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/ABSTRACT

Background. There are limited studies on Sertoli-Leydig cell
tumors (SLCTs) and no data in the population of Chinese
patients with SLCTs from the genetic level. In addition, previ-
ous studies on SLCTs have focused exclusively on mutations
in the DICER1 gene and no data exists on the genetic land-
scape of SLCTs.

Methods. Patients with moderately or poorly differentiated
SLCTs who underwent surgical resection between January
2012 and October 2018 in our institution were recruited.
Whole exome sequencing was performed on formalin-fixed,
paraffin-embedded tumor tissue and peripheral blood or nor-
mal tissue samples.

Results. Seventeen patients were recruited with 19 tumor
samples. The rate of tumor-associated germline mutations
was 6 of 17 (35.3%), and that of DICER1 germline mutations
was 4 of 17 (23.5%). Regarding clinical relapse, patients
with germline tumor-associated mutations had significantly

poorer prognosis than those without (p =.007), and those
with germline DICER1 mutations were relatively more likely
to exhibit clinical relapse, although not to a significant degree
(p = .069). Regarding somatic mutations, firstly, the subclone
evolution analysis demonstrated that the two tumors on
the contralateral ovary were primary tumors, respectively.
Secondly, somatic mutations were most commonly found
in CDC27 (10/19, 52.6%), DICER1 (4/19, 21.1%), and
MUC22 (4/19, 21.1%). And the analysis of cancer cell frac-
tions showed that DICERI mutations were correlated with
tumorigenesis of SLCTs. The rates of germline and somatic
DICER1 mutations were higher in patients who were youn-
ger than 18 years than those in older patients (p =.022
and p = .001, respectively).

Conclusion. Our study indicates that genetic testing may have
important clinical significance for patients with SLCTs, particu-
larly for younger patients. The Oncologist 2020;25:e1396—e1405

Implications for Practice: Bilateral ovarian Sertoli-Leydig cell tumors were verified to be primary tumors from the genetic
perspective. The rates of germline and somatic DICER1 mutations were 4 of 17 (23.5%) and 4 of 19 (21.1%), respectively.
The rates of germline and somatic DICER1 mutations were higher in patients who were younger than 18 years than those in
older patients (p = .022 and p = .001, respectively).
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INTRODUCTION

Ovarian sex cord-stromal tumors, constituting approxi-
mately 5% of all ovarian neoplasms, originate from the ele-
ments of the sex cord and/or ovarian stroma [1], which
could differentiate to ovarian cell types (granulosa and
theca cells), testicular types of cells (sertoli and leydig cells),
and/or indifferent elements [2, 3]. These various types of cells
may be observed separately or in combination [2]. Sertoli-
Leydig cell tumors (SLCTs) are composed of sertoli and leydig
cells [4] and were once called “arrhenoblastoma” or
“androblastoma” [5].

SLCTs occur in women predominantly in the first three
decades of life [5, 6], with median ages ranging from
9 to 28 years in various studies [5, 7, 8]. The most common
symptoms are related to excessive hormone release, and
34.0% to 62.5% of patients have androgen excess manifes-
tations [5, 7-9], whereas some patients may have increased
secretions of estrogen [8, 10, 11] and others do not show
endocrine changes [9]. SLCTs are predominantly unilateral
(98.0%) and solid tumors, but cystic areas may also be pre-
sent [4]. The solid components of SLCTs are typically lobu-
lated and are often yellow [5]. Hemorrhagic areas and foci
of necrosis are frequently observed [9]. The majority of
patients with SLCTs (81.8%—-100%) have stage | cancers
according to International Federation of Gynecology and
Obstetrics (FIGO) [7, 8, 10-16]. Based on the classification
of tumors in the female reproductive organs proposed by
the World Health Organization, SLCTs can be divided into
four histological types: well differentiated, moderately dif-
ferentiated, poorly differentiated, and retiform [17]; in 20%
of tumors of the latter three types, heterologous elements
can occur [18].

Well-differentiated SLCTs are benign and do not exhibit
recurrence [8]. Poorly-differentiated elements, retiform pat-
terns, or heterologous elements, as well as FIGO stages IC-lII
are key factors indicating a poor prognosis [7, 19, 20]. The
relapse rate of patients with stage IA was reported to be
around 7.0%, with a death rate in cases of relapse of 70.0%;
the relapse rate with stage IC was around 30.0%, with a
death rate in cases of relapse of 54.0%; the prognosis of the
advanced-stage disease (stages Il to IV) was poor, with a
relapse rate of 73.7% and a death rate in cases of relapse of
78.6% [10]. The relapse tends to occur relatively soon after
the initial diagnosis and is somewhat rare after 5 years
[21]. The tumors of relapse are mostly observed in the pelvic
and abdominal cavities [7].

The treatment of patients with SLCTs depends upon the
patient’s age and cancer stage. Fertility-sparing surgery can
be performed for patients with FIGO stage IA and remains to
be defined for those with stage IC [10]. For postmenopausal
women and patients with FIGO IB or advanced stages, the
European Society for Medical Oncology recommends abdom-
inal hysterectomy and bilateral salpingo-oophorectomy with
careful surgical staging [22]. The use of postoperative adju-
vant chemotherapy for patients with FIGO stage | is contro-
versial, and no clear benefit is found for these patients [8,
23]. However, adjuvant chemotherapy is recommended for
the patients with high-risk factors for tumor recurrence,
including FIGO stages IC-IV, moderate or poor
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differentiation, or the presence of retiform patterns or heter-
ologous elements [7, 8, 22]. The most commonly used regi-
men is the combination of bleomycin, etoposide, and
cisplatin (BEP) [8, 24].

Germline loss-of-function mutations in DICER1 gene
encoding an enzyme of the RNase Il family are associated
with an increased risk of a neoplasm predisposition syndrome,
named DICER1 syndrome, and pleuropulmonary blastoma
(PPB), SLCTs, and thyroid gland cancer are the three primary
categories of malignant tumors in DICER1 syndrome [25]. In
addition to the scarcity of data on the germline testing, the
rates of germline and somatic DICERI mutations in SLCTs have
varied dramatically in previous different studies [26—33].
Moreover, previous studies of SLCTs have focused exclusively
on DICERI mutations, and there are no data regarding whole
exome sequencing (WES) of SLCTs [26-33]. And, there are no
data on SLCTs on somatic and germline mutations for Chinese
populations.

In this study, we conducted WES of tumor samples and
paired germline samples from patients with SLCTs in order
to explore not only the DICER1 mutations of SLCTs for Chi-
nese populations but also other genetic variations related
to the pathogenesis and prognosis of SLCTs, which could lay
a preliminary foundation for genetic counseling.

MATERIALS AND METHODS

This study and all its protocols were approved by the Peking
Union Medical College Hospital ethical committee (approval
number JS-1640). All patients signed an informed consent
form. To ensure the quality of tissue samples, all patients with
SLCTs who underwent surgical resection between January
2012 and October 2018 at the Peking Union Medical College
Hospital were included in the study. None of the patients
received chemotherapy or radiotherapy 5 years before the
first surgery. The histological review conducted by three gyne-
cological pathologists confirmed the diagnosis of moderately
or poorly differentiated SLCTs for all the cases investigated.

DNA was extracted from the peripheral blood lympho-
cytes of 14 patients using the Qiagen Genomic-Tip (Qiagen,
Hilden, Germany) according to the manufacturer’s instruc-
tions. Formalin-fixed, paraffin-embedded (FFPE) tissue sec-
tions (5-10 mm) were prepared from 19 tumors and three
normal tissues from 17 patients during the surgery. DNA
was extracted from FFPE samples using the GeneRead DNA
FFPE Tissue Kit (Qiagen), according to the manufacturer’s
instructions.

DNA quantification, library construction, and WES were per-
formed by the Berry Genomics Group (Beijing, China). Briefly,
DNA was extracted and quantified using Qubit 2.0 (Invitrogen,
Carlsbad, CA). The DNA was fragmented randomly by a Covaris
ultrasonicator (lllumina, San Diego, CA), and the length of the
resulting DNA fragments was determined to be 180-250 base
pairs. The exon capture was carried out using Agilent SureSelect
Human All Exon version 6 (Agilent, Santa Clara, CA). The cap-
tured fragments were subsequently purified, amplified, and
qualified. High-throughput sequencing of the library products
was performed on an lllumina Novaseq 6000 in a paired-end
sequencing run; the Q30 was required to be more than 80%.
All exons of each target gene were sequenced at the average

© AlphaMed Press 2020



e1398

Ovarian Sertoli-Leydig Cell Tumors and DICER1

17 patients with SLCTs with
19 tumor samples

!

Whole exome ing

¥ v

Subclone evolution
of bilateral ovarian SLCTs

' '

Germline tumor-associated
mutation landscape

v v

Oncogenes and
tumor-suppressing mutations

'

Drug-targeted mutations

|

DICER1 somatic mutations

Germline mutation landscape

Somatic mutation landscape

DICER1 germline mutations

Figure 1. The study flow chart.
Abbreviation: SLCTs, Sertoli-Leydig cell tumors.

depths of 200X and 100x for FFPE tumor tissue and paired
germline samples, respectively. Valid sequencing data were
mapped to the human reference genome (University of Califor-
nia, Santa Cruz, hg19) using Burrows-Wheeler Aligner software
to obtain the original mapping results, which were stored in the
BAM format [34, 35].

In terms of the detection and filtering of germline muta-
tions, single nucleotide variants and indels were identified
as candidates if they met the following criteria: they were
detected by at least two programs (HaplotypeCaller [36],
Atlas2 [37], and UnifiedGenotyper for single nucleotide vari-
ants [36] or Platypus for indels [38]), and they had a depth
of 24x and <100,000X. Genomic alterations were anno-
tated using ANNOVAR [39], and pathogenic and likely path-
ogenic mutations were identified based on the American
College of Medical Genetics and Genomics (ACMG) stan-
dards and guidelines (https://www.acmg.net/).

In terms of the detection and filtering of somatic muta-
tions, GATK4 Mutect2 was used to detect somatic mutations
[40], and ANNOVAR was used to annotate the genomic
alterations [39]. To identify variations in the candidate genes,
filter conditions were set to remove the following:
(a) mutations in tumor samples with the depth less than
20X, (b) mutations in tumor samples with variant allele
frequency (VAF) <0.03, (c) mutations in normal tissue sam-
ples with depth less than 10X, (d) mutations in normal tissue
samples with VAF >0.03, (e) variations out of the exon or
splicing region, and (f) synonymous mutations. Subsequent
analyses of oncogenes and tumor-suppressor genes, cancer
cell fractions (CCFs), and potential drug-targeted mutations
were based on the above results.

Oncogenic and tumor-suppressing mutations were
detected among the identified somatic and germline mutations
based on the Catalogue of Somatic Mutations in Cancer
(COSMIC) Cancer Gene Census database (https://cancer.sanger.
ac.uk/census). The CCF denotes the proportion of cells with a
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somatic mutation in a population of tumor cells; the analysis
takes into consideration several factors, including the VAF,
copy number variation, ploidy, and purity [41]. The relevance
of the mutated gene to the tumorigenesis was determined
based on the CCF value of each mutation site and the number
of samples containing this mutation site using the Student’s
t test. In terms of the identification of drug-targeted mutations,
mutations that could be potentially targeted with drugs were
detected among all identified somatic mutations using the
OncoKB database (https://oncokb.org/). The subclone analysis
was performed using the SciClone software, which can deter-
mine the number and genetic composition of subclones based
on the VAF of somatic mutations [42].

Follow-up time was calculated from the date of the initial
surgery to the date of death or last contact, and disease-free
survival (DFS) was calculated from the date of the initial surgery
to the date when cancer progression or clinical relapse was first
detected (the metachronous tumor was also included). Categor-
ical variables are presented as frequencies, and continuous
variables are presented as the median (range). Frequency
distributions were compared using chi-squared or Fisher’s
exact tests, and median values were compared using
Mann-Whitney nonparametric U tests. Survival analysis
was carried out using the Kaplan-Meier method by
log-rank testing. The data were analyzed using SPSS (ver-
sion 23, IBM, Armonk, NY) or Prism 7 (GraphPad Software,
San Diego, CA). A two-tailed value of p < .05 was consid-
ered statistically significant. The cutoff date for the data
collection was August 1, 2019.

REsuLTS

In total, 17 patients with 19 tumor tissue samples were
included in this study (Fig. 1). FFPE tumor samples and
paired peripheral blood samples were collected from
14 patients, and paired normal FFPE samples were obtained
from 3 patients. After performing WES, we analyzed the
germline mutation landscape, the subclone evolution analy-
sis, the somatic mutation landscape, oncogenic and tumor-
suppressing mutations, and potential drug-targeted
mutations.

The median age of patients at diagnosis was 39 years
(12-72 years; Table 1). Eleven and three patients had andro-
genic and estrogenic manifestations, respectively, and three
patients did not have any endocrine deregulation—associated
symptoms. In 11, 5, and 1 patients, respectively, tumors were
observed in the right, left, or both ovaries. In the initial sur-
gery, moderately differentiated homogeneous tumors were
found in seven patients, and poorly differentiated tumors
were observed in four patients; among the latter, two tumors
had heterologous elements: mucinous adenoma (parts are
borderline) and rhabdomyosarcoma (Fig. 2), respectively.
Moderately/poorly differentiated tumors were observed in
six patients. Nine, one, six, and one patients, respectively,
had tumors of FIGO stages IA, IB, IC, and llIC. Unilateral
salpingo-oophorectomy was performed in ten patients: in
eight by laparoscopy and in two by transabdominal surgery.
Total hysterectomy and bilateral salpingo-oophorectomy
were performed in five patients: in three by laparoscopy and
in two by transabdominal surgery. Oophorocystectomy was
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Figure 2. The histologic photos of the poorly differentiated tumors. (A): Poorly differentiated Sertoli-Leydig cell tumors (SLCTs; H&E
staining, x40). (B): Poorly differentiated SLCTs (H&E staining, x100). (C): SLCTs with rhabdomyosarcoma of heterologous elements
(H&E staining, xX100). (D): SLCTs with rhabdomyosarcoma of heterologous elements (H&E staining, x400).

performed in one patient by laparoscopy. Transabdominal
hysterectomy, bilateral salpingo-oophorectomy, lymph node
dissection, omentectomy, and appendectomy were per-
formed in one patient. In total, six patients received postop-
erative adjuvant therapy: three had the combination
chemotherapy of BEP, whereas two and one received taxol
combined with carboplatinum or epirubicin, respectively. The
median follow-up time was 49 months (9-81 months). One
patient (case 12) died from breast cancer and was consid-
ered censored. Three patients had a clinical relapse. In one
patient (case 4), the clinical relapse occurred in the contralat-
eral ovary 52 months after the primary treatment; after
oophorocystectomy and postoperative chemotherapy, this
patient was alive without evidence of disease for 20 months.
Another case of relapse (case 9) was observed in the pelvic
cavity 38 months after the primary treatment, and the can-
cer was local; after tumor resection and postoperative che-
motherapy, the patient was alive without evidence of disease
for 35 months. The last case of relapse (case 14) occurred in
the abdominal and pelvic cavities 7 months after the primary
treatment; the tumor was extensive, and the patient died
from SLCTs 2 months after the relapse.

Potential pathogenic and likely pathogenic germline
mutations were identified based on ACMG standards and
guidelines. Furthermore, based on the information in the
COSMIC database, we selected four tumor-associated muta-
tions in four genes, namely, DICERI, FOXL2, PALB2, and
PMS2. The DICERI mutations were found in four patients
(cases 1, 2, 4, and 14). FOXL2 and PALB2 mutations were
found in case 11 and a PMS2 mutation in case 9. Thus, in
the analyzed patients with SLCTs, the germline tumor-
associated mutation rate of patients with SLCTs was 6 in
17 (35.3%), and the germline DICER1I mutation rate was 4 in
17 (23.5%).

AlphaMed Press 2020

Four patients were younger than 18 years at the time of
diagnosis; among them, three had germline DICER1 muta-
tions. Younger patients (<18 years) had a significantly higher
DICER1 mutation rate (3/4, 75.0%) than older patients (1/13,
7.7%; p = .022). The rate of patients with DICER1 germline
mutations in patients with heterologous elements in their
tumors was significantly higher than that in patients without
(2/2, 100.0% vs. 2/15, 13.3%; p = .044). The rates of patients
with germline DICER1 mutations in the patients with
endocrine changes, unilateral tumors in the left ovary, or
moderately differentiated homogeneous tumor were not sig-
nificantly different from those in patients without these char-
acteristics (3/14, 21.4% vs. 1/3, 33.3%; p > .999; 3/5, 60.0%
vs. 1/12, 83%; p=.053; 1/7, 14.3% vs. 3/10, 30.0%;
p = .603, respectively).

In addition, the patients with DICER1 germline muta-
tions were more likely to have tumors with heterologous
elements at the time of the initial diagnosis (2/4, 50.0%
vs. 0/13, 0.0%; p = .044).

Among the six patients with germline tumor-associated
mutations, three exhibited clinical relapse, and one died of
the disease, whereas none of the eleven patients without
such mutations had cancer progression or died. The DFS
analysis indicated that patients with germline tumor-
associated mutations had a significantly poorer prognosis
compared with those without them (p =.007; Fig. 3A).
Among the 4 and 13 patients with and without germline
DICER1I mutations, 2 and 1 exhibited clinical relapse, and
1 and 0 died from the disease, respectively. As can be seen
from Figure 3B, patients with germline DICERI mutations
were more likely to exhibit clinical relapse, although the
tendency was not statistically significant (p = .069; Fig. 3B).

In terms of somatic mutations, firstly, subclone evolu-
tion analyses of bilateral ovarian tumors were performed.

Oncologist
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Figure 3. The curve of disease-free survival.

One patient (case 10), with FIGO stage IB, showed tumors
limited to both ovaries. During surgery, the capsules of the
bilateral tumors were intact (Fig. 4 A, B) and no malignant
cells were found in ascites or peritoneal washings. Based on
the criterion that the mutation VAF should be no less than
3%, honsynonymous mutations in the exon and mutations in
the splicing region were detected. As was shown in Figure 4,
the clones of the bilateral ovarian tumors were found to be
specificc and no evolutionary relationship was found
(Fig. 4C), indicating that the bilateral ovarian SLCTs were pri-
mary and not metastatic.

In one patient (case 4), the apparent clinical relapse
occurred in the contralateral ovary 52 months after the pri-
mary treatment without involving other sites. From the
germline mutation perspective, this patient was found to
have a germline DICERI mutation, which supported the
diagnosis of metachronous contralateral ovarian SLCTs because
of the report by Schultz et al. in 2017 of metachronous SLCTs
in some individuals with DICER1 germline mutations [29]. More-
over, from the somatic mutation perspective, the clones of the
bilateral ovarian tumors were found to be specific, and no evo-
lutionary relationship was found, indicating that the tumor of
the apparent clinical relapse was actually primary (Fig. 4D).

The bilateral ovarian tumors from case 10 and case 4 were
identified to be primary tumors; thus, 19 tumor samples were
included in the analyses of subsequent somatic mutations.
Firstly, we selected the top 11 high-rate somatic protein—
altering mutations and evaluated the somatic mutation land-
scape (Fig. 5). Somatic mutations were most commonly found
in CDC27 (10/19, 52.6%), DICER1 (4/19, 21.1%), MUC22 (4/19,
21.1%), MUC2 (2/19, 10.5%), MUC17 (2/19, 10.5%), RAD50
(2/19, 10.5%), SON (2/19, 10.5%), ZNF708 (2/19, 10.5%),
CACNAIE (2/19, 10.5%), KIF1B (2/19, 10.5%), and PTH2 (2/19,
10.5%). Furthermore, according to COSMIC, oncogenic driver
mutations were found in DICER1 (4/19, 21.1%), ATF1 (1/19,
5.3%), BCL11A (1/19, 5.3%), FGFR1 (1/19, 5.3%), FOXL2
(1/19, 5.3%), MUC16 (1/19, 5.3%), MUC4 (1/19, 5.3%),
PABPC1 (1/19, 5.3%), PRDM16 (1/19, 5.3%), and QKI (1/19,
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Figure 4. The subclone evolution analysis of tumors. (A): The
intraoperative view of SLCTs on the left ovary. (B): The
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etected in case 4.
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5.3%). The expression of these genes was significantly enriched
in three Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways associated with cancer, namely, aldosterone synthesis and
secretion (PLCB1, ATF1, CAMKID, and PDE2A; p = .004), breast
cancer (JAG2, NOTCH4, DLL4, FGFRI; p = .017), and P13K-Akt sig-
naling (ITGB4, LAMA1, OSM, ITGB7, RELN, FGFR1; p = .030).
Through the analysis of CCFs, CDC27 and DICER1 muta-
tions were found to be the top two high-possibility muta-
tions correlated with the tumorigenesis of SLCTs. CDC27
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was verified to be a pseudogene by the Sanger sequencing.
Therefore, CCFs analyses demonstrated that D/ICERI muta-
tions were correlated with the tumorigenesis of SLCTs.

The identified genes with somatic mutations were ana-
lyzed using the OncoKB database with the aim to reveal the
genes with alterations that can be targeted by drugs. One
patient carried such a mutation in the FGFR1 gene (case 5;
1/17, 5.8%), which could be susceptible to treatment with
drugs, namely, AZD4547 [43], BGJ398 [44], erdafitinib [45,
46], and Debio1347 [47-49].

In terms of DICER1 somatic mutations, among the 19 tumor
samples, 4 (21.1%) had somatic DICERI mutations: ¢.5125G > A:
p.D1709N, c.5425G > A:p.G1809R, ¢.5125G > A:p.D1709N, and
¢.5428G > C:p.D1810H, all of which had been reported in the
previous study on DICER1 syndrome [50]. Among 15 other
tumor samples, which did not have variations in the DICER1
gene, 1 tumor sample (case 8) had a mutation in the NOTCH4
gene, which is in the same KEGG pathway as DICER1.

Among the five tumor samples from the four patients
younger than 18 years, four had somatic DICER1 mutations
(4/5, 80.0%). The rate of tumors with DICER1 somatic muta-
tions in these tumors from the younger patients was signifi-
cantly higher than that from the older patients (4/5, 80.0%
vs. 0/14, 0.0%; p = .001). The rates of tumors with somatic
DICER1 mutations in tumors from patients with endocrine
changes (4/16, 25.0% vs. 0/3, 0.0%; p > .999), tumors on the
left ovary (2/6, 33.3% vs. 2/13, 15.4%; p = .557), poorly dif-
ferentiated tumors (0/4, 0.0% vs. 4/15, 26.7%; p = .530), or
tumors with heterologous elements (0/2, 0.0% vs. 4/17,
23.5%; p > .999) were not significantly different from those
in tumors from patients without these features.

DiscussioN
SLCTs are very rare, and consequently, few studies on this
cancer type have been published. To comprehensively
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analyze this disease at the genetic level, we evaluated the
results of studies involving at least 10 patients, which were
published from January 2012 to August 2019 and reported
in Embase, PubMed, and Web of Science. As a result, eight
studies were selected (Table 2) [26—-33]; all of them investi-
gated SLCTs by specifically targeting the DICER1 gene. To
the best of our knowledge, our study is the first to employ
WES to analyze the SLCTs genetic landscape.

In addition, this is also the first study to examine the
rate of DICER1 mutations in SLCTs in the population of Chi-
nese patients with SLCTs and to report a relatively higher
rate of both somatic and germline DICER1 mutations in
younger patients (<18 years).

De Kock et al. reported that well-differentiated SLCTs
are different neoplasms from moderately higher than that
observed in our study differentiated and poorly differentiated
subtypes with a different pathogenesis, from the perspective
of both morphologic parameters and DICERI mutations
[32]. Therefore, well-differentiated SLCTs were excluded, and
all our included patients had moderately or poorly differenti-
ated SLCTs. Previous studies found that the rates of somatic
DICER1 mutations in moderately or poorly differentiated SLCTs
were reported as 33.3% [31], 48.6% [26], 60.0% [27], 66.7%
[30], 97.3% [29], and even up to 100.0% [32], that is, higher
than that observed in our study (21.1%). Studies on the rate of
germline DICER1 mutations in SLCTs also revealed higher muta-
tion frequencies (40.0%—69.0%) [28, 29, 32] compared with
that observed here (23.5%). The reason for the discrepancy
may be that the proportion of younger patients in our study
was relatively lower than those in previous studies, which, con-
sidering that both somatic and germline DICER1 mutation rates
were relatively higher in the younger population, may account
for the decreased overall rate.

Regarding the tumorigenic mechanism of DICERI muta-
tions, some investigators support the two-hit tumor suppression
model [51], whereas others suggest that haploinsufficiency may
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Table 2. The genetic landscape of Sertoli-Leydig cell tumors in previous studies

Year
First author

published Country

Sequencing method

Germline mutations

Somatic mutations

NA

Well-differentiated, 0/2
(0.0%)

Moderately/poorly
differentiated, 18/26 (69%)

NA

Well-differentiated, 0/1

Well-differentiated, 0/5
(0.0%)

Moderately/poorly
differentiated, 18/37 (48.6%)
(moderately, 17/31; poorly,
1/6)

Well-differentiated, 0/4
(0.0%)

Moderately/poorly
differentiated, 30/30
(100.0%)

Moderately/poorly
differentiated, 6/10 (60%)

Moderately/poorly

Karnezis [26] 2019 Canada Hotspots of DICER1
Germany RNase lllb domain
mutations
De Kock [32] 2017 Canada DICER1 gene
Kato [27] 2017 Japan Hotspots of DICER1
RNase lllb domain
mutations
Schultz [29] 2017 u.S. DICER1 gene
Goulvent [31] 2016 France Exon 24 and 25 of DICER1
gene
Conlon [30] 2015 u.s. Exon 24 and 25 of DICER1
gene
Witkowski [33] 2013 Australia DICER1 RNase llla and lllb
England  domain mutations
Germany
Canada
Heravi- 2012 u.s. DICER1 RNase Illb domain
Moussavi [28] Canada mutations

(0.0%) differentiated or unknown,
Moderately/poorly 36/37 (97.3%)
differentiated or unknown, Moderately/poorly
25/40 (62.5%) differentiated, 22/23 (95.7%)
NA Well-differentiated, 0/1
(0.0%)
Intermediately/poorly
differentiated, 6/18 (33.3%)
NA Well-differentiated, 0/2
(0.0%)
Intermediately/poorly
differentiated, 20/30 (66.7%)
NA 8/15 (53.3%)

4/10 (40.0%) 26/43 (60%)

Abbreviation: NA, not available.

also promote the occurrence of DICERI-associated tumors [52,
53]. In the current study, three patients had both germline
and somatic DICERI mutations, and two patients had either
germline or somatic DICERI mutations; a single hypothesis does
not interpret this phenomenon. Therefore, we think that the
role of DICERI in SLCTs may be similar to that of BRCA1/2
in ovarian cancer, that is, tumorigenic effects associated with
somatic biallelic inactivation, whereas haploinsufficiency may
also promote the tumor formation and progression [54, 55].
There are four possible mechanisms of bilateral ovarian
tumors: metachronous tumors, synchronous tumors, metas-
tasis, and recurrence [56]. In terms of clinical manifestation,
a contralateral tumor not occurring outside of the ovary, for
example, in the pelvis, is considered metachronous and not a
relapse [7]. The likelihood of metachronous tumor formation is
an important consideration for therapeutic planning because,
first, a metachronous tumor may be more sensitive to first-line
treatment and may have better prognosis than a recurrent
tumor, and second, such patients should be followed for
the emergence of metachronous tumors even after the longest
period estimated for the recurrence risk has passed [29].
Identifying whether the tumor is primary or not is a major chal-
lenge for the pathologist. Furthermore, the abovementioned
metachronous SLCTs diagnosed by clinical manifestation
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actually may be metastatic or recurrent tumors [57]. In recent
years, numerous studies have evaluated pairs of tumor speci-
mens to examine the similarity of the somatic mutation charac-
teristics of the tumors and to test for clonal relatedness
[58]. Previous studies defined the metachronous tumor of SLCTs
from the clinical manifestation perspective [7, 29]. This is the
first study to identify the metachronous SLCTs from the whole
exon perspective.

In addition, in this study, the bilateral ovarian tumors of one
patient (case 10) may be synchronous SLCTs or metachronous
SLCTs with a relatively short time interval between the occur-
rences of the bilateral ovarian tumors. However, no germline
or somatic DICER1 mutations were found for this patient. In
previous studies, the metachronous SLCTs always occurred in
patients with DICER1 germline mutations [25, 29, 32], and few
studies were available about the synchronous bilateral SLCTs.
This is the first finding that the occurrence of bilateral ovarian
primary SLCTs is not limited only to patients with DICER1
germline mutations.

DICER1 germline mutations cause a hereditary cancer
predisposition syndrome [59]. Testing for DICER1 germline
mutations can contribute to the early diagnosis of relevant
cancers: first, the malignant PPB types Il and Il arise from
the precursor PPB type |, and early diagnosis and treatment
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can improve prognosis; second, prompt diagnosis of cystic
nephroma can result in partial rather than total nephrec-
tomy; third, prompt diagnosis of SLCTs at an early stage
could help avoid chemotherapy and improve survival [60].
Interestingly, in the current study, the rate of germline
DICER1 mutations was significantly higher (75.0%) in the
younger patients with SLCTs, for whom germline genetic
testing could be more critical.

Moreover, the information regarding DICER1 germline
mutations may have a prognostic value. In this study we
found that patients with DICER1 germline mutations may
be more likely to exhibit clinical relapse; one of the underly-
ing reasons may be an increased likelihood of developing
metachronous tumors. Another reason could be that heter-
ologous elements, especially the rhabdomyosarcoma ele-
ments, are more likely to occur in patients with DICER1
germline mutations.

Overall, germline mutations in cancer-predisposing genes
have been identified in 8.5% of patients with different types
of cancers [61]. However, for SLCTs the frequency of these
mutations in the relevant genes, such as DICER1, PMS2,
FOXL2, and PALB2, is higher and can cumulatively reach
35.3%. PMS2 is a gene involved in DNA mismatch repair and
linked to Lynch syndrome, which is described as an inherited
predisposition to colorectal, uterine endometrial, and ovarian
cancers [62]. FOXL2 plays a crucial role in the ovary develop-
ment and female fertility [63], and its mutations are consid-
ered potential drivers of the pathogenesis of adult-type
granulosa-cell tumors [64]. Furthermore, somatic FOXL2
mutations have been reported in some patients with SLCTs
[26]. PALB2, which colocalizes with BRCA2 gene in nuclear
foci, has been recognized as an important component of the
cellular machinery involved in homologous recombination—
mediated DNA repair, and heterozygous germline mutations
of PALB2 result in an increased susceptibility to breast and
pancreatic cancers [65, 66]. However, to date, there are no
reports on the associations between germline PMS2, FOXL2,
and PALB2 mutations with SLCTs. The effect of each
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