging natural enemies of herbivores to
their prey (Kessler and Baldwin 2001). Interestingly,
plant-hormone signaling underlying these defense
responses appeared often mutually exclusive since
SA inhibits the JA-response and vice versa (Pieterse
et al. 2009) while, in turn, the JA-response appeared
essential for the formation of the endogenous signal-
ing molecule methyl-salicylate in tomato (Ament
et al. 2004) and tobacco (Park et al. 2007). Moreover,
ABA was found to antagonize the SA-response
(Zabala et al. 2009). Although the biological necessity
for these antagonisms is unknown it was found that
the network of sequential induction and suppression
of phytohormones correlated with the presence
of different components in herbivore saliva (Diezel
et al. 2009).

Avoidance of plant defenses

Plant defenses pose selection pressure on plant-eaters
and, as a result, herbivores and pathogens have
evolved counter-adaptations to resist or manipulate
plant defenses (Karban and Agrawal 2002). Some of

these adaptations enable a plant eater to avoid a
plant defense. For instance, the mirid bug Pameridea
roridulae adapted to be able to walk on the sticky
surface of the protocarnivorous plant Roridula gor-
gonais (Voigt and Gorb 2010) while the cotton
bollworm Helicoverpa armigera was found to select
Arabidopsis thaliana leaf tissue areas where the levels
of defensive glucosinolates are the lowest (Shroff
et al. 2008). Other insect species were found to
remove leaf hairs that hamper feeding (Medeiros
and Moreira 2005); to cut leaf veins or latex channels
(Delaney and Higley 2006) or to isolate their feeding
site via trenching (Chambers et al. 2007) to prevent
distally produced defense compounds to be trans-
ported to it (Oppel et al. 2009). Gall-forming plant
eaters avoid plant defenses by taking control over
plant tissue locally forming a gall and forcing it to
become a sink for photosynthates such that they can
withdraw these substances from it (Tooker et al.
2008) reminiscent of the crown gall bacterium Agro-
bacterium tumefaciens (Deeken et al. 2006). Similarly,
some species of nematodes induce the formation of
feeding cells in plant roots which are also supplied
with photosynthates by the plant and on which the
nematode fully depends. These feeding cells are
possibly controlled via a local nematode-hijack of
plant auxin-metabolism (Gheysen and Fenoll 2002)
and they were found to have down-regulated JA-
responsiveness (Ithal et al. 2007). Like nematodes,
also aphids do not physically remove tissue during
feeding. Aphids withdraw phloem sap from the
vascular bundle and although not causing much
mechanical damage, plants respond to phloem fee-
ders by sealing off the puncture wounds after stylet
piercing (Walling 2008). Since these seals can effi-
ciently block the insect’s stylet-food channel, the
saliva of some aphids (Carolan et al. 2009) contains
proteins that antagonize these plant depositions to
prevent feeding site occlusion (Giordanengo et al.
2010).

Suppression of plant defenses

Although there are indications that secreted herbi-
vore defense-elicitors are under negative selection
(Mori et al. 2001) many plant-consumers have also
acquired traits, often in the form of secreted sub-
stances, that enable them to interfere with the plant’s
ability to properly organize its defenses after the plant
has detected the herbivore (Zhu-Salzman et al. 2005)
or pathogen (Metraux et al. 2009).

Suppression of RNAi

A central defense against viruses is RNA-interference
(RNAi). RNAi is a mechanism during which a plant
generates virus-specific small RNAs that form du-
plexes with viral nucleic acids which are subsequently
degraded by plant nucleases (Katiyar-Agarwal and
Jin 2010). A role for RNAi in direct defenses against
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herbivores remains elusive (Pandey et al. 2008).
However, some viruses suppress RNAi via production
of proteins that scavenge (Bivalkar-Mehla et al. 2010)
or modify small RNAs (Vogler et al. 2007) before they
can bind to their RNA target. Moreover, the Cucum-
ber Mosaic Virus produces suppressors that block the
activity of the RNAi-specific nucleases (Zhang et al.
2006). Virus-induced RNAi augments the HR during
which plant tissue is sacrificed in order to prevent
pathogens from spreading (Dangl and Jones 2001).

Suppression of local tissue death

Some pathogenic fungi were found to produce so-
called supprescins of induced plant defenses: these
supprescins are small glycoproteins that delay the
transcription of plant-genes involved in the produc-
tion of toxins such as phytoalexins (Shiraishi et al.
1994). Moreover, at least two plant pathogenic fungi
i.e. Fusarium wilt-causing Fusarium oxysporum
(Pareja-Jaime et al. 2008) and Septoria leaf spot-
causing Septoria lycopersici (Bouarab et al. 2002),
were found to produce and secrete the enzyme
tomatinase that converts the defensive alkaloid
tomatine of tomato Solanum lycopersicum into harm-
less substances. Surprisingly, these tomatine-hydrolysis
products were found to inhibit tomato defense
signaling during infection showing that detoxification
and suppression can operate in tandem. In addition,
many bacterial phytopathogens secrete so-called
effector molecules that play diverse but key-roles
during the infection process. Effectors can be either
associated with implementing the release of nutrients
from the host tissue or with the suppression of local
cell death and the deposition of callose in infected
tissues. Interestingly, some of these effectors
were found to operate as transcriptional or post-
transcriptional repressors of plant defense genes while
other were found to interfere with the activation of
early signaling proteins or with their trafficking
between different organelles or cells (Nomura et al.
2005; Metraux et al. 2009). In addition, it was found
that the saliva of the green peach aphid Myzus
persicae contains effectors that interfere with plant
defenses e.g. by suppressing the flagellin-22 induced
oxidative burst. Interestingly, in planta over-expression
of two of these effectors reduced rather than in-
creased aphid fitness suggesting that their individual
action may be not always beneficial or only when
produced in the appropriate amounts at the appro-
priate moment and location (Bos et al. 2010).

Suppression via the jasmonate-salicylate antagonism

Some effector substances appeared to specifically
target plant defense-hormone signaling as F. oxy-
sporum (Thatcher et al. 2009) and bacterial speck
disease-causing Pseudomonas syringae DC3000
(Katsir et al. 2008) were found to use the JA-SA
antagonism of plants to their own advantage.

P. syringae produces the JA-isoleucine-mimic coro-
natine that binds to the so-called COI-complex: under
normal circumstances this COI-complex is activated
by herbivore-induced JA-isoleucine initiating the
degradation of transcriptional repressors of JA-
dependent defense-genes thereby allowing these genes
to be transcribed. Concomitantly, the binding of
coronatine forces the plant to switch on its JA-
defenses (Melotto et al. 2008) thereby inhibiting the
SA-dependent defense responses to which these
pathogens are vulnerable (Uppalapati et al. 2007).
Herbivores were found to perform similar manipula-
tions although the mechanisms behind these manip-
ulations are still unknown. On Arabidopsis,
the phloem-feeding sweetpotato whitefly Bemisia
tabaci was found to suppress JA-defenses in an SA-
dependent manner since they were found to develop
slower on plants with a high level of JA-defenses or
which had impaired SA-defenses compared to plants
with a high SA-responsiveness or impaired in JA-
defenses (Zarate et al. 2007). However, in Lima bean
Phaseolus lunatus, whitefly-feeding inhibited not only
Two-spotted spider mite Tetyranychus urticae-
induced JA-accumulation and release of volatiles
but also mite-induced SA-accumulation suggesting
here the whitefly-mediated suppression was indepen-
dent from SA (Zhang et al. 2009).

Suppression of direct and indirect defenses

How whiteflies induce and suppress plant defenses is
unknown but it is likely that the inducing and
suppressive agents emanate from the saliva they
inject into their host plant via their stylets. Spider
mites are also stylet feeders but feed from mesophyll
cells and it was found that different genotypes of the
Tea red spider mite Tetranychus kanzawai differen-
tially induce SA-defenses in beans (Matsushima et al.
2006) while different genotypes of T. urticae appeared
to differentially induce plant volatiles (Takabayashi
et al. 2000). Most T. urticae genotypes induce
simultaneously JA and SA accumulation in tomato
leaflets (Kant et al. 2004) albeit possibly both with
distinct spatio-temporal dynamics within leaflets. It
was found that some T. urticae genotypes are
resistant to the JA-dependent tomato defenses they
induce (Ament et al. 2004) while others appeared
susceptible to these. However, not all of these
susceptible genotypes suffered from tomato defenses
since some of them were found to suppress the
induction of JA- and SA-dependent direct and
indirect defenses such that they could uphold a high
fitness. This suppression was strong enough to
increase the fitness of non-suppressor genotypes
co-inhabiting the feeding site (Kant et al. 2008).
Recently it was discovered that yet another species
from this genus, the Tomato red spider mite T. evansi,
also suppresses both SA and JA-defenses in tomatoes
but to a magnitude that is unprecedented since
proteinase-inhibitor gene expression-levels as well as
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their associated enzyme activities were lower in mite-
infested plants compared to uninfested control plants
(Sarmento et al. 2011). The mite suppresses the
induction of JA-related volatiles but, surprisingly,
its natural enemies the predaceous mites Phytoseiulus
longipes and P. macropilis still responded to the odors
of infested plants (Sarmento 2011). Possibly spider
mites secrete suppressors via their saliva which was
also suggested for some herbivores with haustellate
mouthparts such as the Hessian fly Mayetiola
destructor (Wu et al. 2008) and for some chewing
herbivores such as the Colorado potato beetle
Leptinotarsa decemlineata (Lawrence et al. 2008);
the larvae of the Beet armyworm Spodoptera exigua
(Weech et al. 2008) and those of the Corn earworm
Helicoverpa zea (Musser et al. 2002). H. zea larvae
produce the enzyme glucose oxidase which protects
the herbivore against pathogens but also suppresses
induced nicotine accumulation in tobacco N. tabacum
(Eichenseer et al. 2010). In addition, S. exigua larvae
with impaired salivary secretions induced stronger
JA-levels and associated activity of defensive plant-
enzymes than intact larvae on Arabidopsis (Weech
et al. 2008) and it was shown that in S. exigua saliva
distinct molecular modifications, such as protein
phosphorylation, occur (Thivierge et al. 2010). Inter-
estingly, it was shown that not only herbivore oral
secretions but also their eggs, such as those of the
Cotton leafworm S. littoralis, can be a source of
agents that after active or passive release into plant
tissue cause local suppression of the JA-pathway via
induction of the SA-pathway such that newly hatched
larvae benefit from leaf tissue being locally pre-
suppressed (Bruessow et al. 2010). Finally, it was
suggested that the mesophyll feeding western flower
thrips Frankliniella occidentalis may abuse the JA-SA
antagonism in an indirect fashion by vectoring
viruses via their saliva that induce SA-responses and
hence suppress JA-responses (Belliure et al. 2005). As
a consequence, this appeared to make the plant also
more suitable for competitors such as T. urticae
(Belliure et al. 2010). This justifies the question if
and when the benefits of adapting to resist plant
defenses will outweigh the benefits of adapting to
suppress these defenses, since such suppression may
create equal opportunities for competitors.

To suppress or to resist plant defenses?

There are indications that herbivores that suppress
plant defenses indeed put special efforts in monopoliz-
ing their feeding site. T. evansi, for example, produces
massive amounts of webbing onto the leaf surface
impenetrable to other herbivores such as T. urticae
(Sarmento 2011). This raises the question whether
we can predict under which circumstances the selective
advantage for traits that enable herbivores to suppress
defenses will be greater than that of traits making them
resistant to defensive products and vice versa. Resis-
tance to toxins often results from mutations that lead

to target site insensitivity i.e. mutations that disrupt
the negative interaction between target proteins of the
herbivore and toxins but leave the basal function of
that specific protein intact (Li et al. 2004; Despres et al.
2007; Van Leeuwen et al. 2008). We found that the
fitness advantage of JA-defense-suppression appeared
somewhat lower than the fitness advantage of JA-
defense-resistance while, in turn, the fitness advantage
of suppression was also observed on host plants other
than tomato while that of the tomato-resistant geno-
type was not (Kant et al. 2008). This implies that the
ability to resist host defenses may have a larger
positive impact on a consumer’s fecundity than the
ability to suppress those but may also cause its host
range to become narrower while the ability to suppress
defenses may have a smaller positive impact on a
consumer’s fecundity while expanding its host range,
provided that the mechanism of suppression targets
conserved traits of the plant-defense machinery.
Hence there may be host-range related trade-offs
between the ability to suppress defenses and the ability
to resist defenses that balance the persistence of these
two traits within local herbivore populations living in
a homogeneous or a heterogeneous plant environment
as, for example, the species T. urticae was reported
feeding from over 900 plant species comprising 124
different plant families (Egas et al. 2003) as a result
from intraspecific variation since, clearly, not all the
individuals of this species have the same host range
(Kant et al. 2008). Hence, the challenge for the future
is to determine how the fitness landscape of specialist
and generalist herbivores is affected by their abilities
to deal with host-plant defenses with regard to the
spatial heterogeneity in the environment and to
identify some of the basal signal-transduction net-
works and their genetic components that are targets
for natural selection and give rise to directional and
disruptive adaptive changes in how local herbivore
populations cope with plant defenses.
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