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1. Introduction
Bats, with wide geographical distribution and capable of 
flying, while pangolins which harbor coronaviruses similar 
to the one that causes Covid-19, have been suspected to 
be the origins, which contain one of the largest groups 
of mammalian species and have been considered as 
natural hosts of a large number of diverse viruses such 
as lyssaviruses, paramyxoviruses and filoviruses (Smith 
and Wang, 2013). During ancient times, numerous novel 
coronaviruses have been discovered in a wide variety of 
bat similar to pangolins species throughout Asia, Europe, 
Africa and America (Drexleret al., 2014). Within the 
coronavirus genera alpha and beta-coronavirus, which 
mainly infect mammals, 7 out of the 15 currently assigned 
viral species have only been found in bats and pangolins (De 
Groot et al., 2012). It is suggested that bats and pangolins 
are major hosts for both alpha and beta-coronaviruses and 
perform significant function as the source of gene in the 
evolution of two coronavirus genera (Woo et al., 2012). 
Amidst the coronaviruses harbored by bats and pangolins, 
specific research interest has been drawn, as they exist 
to be associated with two high profile human disease 

outbreaks, severe acute respiratory syndrome (SARS) and 
Middle East respiratory syndrome (MERS).

Researchers in the current study focus on the growing 
cases of coronaviruses putatively linked to a zoonotic 
origin from bats and pangolins, represented by SARS 
coronavirus (SARS-CoV) and MERS coronavirus (MERS-
CoV). Overview of current evidence for bat origin similar 
to pangolins of these two viruses and also discuss how the 
spillover events of coronavirus from animals to humans 
may have happened. Considering that bats have been 
known to harbor more coronaviruses than any other 
species, it is likely that SARS-CoV and MERS-CoV will 
not be the only bat and pangolin coronaviruses to jump 
among species and cause human infections. 

Some studies have been conducted on the 
coronaviruses and some results stated that it originated 
from animals specifically bat, however; the origins remain 
a debate among scientists. Furthermore, few of these 
studies presented limited explanations about the origin of 
coronaviruses and none of them have detailed the history 
of the virus origins. Therefore, this study has collected, 
documented and compared data about coronaviruses. 
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The literature search will be conducted by using the 
following search term: “the origins of coronaviruses”.  As 
there are extremely limited studies on the origins of the 
deadly viruses, the authors included available information 
found in scientific databases, from reading available books 
and reports, and from searching scholarly journals for 
research articles about deadly viruses was included in this 
study. In this literature review, the authors will respect the 
original authors’ definitions, descriptions, methodology, 
and reported results. During the literature review search, 
various information and results were obtained about 
coronaviruses but the review’s objectives were prioritized.  

2. SARS and MERS first emergence
In 2002, SARS first emerged in Guangdong Province 
of southern China, as a novel clinical severe disease 
(termed “atypical pneumonia”) marked by fever, 
headache and subsequent onset of respiratory symptoms 
including cough, dyspnea, and pneumonia. Being highly 
transmissible among humans, SARS rapidly spread to 
Hong Kong and other provinces across China and then 
to other countries (Zhong et al., 2003; Chinese SARS 
Molecular Epidemiology Consortium, 2015). By July 
2003, it had caused 8096 confirmed cases of infection 
in other countries, 774 (9.6%) of which were fatal1. The 
second outbreak in 2004 only caused 4 infections without 
mortality nor further transmission (Song et al., 2005). The 
MERS epidemic emerged in the Kingdom of Saudi Arabia 
(KSA) since June 2012, with a similar clinical syndrome 
to SARS but seemingly less transmissible. In addition to 
respiratory illness, renal failure was identified in some 
severe cases (Bermingham et al., 2012; Zaki et al., 2012; 
World Health Organization, 2015). Unlike SARS which 
had numerous super-spreader events, most MERS cases 
were independent clusters and limited to countries in the 
Middle East, particularly in KSA. Limited MERS cases 
have been reported in African and European countries 
and the United States of America, but exclusively in 
individuals traveling back from the Middle East. Some 
patients were reported to have a history of contact with 
camels while many other cases lacked this epidemiological 
link (Bermingham et al., 2012; Zaki et al., 2012; World 
Health Organization, 2015). The MERS pandemic in the 
Republic of Korea in 2015 was caused by a single person 
who returned from travel in the Middle East. This made 
the Republic of Korea be home to the second-largest MERS 
epidemic with a total of 185 confirmed cases and 36 deaths 
(WHO, 2015; Korean Society of Infectious, 2015). By 18 
August 2015, a total of 1413 laboratory-confirmed cases of 
MERS have been reported worldwide with a median age 

1 World Health Organization (2020). Emergencies, preparedness and Response. Website:http://www.who.int/csr/sars/ country/table2004_04_21/en/ 
[accessed: 31 December 2003].

of 50 years, including 502 related deaths. The mortality of 
MERS (approximately 35%) is much higher than that of 
SARS (around 10%).

3. The representation of SARS-CoV and MERS-CoV 
species in the genus beta-coronavirus
3.1. Genomic structure and taxonomic classification
SARS-CoV and MERS-CoV share similar genome 
organization with other coronaviruses but display unique 
genomic structures and evolutionary lineages. The 
coronavirus genome possesses 6-to-7 major open reading 
frames (ORFs) in the characteristic gene order in the 5’ to 3’ 
direction:  ORF1a and 1b which comprise two-thirds of the 
genome and encode the nonstructural polyproteins, and 
four ORFs downstream that encode structural proteins: 
spike protein (S), envelope protein (E), membrane protein 
(M) and nucleocapsid protein (N). Some coronaviruses 
have a hemagglutinin-esterase (HE) gene between ORF1b 
and S. Besides the coronavirus-conserved genes, the SARS-
CoV genome contains a number of specific accessory 
genes including ORF3a, 3b, ORF6, ORF7a, 7b, ORF8a, 
8b and 9b (Rota et al., 2003; Marra et al., 2003; Snijder et 
al., 2003). Comparably, MERS-CoV encodes five unique 
accessory genes, designated  ORF3, ORF4a, ORF4b, 
ORF5, and ORF8b. None of these genes have been shown 
to be related to other known coronavirus genes at the time 
of discovery (Woo et al., 2012; Van Boheemen et al., 2012). 
MERS-CoV was found to have 75 and 77% amino acid 
(aa) sequence identity in 7 conserved replicase genes with 
two previously identified bat coronaviruses: BtCoV-HKU4 
and BtCoV-HKU5. Based on the classification criteria of 
the International Committee on Taxonomy of Viruses 
(ICTV), SARS-CoV and MERS-CoV represent two novel 
distinct coronavirus species in the genus betacoronavirus 
(Table 1) (Zaki et al., 2012a: De Groot et al., 2013; Zaki, 
2012). Members of beta-coronaviruses are separated into 
four lineages, A, B, C and D. SARS-CoV, and MERS-CoV 
are clustered in lineages B and C, respectively (De Groot 
et al., 2013). 
3.2. Receptor usage
The S protein of coronaviruses is a surface-located trimeric 
glycoprotein consisting of two subunits: the N-terminal S1 
subunit and the C-terminal S2 subunit. The S1 subunit 
specializes in recognizing and binding to the host cell 
receptor while the S2 region is responsible for membrane 
fusion. Compared with the S2, the S1 subunit shows 
much higher variability (Masters, 2006). Owing to its 
function of receptor binding, the variation in S protein 
defines in large part the tissue tropism and host range of 
different coronaviruses (Gallagher and Buchmeier, 2001). 
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Table 1. The analysis of bat and pangolin coronaviruses with other coronaviruses.

Alphacoronavirus
Section (A) Betacoronavirus Betacoronavirus

lineage D
Rhinolophus sinicus
BtCoV/Rs672 FJ588686

Rhinolophus sinicus
BtCoV/HKU3 DQ022305 Betacoronavirus lineage D

Miniopterus magnater 
BtCoV/1A NC_010437 (97)

Porcine PRCV/ISU-1 
DQ811787 (100)

Rousettus aegyptiaeus 
BtCoV/KY06 HQ728483

Rhinolophus macrotis  
BtCoV/Rm1 DQ412043

Rhinolophus blasii BtCoV/
BM48-31 NC_014470

Rousettus leschenaulti 
BtCoV/HKU9 EF_065513   

Miniopterus pusillus 
BtCoV/1B NC_010436 (97)

Bovine BCoV/ENT 
NC_003045 (68)

Rousettus leschenaultia 
BtCoV/HKU9 EF065513

Rhinolophus sinicus BtCoV/
HKU3 DQ022305

Miniopterus natalensis 
BtCoV/KY27 HQ_728484 
(93)

Equine CoV/NC99 
NC_010327 (56)

Eidolon helvum BtCoV/
KY24HQ728482

Rhinolophus sinicus BtCoV/
Rp3 HKU3 DQ071615 Gammacoronavirus Alphacoronavirus

Miniopterus inflatus BtCoV/
KY33 HQ_ 728485 (93)

Porcine PHEV/VW572 
NC_007732 (100)

Rhinolophus blasii BtCoV/
BM48-31 NC_014470

Avian IBV/Beaudette 
NC_0001451

Miniopterus magnater 
BtCoV/1A NC_010437

Miniopterus pusillus 
BtCoV/1B HKU8 
NC_010438 (76)

Human CoV-OC43 
NC_005147 (84)

Betacoronavirus potential 
new line

Hipposideros commersoni 
BtCoV/ZBCoV HQ166910

Whale BWCoV/SW1 
NC_010646

Miniopterus pusillus 
BtCoV/1B NC_010436

Miniopterus spp. BtCoV/
HKU7 DQ_666339 (76) Rat CoV/R1KF294370 (96) Hipposideros spp. BtCoV/

GhanaKwan/20 FJ710047
Miniopterus pusillus 
BtCoV/HKU8 NC_010438

Porcine PEDV/MN 
KF468752 (100)

Mouse MHV-A59 
NC_001846 (100)

Hipposideros spp. BtCoV/
GhanaKwan/20 FJ710047 Betacoronavirus lineage A Deltacoronavirus Hipposideros Pomona 

BtCov/HKU10 JQ989273

Porcine PEDV/AH2012 
KC210145 (100)

Rat CoV/Parker NC_012936 
(100)

Human CoV HKU1 
NC_006577

Moorhen CMCoV/HKU11 
FJ376620

Rousettus leschenaulti 
BtCoV/HKU10 NC_018871

Charephon spp. BtCoV/
KY22 HQ728486 (100)

Human CoV-HKU1 
NC_006577 (100) Betacoronavirus lineage B Human CoV OC43 

NC_005147
Bulbul BuCoV/HKU11 
FJ376620

Human CoV NL63 
NC_005831

Cardioderma cor BtCov/
KY43 HQ728480 (100)

Civet SARS-CoV/SZ3 
AY304486

Bulbul BuCoV/HKU11 
FJ376620

Human CoV 229E 
NC_002645

Hipposideros Pomon 
BtCov/HKU10JQ989273 
(100)

Human SARS-CoV/Tor2 
NC_004718 Betacoronavirus lineage C

Scotophilus kuhlii 
BtCoV/512/2005 
NC_009657

Rousettus leschenaulti 
BtCoV/HKU10NC_018871 
(100)

Betacoronavirus lineage C
Rhinolophus 
ferrumequinum BtCoV/
YNLF KP886808

Camel MERS-CoV/KSA-
CAMEL-376 KJ713299

Betacoronavirus lineage B Whale BWCoV/SW1 
NC_010646

Human CoV-NL63 
NC_005831 (100)

Human MERS-CoV 
JX869059 (86)

Rhinolophus sinicus BtCoV/
RsSHCO14 KC881005

Camel MERS-CoV/NRCE-
HKU205KJ477102 Section (B) Avian IBV/Beaudette  

NC_001451
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Carollia perspicillatta 
BtCoV/1FY2BA EU769557 
(100)

Camels MERS-CoV-NRCE-
HKU205KJ477102 (100)

Rhinolophus sinicus BtCoV/
Rs3367 KC881006

Tylonycteris pachypus 
BtCoV/HKU4 NC_009019

Human SARS-CoV/Tor2 
NC_004718

Myotis lucifugus BtCoV/
CDPHE15/USA NC_022103 
(100)

Camels MERS-CoV-KSA-
CAMEL-376 KJ713299 (990

Rhinolophus sinicus BtCoV/
RsWIV1KF367457 

Pipisterllus abramus BtCov/
HKU5 NC_009020

Civet SARS-CoV/SZ3 
AY304486

Myotis daubentonii BtCoV/
NM98-62 GU190216 (57)

Neoromica capensis BtCoV/
NeoCoV KC869678 (99)

Rhinolophus sinicus BtCoV/
Rp3DQ071615

Vespertilio superans BtCoV/
SC2013 KJ473821

Rhinolophus sinicus BtCoV/
Rs3367 KC881006

Scotophilus kuhlii 
BtCoV/512/2005 
NC_009657 (57)

Pipistrellus pygmaeus 
BtCoV/8-724 KC243390 
(56)

Rhinolophus sinicus BtCoV/
Rs672 FJ588686

Erinaceus europaeus 
EriCoV NC_022643

Rhinolophus sinicus BtCoV/
W1V1 KF367457KF367457

Hipposideros spp. BtCoV/
Ghanakwam/19 FJ710046 
(58) 

Tylonycteris pachypus 
BtCoV/HKU4 NC_009019 
(81)

Chaerephon plicata BtCoV/
Cp JX993988

Neoromica capensis BtCoV/
Neo KC869678

Rhinolophus sinicus BtCoV/
W1V1 KF367457KF367457

Human CoV-229E 
NC_002645

Erinaceus europaeus 
EriCoV NC_022643 (66)

Rhinolophus 
Ferrumequinum BtCoV/
YNLF 31C KP886808

Rhinolophus macrotis  
BtCoV/Rm1 DQ412043

Rhinolophus sinicus BtCoV/
RsSHC014 KC881005

Chaerephon pumilus BtCoV 
/KenyaKY41 HQ728481

Rhinolophus 
Ferrumequinum BtCoV/Rf1 
DQ412042

Rhinolophus 
ferrumequinum  BtCoV/
Rf1DQ412042

Rhinolophus pusillus  
BtCoV/Rp JX993987

Feline FIPV/79-1146 
AY994055

Chaerephon plicata BtCoV/
Cp JX993988

Rhinolophus pusillus 
BtCoV/Rp JX993987

The phylogenetic table was constructed based on 816-nt partial RdRp sequences (Section A) and full-length spike protein sequences (Section B). Available sequences were retrieved 
from GenBank and aligned using ClustalW. The alignment was used to construct a tree by MEGA (Version 5.1) with the neighbor-joining statistical method. Bootstrap values were 
calculated from 1000 replicates (values ≥50 are shown). Bat coronaviruses are written in bold and named following bat species, plus BtCoV, strain name, and GenBank accession 
number.

Table 1. (Continued).
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Angiotensin-converting enzyme 2 (ACE2) was identified 
to be the functional receptor of SARS-CoV (Li et al., 2003; 
Hamminget al., 2004; Ding et al., 2004).A 193 aa fragment 
(aa 318–510) of SARS-CoV S protein was demonstrated 
to bind ACE2 more efficiently than the full S1 domain 
and was defined as the receptor-binding domain (RBD) 
of SARS-CoV (Wong et al., 2004). A loop subdomain (aa 
424–494) that directly contacts with ACE2 was further 
identified as the receptor-binding motif (RBM) by crystal 
structure analysis (Li et al., 2005). In the RBM, several 
aa residues were found to be critical for receptor binding 
and changes in these key residues resulted in different 
binding efficiency among different SARS-CoV isolates 
(Li et al., 2005; Qu et al., 2005; Li et al., 2005). Dipeptidyl 
peptidase 4 (DPP4, also known as CD26) was identified 
as a functional receptor for MERS-CoV (Raj et al., 2003) 
and it is relatively conserved among mammalian species. 
Published results indicated that MERS-CoV can infect 
and replicate in most cell lines derived from a human, 
nonhuman primate, bat, swine, goat, horse, rabbit, civet, 
and camel, but not from mice, hamster, dog, ferret, and 
cat (Raj et al., 2003; Barlan et al., 2014; De Wit et al., 2013; 
Coleman et al., 2014; Eckerle et al., 2014; Chanet al., 2013; 
van Doremalen et al., 2014; Haagmans et al., 2015). DPP4 
from camel, goat, cow, and sheep can be also recognized 
by MERS-CoV and can support MERS-CoV replication 
(Barlan et al., 2014; Van Doremalen et al., 2014). Resolved 
crystal structures demonstrate that DPP4- recognizing 
RBD is localized to the S1 C-terminal portion of S protein 
of MERS-CoV (Lu et al., 2013; Wang et al., 2013; Chenet 
al., 2013). The RBD of MERS-CoV consists of ~240 
residues, spanning aa 367–606, which fold into a structure 
consisting of two subdomains, the core subdomain, and 
the external subdomain. The core subdomain of MERS-
CoV RBD is structurally similar to that of the SARS-CoV 
RBD, but the external subdomain (also named as RBM) is 
different from that of the SARS-CoV (Lu et al., 2013; Wang 
et al., 2013; Chenet al., 2013).

4. The origins of bat and pangolins of SARS-CoV
Civets are intermediate and transmission host of SARS-
CoV Epidemiological survey showed that early cases 
of SARSin 2002–2003 and all 4 cases in 2003–2004 had 
a history of animal contact through animal trade in wet 
markets and restaurants where live animals were kept 
in Guangdong, China. Molecular detection and virus 
isolation studies suggested that the pandemic-causing 
SARS-CoV originated from traded civets in wet markets. 
This was indirectly confirmed by the massive culling of 
market civets, which was believed to play a major role in 
efficiently containing the SARS pandemics and no further 
SARS case was reported after 2004 (Guan et al., 2003; 
Centers for Disease and Prevention Control, 2003; Xu et 

al., 2004). However, subsequent extensive epidemiology 
studies did not find SARS-CoV in farmed or wild-caught 
civets, indicating that another animal(s) was involved in 
SARS-CoV transmission in the animal market or other 
trading activities and civets are unlikely the natural 
reservoir of SARS-CoV (Kan et al., 2005; Poonet al., 2005; 
Wu et al., 2005).
4.1. Observation of diverse SARS-like coronaviruses in 
bats and pangolins
Several years before the outbreak of SARS, two other 
zoonotic viruses, Nipah virus and Hendra virus emerged 
in Asia and Australia, and they were both known to be 
originated from bats (Halpin et al., 2000; Yob et al., 2001). 
These findings have led scientists to consider bats and 
pangolins in the search of reservoirs of SARS-CoV.  In 2005, 
a breakthrough was made as two independent research 
groups reported, almost simultaneously, the discovery of 
novel coronaviruses related to SARS-CoV in horseshoe 
bats and pangolins (in the genus Rhinolophus and Manis) 
in China, which were termed SARS-like coronavirus (SL-
CoV) (Li et al., 2005; Lau et al., 2005). These bat SL-CoVs 
from both mainland China and Hong Kong manifested a 
genome sequence identity of 88%–90% among themselves 
and 87%–92% identity to human or civet SARS-CoV 
isolates. The unique set of ORFs exclusively found in 
SARS-CoV was also present in bat and pangolin SL-CoVs, 
demonstrating the close phylogenetic relationship between 
SARS-CoV and SL-CoV. The discovery of bat SL-CoV 
boosted researchers’ interest in coronavirus surveillance 
studies in bats. In the following years, SL-CoV RNA was 
detected in Rhinolophus species of a wider geographic 
range in China. The provinces or regions where SL-CoV-
positive bats were captured included Hong Kong, Guangxi, 
Hubei, Shandong, Guizhou, Shaanxi, and Yunnan (Tang et 
al., 2006; Woo et al., 2006; Yuanet al., 2010; Ge et al., 2013). 
7 conserved replicase domains in orf1ab of these SL-CoVs 
found in China were compared with those of SARS-CoV 
(Table 2). They all shared higher than 95% aa sequence 
identity with SARS-CoV in the concatenated domains 
and therefore can be considered to belong to SARS-CoV 
species (Kinget al., 2012). SL-CoVs were also discovered 
in rhinolophids from Countries in Europe (Drexler 
et al., 2010; Rihtaric et al., 2010; Balboni et al., 2011). 
These European SL-CoVs exhibited significant genetic 
variation from Chinese isolates. The strain BM48-31 from 
Rhinolophus blasii in Bulgaria was highly divergent from 
Chinese isolates, displaying major sequence differences in 
several genes including ORF3b and ORF6 and lacking the 
coding region of ORF8 in its genome (Drexler et al., 2010). 
In Africa, novel beta-coronaviruses related to SARS-CoV 
have been detected in Hipposideros and Chaerophon 
species from Africa. However, compared with Asian and 
European SL-CoVs, these viruses of nonrhinolophid 
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Table 2. Comparison of bat coronaviruses with SARS-CoV or MERS-CoV in conserved replicase domains and structural proteins.

CoV Strain Bat and pangolins species Regions                       Percent of amino acid sequence identity with SARS_CoV or MERS-CoV

ADRP 3CLPro RdRp Hel ExoN NendoU OMT Domains S E M N

HKU3 Rhinolophus sinicus China 92.0 99.3 98.6 99.2 98.1 98.0 98.3 96.0 79.7 100 98.6 96.7
Rp3 Rhinolophus sinicus China 95.4 99.7 99.5 99.7 99.2 97.4 98.3 97.7 80.3 100 97.3 98.1
Rm1 Rhinolophus macrotis China 91.0 99.3 99.3 99.3 97.9 97.1 98.0 95.6 80.6 98.7 97.3 97.6
Rf1 Rhinolophus ferrumequinum China 92.3 99.7 98.6 99.5 97.9 97.7 96.3 96.0 78.4 96.1 97.7 95.5
Rs672 Rhinolophus sinicus China 97.0 99.3 99.8 99.3 99.1 98.6 99.0 98.4 80.2 100 98.6 98.6
Rs3367 Rhinolophus sinicus China 97.0 100 99.6 99.8 99.2 98.3 98.0 98.4 92.3 100 98.2 100
RsSHC014 Rhinolophus sinicus China 96.9 99.7 99.6 99.8 99.2 98.8 97.7 98.4 90.0 98.7 98.2 100
WIV1 Rhinolophus sinicus China 97.0 99.7 99.5 99.8 99.2 98.8 98.0 98.4 92.2 100 98.2 99.8
Cp/Yunnan Chaerephon plicata China 97.6 100 99.1 98.5 98.1 98.6 97.3 98.2 81.1 100 99.1 98.1
Rp/Gansu Rhinolophus pusillus China 93.5 100 99.2 99.7 98.9 97.7 99.0 96.9 81.1 97.4 96.8 98.1
YNLF_31C Rhinolophus ferrumqunium China 97.2 99.7 99.6 99.7 99.4 98.3 97.7 98.4 79.2 100 98.6 98.3
BM48-31 Rhinolophus blasii Bulgaria 76.8 94.4 99.8 98.1 95.6 91.9 91.6 88.3 75.9 92.1 91.4 88.5
HKU4-1 Tylonycteris pachypus China 81 81 89.8 92.1 85.4 76 82.8 78.4 67 56.1 79 65.8
HKU5-1 Pipistrellus abramus China 55.5 82.6 91.8 93.8 91.7 79.7 85.7 80.1 64 53.6 79 61.4

NeoCoV Neoromia capensis South 
Africa 86.7 96.7 98 98.4 98.2 94.1 96.3 95 64 87.7 94.2 91

SC2013 Vespertilio superans China 53.5 79 88.5 93.4 85.6 76.6 88.1 85.7 69 84.5 84.7 74.4

Calculated with MEGA5.1 using a pairwise deletion option; Bat SL-covs are listed in the upper part of the table while camel MERS-CoV and pangolins covs related to MERS-cov in 
the lower part seven domains were series connected and calculated with MEGA5.1 using a pairwise deletion option ADRP, ADP-ribose 1-phosphatase; 3clpro, coronavirus NSP5 
protease; rdrp RNA-dependent RNA polymerase; Hel, helicase; exon, exoribonuclease; nendou, endoribonuclease; OMT, 2’-O-methyltransferase genbank accession numbers: 
Tor2, NC_004718; HKU3, DQ022305; Rp3, DQ071615; Rm1, DQ412043; Rf1, DQ412042; Rs672, FJ588686; Rs3367, KC881006; rsshc014, KC881005; WIV1, KF367457; Cp/
Yunnan2011, JX993988; Rp/Shaanxi2011, JX993987; YNLF_31C, KP886808; EMC/2012, JX869059; HKU5-1, NC_009020; HKU4-1, NC_009019; betacov/SC2013, KJ473821; 
neocov, KC869678.
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origin were phylogenetically distant to SARS-CoV. The 
Western African isolates even formed a potential new 
lineage of beta-coronavirus in the phylogenetic tree (Table 
1) (Pfefferle et al., 2009; Tong et al., 2009; Quan et al., 
2010).
4.2. The ancestor of SARS-CoV in bats and pangolins
Although it is mentioned that bat and pangolins SL-CoVs 
showed high sequence identity to SARS-CoV, two deletions 
were present in the RBM of their S proteins (Li et al., 2005; 
Lau et al., 2005). The differences in RBM substantially 
changed receptor usage. In a study using an HIV-based 
pseudovirus system and cell lines expressing human, civet, 
and horseshoe bat ACE2 molecules, the bat and pangolin 
SL-CoV Rp3 S protein demonstrated its inability to use 
ACE2 as cell receptor (Ren et al., 2008). However, the 
chimeric Rp3 S protein carrying the RBD of SARS-CoV S 
protein was conferred the capability of cell entry via human 
ACE2 (Ren et al., 2008). These results suggested that bat 
and pangolin SL-CoVs such as Rp3 were unlikely to cause 
human infection. Therefore, they may not be considered 
as the direct progenitor of SARS-CoV. Besides, the theory 
of bat and pangolin origin of SARS-CoV lacked powerful 
support due to the failure of direct isolation of SL-CoV 
from bats, despite numerous trials by our group as well as 
many others around the world. During our longitudinal 
surveillance at a Rhinolophus sinicus colony in Yunnan 
Province over the years, a major breakthrough came in 
2013 when diverse SLCoVs were discovered in the single 
colony (Geet al., 2013). In this colony, there were at least 7 
different strains related to SARS-CoV, HKU3, Rs672 or Rf1, 
based on analysis of the region corresponding to SARS-
CoV RBD. Intriguingly, unlike all previously described SL-
CoVs, two strains, designated Rs3367 and RsSHC014, did 
not contain the deletions in this region. Rs3367 showed 
a particularly high sequence identity to SARS-CoV in 
RBD and was identical to SARS-CoV in several key amino 
acid residues known to be important for receptor binding 
(Geet al., 2013).Whole genome sequencing revealed that 
Rs3367 and RsSHC014 shared more than 95% genome 
sequence identity with human and civet SARS-CoV, which 
was remarkably higher than that of any other bat SL-CoV 
(76 to 92%). Regarding individual genes, the amino acid 
sequence identity between Rs3367 or RsSHC014 and 
SARS-CoV was higher than 96% in ORF1a, 1b, 3a, 3b, 
E, M and N genes (Geet al., 2013). Most importantly, a 
live SL-CoV was isolated for the first time from bat fecal 
samples (Geet al., 2013). This virus, termed WIV1, had 
almost identical sequences (99.9%) to Rs3367 and was 
demonstrated to use ACE2 molecules from humans, 
civets and Chinese horseshoe bats and pangolins for cell 
entry. It also displayed infectivity in cell lines from a broad 
range of species including human, pig, bat, and pangolin. 
Furthermore, the close relatedness between WIV1 and 

SARS-CoV was confirmed by the neutralization effect 
of convalescent SARS patient sera on WIV1 (Geet al., 
2013). The isolation of a bat SLCoV genetically closely 
resembling SARS-CoV and having a functional S protein 
capable of using the same ACE2 receptor as SARS-CoV 
provided robust and conclusive evidence for the bat origin 
of SARS-CoV.
4.3. Possible origin of SARS-CoV from recombination of 
differ different SL-CoVs
Despite the fact that Rs3367 or WIV1 is unprecedently 
close to SARS-CoV in terms of RBD region and genome 
identity, still, there are gaps between them and the 
immediate ancestor of SARS-CoV. ORF8 is a highly 
variable gene and remarkable differences can be observed 
among SARS-CoVs and SL-CoVs of different host origins. 
Isolates from civets and from early phase of the 2002/2003 
pandemic contained a single long ORF8, while in the 
human SARS-CoV isolates from the middle and late phase 
of the pandemic the ORF8 was disrupted into two ORFs, 
ORF8a and ORF8b, as a result of the acquisition of a 29-nt 
deletion after interspecies transmission to humans (Songet 
al., 2005; Guanet al., 2003; Quan et al., 2010). The SL-CoVs 
from Rhinolophus sinicus, including Rs3367, however, had 
a single ORF8 with only 32%–33% amino acid identities to 
that of civet SARS-CoV. In contrast, the ORF8 of two novels 
SL-CoV strains recently reported in Yunnan from another 
rhinolophid species, Rhinolophus ferrumequinum, 
exhibited exceptionally high (81.3%) amino acid identity 
to civet SARS-CoV SZ3 (Lau et al., 2015). This is consistent 
with isolate Rf1, an SL-CoV reported earlier from R. 
ferrumequinum in Hubei Province, China of which the 
ORF8 shared 80.4% amino acid identity to SZ3 (Li et 
al., 2005). Potential recombination sites were identified 
around the ORF8 region between SLCoVs from R. sinicus 
and R. ferrumequinum and it has been suggested that 
the ancestor of civet SARS-CoV probably acquired ORF8 
from R. ferrumequinum SLCoVs by recombination (Lau 
et al., 2015).
4.4. Animal origins of MERS-CoV
As with SARS-CoV, most early MERS cases had contact 
history with animals, e.g., dromedary camels (Albarrak 
et al., 2012; Health Protection Agency, 2013). MERS-
CoV RNA was detected in camels from Saudi Arabia, 
Qatar, and Egypt and showed high similarities (>99%) to 
human MERS-CoV in genomic sequences (Memish et al., 
2014; Chu et al., 2014; Haagmans et al., 2014; Briese et al., 
2014; Yusof et al., 2015; Annan et al., 2015). Serological 
evidence further confirmed a high prevalence of MERS-
CoV infections in camels in the Middle East (Hemida et 
al., 2013; Reusken et al., 2013; Meyer et al., 2014; Nowotny 
N et al., 2014; Alagaili et al., 2014; Reusken et al., 2013), 
Africa (Corman et al., 2014; Reusken et al., 2014; Muller 
et al., 2014) and Europe (Reusken et al., 2014). The 
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neutralization antibodies in camels could be traced back 
to 1983 (Reusken et al., 2014; Muller et al., 2014). These 
results strongly suggested that MERS-CoV infection 
in humans was transmitted through close contact with 
infected camels (Memishet al., 2014; Alagaili et al., 2014; 
Azhar et al., 2014a; Azhar et al., 2014b). 
4.5. Bat and pangolins viruses related to MERS-CoV
Prior to the emergence of MERS-CoV, a group of bat 
and pangolin coronaviruses had been reported including 
Tylonycteris bat and pangolin coronavirus HKU4 (Bt/
PgCoV-HKU4) in Tylonycteris bats and Pipistrellus bat 
coronavirus HKU5 (BtCoVHKU5) in Pipistrellus bats 
and pangolin in China (Tang et al., 2006; Woo et al., 
2007; Lau et al., 2013), E.isa/ M/Spain/2007 in Eptesicus 
isabellinus bats in Spain (Falcon et al., 2011) and N.noc/
VM366/2008/NLD in Pipistrellus pipistrellus bats in the 
Netherlands (Reusken et al., 2010). Based on genomic 
sequence analysis, these bat coronaviruses were grouped 
into lineage C of the genus beta-coronavirus. After the 
outbreak of MERS, MERS-CoV related coronaviruses were 
found in more bat and pangolin species and countries (De 
Benedictis et al., 2014; Anthonyet al., 2013; Annan et al., 
2013; Wacharapluesadee et al., 2013; Corman et al., 2014; 
Ithete et al., 2013; Memish et al., 2013; Yanget al., 2014; 
Lelli et al., 2013). Among these viruses, full-length or near 
full-length genomes of Bt/PgCoV-HKU4, Bt/PgCoV-
HKU5, SC2013 and NeoCoV have been characterized. By 
genomic analysis of lineage C beta-coronaviruses, MERS-
CoV derived from camels show high similarities to human 
MERS-CoV with >99.5% nt identities, confirming that the 
human and camel isolates belong to the same coronavirus 
species. Bat and pangolin HKU4, HKU5,  NeoCoV, and 
SC2013, shared 69.8%, 70%, 85.6% and 75.6% nt identities 
with MERS-CoV at the genomic level, respectively. Seven 
conserved replicase domains in orf1ab of MERS-CoV 
related viruses were compared with MERS-CoV (Table 2). 
The concatenated translated domains of NeoCoV shared 
95% aa sequence identity with MERS-CoV and it could 
be classified as the same MERS-CoV species (King et al., 
2013). Other bat and pangolin coronaviruses, HKU4, 
HKU5, and SC2013, could be considered as different 
coronavirus species. The most recent ancestor analysis 
speculated that MERS-CoV may have jumped from bats 
to camels approximately 20 years ago in Africa, with 
camels then being imported into the Arabian Peninsula 
(Corman et al., 2014), while HKU5 and MERS-CoV may 
have diverged from their common ancestor about 400 
to 500 years ago (Lauet al., 2013). Although NeoCoV is 
closer to MERS-CoV than other bat coronaviruses at 
the genomic level, the phylogenetic analysis of the spike 
protein showed that HKU4 is the most closely related to 
MERS-CoV among all currently known bat and pangolin 
coronaviruses, sharing 67% sequence identity (Tables 1 

and 2). This is correlated with the capability of HKU4 of 
using DPP4 as its functional receptor. However, HKU4 
preferred bat DPP4 over human DPP4, whereas MERS-
CoV showed the opposite trend (Yang et al., 2014). It was 
suggested that MERS-CoV ancestors had been circulating 
in bats and pangolins for a very long time. MERS-CoV 
has evolved to adapt to the use of the human receptor and 
the DPP4-recognizing bat coronaviruses like HKU4 may 
follow up, thereby posing a serious risk to human health 
(Yang et al., 2014; Cui et al., 2013).
4.6. Transmission of SARS-CoV
During December, the Chinese health authority reported 
an outbreak of serious pneumonia disease in Wuhan, 
China. The causative agent was soon identified as a novel 
coronavirus (Wu et al., 2020), which was later named 
SARS-CoV-2. Case numbers grew rapidly from December 
27 – the Chinese annual festival, 3,090,445 globally as of 
30 April 2020 (Lu et al., 2020), leading to the declaration 
of a public health emergency, and later a pandemic, by 
the WHO (World Health Organization). Many of the 
early cases were linked to the Huanan seafood market 
in Wuhan city, Hubei province, from where the probable 
zoonotic source is speculated to originate (WHO 2019). 
Currently, only environmental samples taken from the 
market have been reported to be positive for SARS-CoV-2 
by the Chinese Center for Disease Control and Prevention 
(Cohen et al., 2020). However, as similar wet markets were 
implicated in the SARS outbreak of 2002–2003 (Wang 
et al., 2005), it seems likely that wild animals were also 
involved in the emergence of SARS-CoV-2. Indeed, many 
mammalian species were available for purchase in the 
Huanan seafood market before the outbreak (Cohen et al., 
2020). Unfortunately, because the market was cleared soon 
after the outbreak began, determining the source virus in 
the animal population from the market is challenging. 
Although a coronavirus that is closely related to SARS-
CoV-2, which was sampled from a Rhinolophus affinis 
bat in Yunnan in 2013, has now been identified (Zhou 
et al., 2020), similar viruses have not yet been detected 
in other wildlife species. The current researcher revealed 
SARS-CoV-2-related viruses in pangolins smuggled into 
southern China.

The observation of putative recombination signals 
between the pangolin coronaviruses, bat coronavirus 
RaTG13, and human SARS-CoV-2. Particularly, the 
SARS-CoV-2 exhibits very high sequence similarities 
reported in Guangdong pangolin coronaviruses in the 
receptor-binding domain (RBD) (97.4% amino acid) 
(Lam et al., 2020) even though it is most closely related 
to bat coronavirus  RaTG13 in the remainder of the viral 
genome. Indeed, the Guangdong pangolin coronaviruses 
and SARS-CoV-2 possess identical amino acids at the 
five critical residues of the RBD, whereas RaTG13 only 



MAWOLO et al. / Turk J Zool

395

shares one amino acid with SARS-CoV-2 (residue 442, 
according to the numbering of the human SARS-CoV) 
(Wan et al., 2020; Lam et al., 2020) and these latter two 
viruses have only 89.2% amino acid similarity in the 
RBD. Notably, a phylogenetic analysis of synonymous 
sites only from the RBD revealed that the topological 
position of the Guangdong pangolin is consistent with that 
of the remainder of the viral genome, rather than being 
the closest relative of SARS-CoV-2 (Lam et al., 2020). 
Therefore, the amino acid similarity between the RBD of 
the Guangdong pangolin coronaviruses and SARS-CoV-2 
may be due to selectively mediated convergent evolution 
rather than recombination. This observation is consistent 
with the fact that the sequence similarity of ACE2 is higher 
between humans and pangolins than between humans and 
bats (Lam et al., 2020). The occurrence of recombination 
and/or convergent evolution further highlights the role 
that intermediate animal hosts have in the emergence 
of viruses that can infect humans. However, all of the 
pangolin coronaviruses identified to date lack the insertion 
of a polybasic (furin-like) S1/S2 cleavage site in the spike 
protein that distinguishes human SARS-CoV-2 from 
related beta coronaviruses (including RaTG13) (Coutard 
et al., 2020) and that may have helped to facilitate the 
emergence and rapid spread of SARS-CoV-2 through 
human populations.

To our knowledge, pangolins are the only mammals in 
addition to bats that have been documented to be infected 
by a SARS-CoV-2-related coronavirus. Notably, two 
related lineages of coronaviruses are found in pangolins 
that were independently sampled in different areas of 
China and that both are also related to SARS-CoV-2. 
This suggests that these animals may be important hosts 
for these viruses, which is surprising as pangolins are 
solitary animals that have relatively small population sizes, 
reflecting their endangered status (Heinrich et al., 2017). 
Indeed, based on the current data it cannot be excluded 
that pangolins acquired their SARS-CoV-2-related viruses 
similarly from bats or another animal host. Therefore, 
their role in the emergence of human SARS-CoV-2 needs 
further attention. In this context, it is noteworthy that 
both lineages of pangolin coronaviruses were obtained 
from pangolins, which originated from Southeast Asia, 
and that there is a marked lack of knowledge of the viral 
diversity maintained by this species in regions in which it is 
indigenous. Furthermore, the extent of virus transmission 
in pangolin populations should be investigated further. 
However, the repeated occurrence of infections with SARS-
CoV-2-related coronaviruses in Guangxi and Guangdong 
provinces suggests that this animal may have an important 
role in the community ecology of coronaviruses.

Coronaviruses, including those related to SARS-
CoV-2, are present in many wild mammals in Asia 

(Wang et al., 2017). Although the epidemiology, 
pathogenicity, interspecies infectivity and transmissibility 
of coronaviruses in pangolins remains to be studied, the 
data presented here strongly suggest that handling these 
animals requires considerable caution and their sale in wet 
markets should be strictly prohibited. Further surveillance 
of pangolins in their natural environment in China and 
Southeast Asia are necessary to understand their role in 
the emergence of coronaviruses and the risk of future 
zoonotic transmissions.
4.7.  Bat coronaviruses and human coronavirus 229E
The (HCoV-229E) and NL63 (HCoV-NL63) was found in 
the 1960s and causes comparatively mild common colds 
worldwide (Reed, 1984). A bat coronavirus detected in 
Hipposideros caffer ruber in Ghana termed Hipposideros/
GhanaKwam/19/2008 was genetically related to HCoV-
229E. Its RdRp fragment shared 92 % nucleotide sequence 
identity with HCoV- 229E and they were predicted to share a 
most recent common ancestor (MRCA) only 200 years ago 
(Pfefferle et al., 2009). A recent study characterized more 
229E-related coronaviruses discovered in hipposiderid bats 
from Ghana on full genome level. These bat coronaviruses 
were more diversified and formed a single viral species with 
HCoV- 229E. Interestingly, phylogenetic analysis revealed 
the intermediate position of a 229E-related alpaca virus 
between bat and human viruses. These findings suggested 
the ancestral origin of HCoV-229E in hipposiderid bats 
and the role of camelids as potential intermediate hosts 
was hypothesized (Corman et al., 2015). HCoV-NL63 
was first isolated from babies suffering from pneumonia 
and bronchiolitis in 2004 (Fouchier et al., 2004). To date, 
HCoV-NL63 has been found worldwide with up to 9.3% 
detection rate in hospitalized respiratory tract samples 
(Fielding et al., 2011). In 2010, a bat coronavirus termed 
ARCoV.2 (Appalachian Ridge CoV) detected in North 
American tricolored bat (Perimyotis subflavus) in the US 
showed a close relationship with HCoV-NL63. The MRCA 
for HCoV-NL63 and ARCoV.2 was predicted to have 
existed 563 to 822 years ago (Donaldson EFet al., 2010; 
Huynh Jet al; 2012). Further analysis indicated that HCoV-
NL63 can replicate in cell lines derived from the lungs of 
tricolored bats (Huynh Jet al; 2012). These results suggest 
that prototypes of HCoVNL63 may also exist in bats and 
there may also be a bat origin of this human coronavirus.

5. Conclusion
The study documented that if not all, currently 
circulating alpha coronaviruses and beta-coronaviruses 
in different mammals are evolutionally linked to ancestral 
coronaviruses originated from bats and pangolins. Different 
species of rhinolophid bats and Manis pangolins in China 
carry genetically diverse SARS-like coronaviruses, some of 
which are direct ancestors of SARS-CoV and hence have 
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the potential to cause the direct interspecies transmission 
to humans.

Meanwhile, different coronavirus species closely 
related to MERS-CoV are circulating in bats and pangolins. 
Bats and pangolins might likely be the natural reservoirs 
of MERS-CoV or an ancestral MERS-like CoV. It is 
hypothesized that bat MERS-like CoV jumped to camels or 
some other as yet unidentified animal sources some years 
ago. The virus evolved and adapted with accumulating 
mutations in camels and then was transmitted to humans 
very recently. It took almost a decade from the first 
discovery of SL-CoV in bats and pangolins to the final 
isolation of the SARS-CoV ancestral virus from bats, so 
continuing surveillance is vital to uncover the origin of 
MERS-CoV and bats should certainly be a priority of 
research. Besides, as the spike protein and host receptor are 
key factors of cross-species transmission of coronaviruses, 
characterization of the receptor and key binding sites of 
the spike protein will be important in estimating host 
tropism of bat coronaviruses and predicting spillover risk. 
With human activity increasingly overlapping the habitats 
of bats and pangolins, disease outbreaks resulting from 
the spillover of bat coronaviruses will continue to occur in 
the future despite the fact that direct transmission of bat 
and pangolin coronaviruses to humans appears to be rare. 
To prevent the next outbreak, it is necessary to maintain 

vigilance in long-term coronavirus surveillance studies in 
bats and pangolins as well as in other wildlife and livestock. 
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