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Mutation Variants and Co-Mutations as Genomic Modifiers
of Response to Afatinib in HER2-Mutant Lung Adenocarcinoma
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/ABSTRACT

Background. Human epidermal growth factor receptor 2
(HER2)-mutant lung cancer remains an orphan of specific
targeted therapy. The variable responses to anti-HER2 ther-
apies in these patients prompt us to examine impact of
HER2 variants and co-mutations on responses to anti-HER2
treatments in lung cancer.

Patients and Methods. Patients with stage IV/recurrent
HER2-mutant lung cancers identified through next-generation
sequencings were recruited from seven hospitals. The study com-
prised a cohort A to establish the patterns of HER2 variants and
co-mutations in lung cancer and a cohort B to assess associations
between HER2 variants, co-mutations, and clinical outcomes.
Results. The study included 118 patients (cohort A, n = 86;
cohort B, n =32). Thirty-one HER2 variants and 35 co-
mutations were detected. Predominant variants were
A775_G776insYVMA (49/118, 42%), G778_P780dup (11/118,
9%), and G776delinsVC (9/118, 8%). TP53 was the most com-
mon co-mutation (61/118, 52%). In cohort B, objective

response rates with afatinib were 0% (0/14, 95% confidence
interval [CI], 0%—26.8%), 40% (4/10, 14.7%-72.6%), and 13%
(1/8, 0.7%-53.3%) in group 1 (A775_G776insYVMA, n = 14),
group 2 (G778_P780dup, G776delinsVC, n = 10), and group 3
(missense mutation, n = 8), respectively (p = .018). Median pro-
gression-free survival in group 1 (1.2 months; 95% Cl, 0-2.4)
was shorter than those in group 2 (7.6 months, 4.9-10.4; hazard
ratio [HR], 0.009; 95% Cl, 0.001-0.079; p < .001) and group 3
(3.6 months, 2.6-4.5; HR, 0.184; 95% Cl, 0.062-0.552; p = .003).
TP53 co-mutations (6.317; 95% Cl, 2.180-18.302; p = .001) and
PI3K/AKT/mTOR pathway activations (19.422; 95% Cl, 4.098—
92.039; p < .001) conferred additional resistance to afatinib.

Conclusion. G778 _P780dup and G776delinsVC derived the
greatest benefits from afatinib among HER2 variants. Co-
mutation patterns were additional response modifiers. Refin-
ing patient population based on patterns of HER2 variants
and co-mutations may help improve the efficacy of anti-HER2
treatment in lung cancer. The Oncologist 2020;25:e545-e554

Implications for Practice: Human epidermal growth factor receptor 2 (HER2)-mutant lung cancers are a group of heteroge-
nous diseases with up to 31 different variants and 35 concomitant genomic aberrations. Different HER2 variants exhibit diver-
gent sensitivities to anti-HER2 treatments. Certain variants, G778_P780dup and G776delinsVC, derive sustained clinical benefits
from afatinib, whereas the predominant variant, A775_G776insYVMA, is resistant to most anti-HER2 treatments. TP53 is the
most common co-mutation in HER2-mutant lung cancers. Co-mutations in TP53 and the PI3K/AKT/mTOR pathway confer addi-
tional resistance to anti-HER2 treatments in lung cancer. The present data suggest that different HER2 mutations in lung cancer,
like its sibling epidermal growth factor receptor, should be analyzed independently in future studies.
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Response Modifiers to HER2 TKI in Lung Cancer

INTRODUCTION

Human epidermal growth factor receptor 2 (HER2, ERBB2)—
activating mutations were identified as oncogenic drivers
and potential therapeutic targets in 2%—4% of lung cancers
[1-4]. Unlike in breast cancer and gastric cancer, anti-HER2
treatments in HER2-positive/aberrant lung cancer all led to
disappointing results [5-9]. After narrowing down their tar-
get population from HER2-aberrant to HER2-mutant, anti-
HER2 therapies started to show efficacy in lung cancer
[10-14]. However, treatment outcomes are still modest and
variable. Poziotinib and TAK-788, two epidermal growth fac-
tor receptor (EGFR)/HER2 exon 20 insertion inhibitors, failed
to elicit response in patients with HER2 mutations [15-17].
Ado-trastuzumab emtansine (T-DM1) showed a 44% partial
response rate in HER2-mutant lung cancers in one study
[13] but a 14.3% response rate in another [9]. Pyrotinib,
one of the most promising new drugs for this population,
showed a 31.7% response rate [14], which is still lower than
expected for a targeted therapy.

Thus far, HER2-mutant lung cancer remains an orphan of
any specific targeted therapy [18]. The limited efficacy and
variable treatment outcomes of anti-HER2 therapies indicate
the heterogeneity of these diseases [19]. To improve out-
comes for these patients, deeper investigation into their het-
erogeneity and further refinement of the target population
for anti-HER2 treatments are warranted.

In this study, we intended to establish the patterns of
HER2 variants and concomitant genomic alterations in lung
cancer; identify potential modifiers of response to afatinib,
an irreversible dual EGFR/HER2 kinase inhibitor [20, 21];
and explore mechanisms of intrinsic resistance in HER2-
mutant lung adenocarcinoma.

SuBJECTS, MATERIALS, AND METHODS

Study Design and Population

This multicenter study involved seven hospitals in China. To
establish the patterns of HER2 variants and co-mutations in
lung cancer, 2,035 consecutive patients with histologically
confirmed stage IV or recurrent lung cancers who underwent
next-generation sequencing (NGS)-based genomic testing
(OrigiMed targeted NGS panels, OrigiMed, Shanghai, China)
[22, 23] during routine clinical care from August 2016 to May
2018 were screened for HER2 mutations (cohort A).

An independent cohort of patients with stage IV or
recurrent HER2-mutant lung adenocarcinomas and afatinib
treatment histories (cohort B) were identified and retro-
spectively analyzed for the associations between HER2
variants, patterns of co-mutations, and clinical outcomes.
For cohort B, eligible patients should have undergone
tumor sampling before the start of afatinib (supplemental
online information 1). All patients provided their written
informed consent for treatment and for our use of their
clinical data before enrolment. This study was approved
by ethics committees of Sun Yat-Sen University Cancer
Center and all participating sites. It was conducted
according to the Declaration of Helsinki.

© AlphaMed Press 2019

Genotyping and Three-Dimensional Modeling of
HER2 Variants

Tumor samples were collected via surgical resection, com-
puted tomography (CT)-guided biopsy, or bronchial biopsy.
DNA was extracted from tumor samples and the matched
blood samples for genomic testing (supplemental online
information 1). HER2 aberrations and concomitant genomic
alterations were identified using targeted NGS panels for 22—
450 cancer-related genes with a mean coverage depth of
more than 800X. Genomic alterations assessed included sin-
gle nucleotide variations, short and long insertions and dele-
tions, copy number variations, and gene rearrangements in
selected genes. For purpose of validation, the patterns of
HER2 variants and co-mutations observed in cohort A were
compared with those observed in two public data sets, The
Cancer Genome Atlas (TCGA) and Memorial Sloan Kettering
integrated mutation profiling of actionable cancer targets
(MSK-IMPACT).

For common HER2 variants identified in the study, three-
dimensional (3D) modeling in silico was performed to assess
their drug-binding pockets. The 3D structural models were
generated using the SWISS-MODEL server based on the crys-
tal structure of human HER2 kinase domain (Protein Data
Bank code 3PPQ). Structural illustrations were prepared using
PyMOL Molecular Graphic Systems (version 0.99, Schrodinger
LLC, New York, NY, http://www.pymol.org/) [24].

Data Collection and Evaluation of Clinical Outcomes
For patients in cohort B, data on clinicopathological fea-
tures and treatment histories were collected from medical
records or via request forms (supplemental online informa-
tion 1). Starting dose for afatinib was 40 mg or 30 mg once
daily. Dose modifications based on tolerability were left to
physicians’ discretion. Follow-up included clinical examina-
tion and contrast-enhanced CT scans. Brain magnetic reso-
nance imaging was routinely performed for patients with
baseline brain metastases. Scan frequency intervals ranged
between 4 and 6 weeks.

Clinical outcomes included progression-free survival (PFS),
objective response rate (ORR), and disease control rate (DCR).
PFS was measured from the date of afatinib initiation to the
date of disease progression (PD) defined by RECIST 1.1 [25] or
death. Patients without PD were censored on the date of last
CT image. ORR was calculated as the total percentage of
patients with a complete response or partial response. DCR
was calculated as the total percentage of patients with com-
plete response, partial response, or stable disease. Patients’
CT images during the afatinib treatment were retrospectively
collected to evaluate tumor responses according to RECIST
version 1.1.

Statistical Analysis

Genotyping results and clinical outcomes on afatinib were
analyzed in a double-blind manner. The distributions of HER2
variants, co-mutations, and clinicopathological features were
compared using a XZ test or Fisher’s exact test. PFS curves
were estimated using the Kaplan-Meier method. Differences
between HER2 variants and co-mutations were calculated
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Figure 1. Mutational spectrum of HER2-mutant lung cancers observed in cohort A (n = 86) and cohort B (n = 32). (A): Distribution
of specific HER2 mutations in cohort A. (B): Distribution of specific HER2 mutations in cohort B. (C): Spectrum of HER2 mutations
observed in this study versus those in TCGA and MSK-IMPACT. (D): Concomitant genomic alterations detected in patients with
HER2-mutant lung cancers.

Abbreviations: HER2, human epidermal growth factor receptor 2; indel, insertion or deletion; MSK, Memorial Sloan Kettering inte-

grated mutation profiling of actionable cancer targets; NEC, neuroendocrine carcinoma; TCGA, The Cancer Genome Atlas.

with the log-rank test. A multivariate Cox proportional haz-
ards regression model was adopted to identify independent
variables associated with PFS. Variables with p < .10 in the
univariate Cox regression analysis were added in the multi-
variate analysis. All tests were two-sided. A value of p < .05
was deemed statistically significant unless stated other-
wise. Analyses were conducted using the R software
(version 3.5.1).

RESULTS

Patterns of HER2 Variants and Co-Mutations in Lung
Cancer
Between August 2016 and May 2018, HER2 mutations were
identified in 86 (4.23%) out of 2,035 patients using the NGS
assays (cohort A). This frequency of HER2 mutation was
comparable to previous reports [1, 2, 11] but was higher
than those observed in TCGA (15/546, 2.75%) and MSK-
IMPACT data sets (45/1275, 3.53%; supplemental online
information 2). A separate cohort of 40 patients with stage
IV or recurrent HER2-mutant lung adenocarcinomas and
afatinib treatment histories were identified from May 2017
to May 2019. Among them, 32 patients were eligible and
included in this study (cohort B; supplemental online infor-
mation 1).

A total of 31 different HER2 variants were detected in the
118 patients (Fig. 1A, B). The most frequent type of genomic
alterations were exon 20 in-frame insertions in the kinase
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domain (n = 72, 61%), followed by missense mutations in the
kinase domain (n =27, 22%), extracellular domain (n =17,
14%), and transmembrane domain (n =2, 2%). A775_
G776insYVMA was the most common HERZ2 variant (n = 49,
42%), followed by G778 P780dup (n = 11, 9%), G776delinsVC
(n=9, 8%), S310F/Y (n =8, 7%), and V777L (n =7, 6%). The
former three variants were all kinase domain exon 20 in-
frame insertions, whereas S310F/Y and V777L were missense
mutations in the extracellular domain and kinase domain,
respectively. Comparable patterns of HER2 variants were
observed in TCGA and MSK-IMPACT (Fig. 1C).

Among the 24 concomitant aberrations detected in cohort
A (Fig. 1D; supplemental online information 3), TP53 aberra-
tions were the most commonly detected co-mutations (n = 48,
56%). Ten patients (12%) carried concomitant aberrations in
the PI3K/AKT/mTOR pathway (PIK3CA, n =4; PTEN, n =3;
mTOR, n = 3; TSC2, n = 3), and ten patients (12%) had concom-
itant HER2 amplifications. In cohort B, co-mutations in TP53
and PIK3CA occurred in 13 (41%) and 5 (15%) patients, respec-
tively (supplemental online information 4). Three patients
(9%) had concomitant HER2 amplifications. No co-occurring
KRAS or EGFR mutations were detected. Genomic alterations
of patients in cohort A and B are detailed in supplemental
online information 3 and 4, respectively.

Overall Clinical Outcomes on Afatinib
Clinicopathological features of patients treated with afatinib
are listed in Table 1. Most patients were women (n = 18,

© AlphaMed Press 2019
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Table 1. Baseline characteristics according to HER2 mutation variants®

No. of patients, n (%)

Characteristics All, n (%) Group 1 Group 2 Group 3 p value
No. of patients (%) 32 14 (44) 10 (31) 8 (25)
Median age, years (range) 55 (29-81) 54 (29-69) 52 (41-70) 58 (38-81) .806
Gender .656
Male 14 (44) 7 (50) 3 (30) 4 (50)
Female 18 (56) 7 (50) 7 (70) 4 (50)
ECOG performance status .798
0-1 28 (88) 13 (93) 8 (80) 7 (88)
>2 4(13) 1(7) 2 (20) 1(13)
Smoking history .562
Never smokers 25 (78) 10 (71) 9 (90) 6 (75)
Former or current smokers 7 (22) 4 (29) 1(10) 2 (25)
Adenocarcinoma histology 32 (100)
Stage at the initiation of afatinib 757
Stage IV® 25 (78) 11 (79) 7 (70) 7 (88)
Postoperation recurrent 7 (22) 3(21) 3 (30) 1(13)
CNS metastasis .593
Present 13 (39) 6 (43) 5 (50) 2 (25)
Absent 19 (61) 8 (57) 5 (50) 6 (75)
Extrathoracic metastasis (except for CNS) .543
Present 18 (56) 9 (64) 4 (40) 5 (63)
Absent 14 (44) 5 (36) 6 (60) 3(38)
Line of afatinib treatment .983
First 9 (28) 4(29) 3(30) 2 (25)
Second 6 (19) 3(21) 2 (20) 1(13)
Third or more 17 (53) 7 (50) 5 (30) 5(63)
Prior therapy .832
Pt-based chemotherapy 21 (66) 10 (71) 6 (60) 6 (75)
Gefitinib, erlotinib, osimertinib 5 (16) 2 (15) 1(10) 2 (25)
HER2-targeted treatments® 4 (13) 3(21) 0 1(13)
PD-1/PD-L1 inhibitor 6 (19) 2 (15) 1(10) 3(38)
Co-mutations in TP53 .814
Present 13 (41) 5 (36) 5 (50) 3(38)
Absent 19 (59) 9 (64) 5 (50) 5 (63)
Co-mutations in PI3K/Akt/mTOR pathway® .653
Present 7(22) 2 (14) 3 (30) 2 (25)
Absent 25 (78) 12 (86) 7 (70) 6 (75)
Best response to afatinib .001
PR 5 (16) 0(0) 4 (40) 1(13)
SD 17 (53) 5 (36) 6 (60) 6 (75)
PD 10 (31) 9 (64) 0(0) 1(13)
Overall response rate, % 16 0 40 13 .018
Disease control rate, % 69 36 100 88 .001
CT scan intervals .316
4 weeks 23 11 6 6
5 weeks 5 2 1 2
6 weeks 4 1 3 0
Median (95% Cl) 4 (4-5) 4 (4-4.25) 4 (4-6) 4 (4-4.75)

Abbreviations: Cl, confidence interval; CNS, central nervous system; CT, computed tomography; ECOG, Eastern Cooperative Oncology Group;
EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; PD, progression of disease; PR, partial response;
Pt-based, platinum-based; SD, stable disease; TKI, tyrosine kinase inhibitor.
*Type of HER2 mutations: According to HER2 mutant alleles, we divided the 32 patients into three subgroups. Group 1 consists of the most com-
mon 12-bp exon 20 insertion, A775_G776insYVMA; group 2 consists of non-YVMA exon 20 in-frame insertions including G776delinsVC (n = 5)
and G778_P780dup (n = 5); and group 3 consists of HER2 missense mutations.

PAccording to American Joint Commission on Cancer TNM staging (8th edition).
“Prior HER2-targeted treatments include trastuzumab (n = 3) and T-DM1 (n = 1).
dConcomitant mutations in PI3K-AKT-mTOR pathway detected in the 32 patients include PIK3CA (n = 5: p.H1047R [n = 2], p.H1047L [n = 1],

p.E545K [n = 1], p.P539R [n = 1]), PTEN copy number loss (n = 1), and mTOR p.E2419K (n = 1).

© AlphaMed Press 2019
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Figure 2. PFS and tumor responses to afatinib according to HER2 mutation variants and treatment time of the 32 patients. (A): Kaplan-
Meier curves for PFS in patients with HER2 A775_G776insYVMA (group 1, n = 14), HER2 G776delinsVC /G778_P780dup (group 2, n = 10),
and HER2 missense mutations (group 3, n = 8). (B): PFS and tumor shrinkage according to the type of HER2 mutations. (C): Treatment
time of the 32 patients. Prior treatment refers to the treatment from diagnosis of recurrent/stage IV diseases. *, patient censored.
Abbreviations: G1, group 1; G2, group 2; G3, group 3; NGS, next-generation sequencing; PFS, progression-free survival.

56%) and never smokers (n = 26, 78%). Nine patients (28%)
received afatinib as the first line, 6 (19%) as the second line,
and 17 (53%) as third-line therapy or beyond (Fig. 2C). The
median number of lines of prior systemic therapy was two
(range, 0 to 5). Four patients (13%) had received HER2-targeted
treatments before (trastuzumab, n = 3; T-DM1, n = 1).

The ORR and DCR with afatinib were 15.6% (95% confi-
dence interval [Cl], 5.9%—33.6%) and 68.8% (95% Cl, 49.9%—
83.3%), respectively. Confirmed partial responses were
observed in five patients, two harboring G778_P780dup, two
harboring G776delinsVC, and one carrying V777L. Ten patients
(31.3%) had disease progression as the best response. Three
patients carrying A775_G776insYVMA experienced disease
progression within 30 days. By the time of data cutoff, 28
patients (87.5%) had experienced disease progression on
afatinib. The median PFS for all patients and the responders
was 3.2 months (95% ClI, 2.0-4.5 months) and 7.6 months
(95% Cl, 3.8-11.5 months), respectively. The longest PFS (12.0
months) was observed in a patient with G776delinsVC. The

www.TheOncologist.com

overall survival data is immature for analysis with 15 deaths
(46.9%) having occurred as of June 15, 2019.

Clinical Outcomes with Different HER2 Mutation
Variants

To examine the association between HER2 variants and clini-
cal outcomes on afatinib, we categorized HER2 mutations
in cohort B as: HER2 YVMA insertions (group 1: A775_
G776insYVMA, n = 14, 44%); non-YVYMA exon 20 insertions
(group 2: G776delinsVC, n =5; G778 _P780dup, n =5, 31%);
or HER2 missense mutations (group 3, n = 8, 25%). Table 1
lists the clinicopathological features of the three groups.
Demographic characteristics and treatment histories were
balanced across them. Genomic alterations of these patients
are detailed in supplemental online information 4.

ORRs with afatinib were 0% (95% Cl, 0%—26.8%), 40%
(95% Cl, 14.7%-72.6%), and 13% (95% Cl, 0.7%-53.3%) in
group 1, group 2, and group 3, respectively (p = .018). The
proportion of patients achieving disease control was also

© AlphaMed Press 2019
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Table 2. Predictive factors for progression-free survival of afatinib treatment (n = 32)

Multivariable analysis®

Univariable
Variable analysis, p value Hazard ratio (95% ClI) p value
Age (<60 vs. 260 years) .765
Gender (male vs. female) .220
ECOG performance status (0-1 vs. >2) .832
Smoking history (never vs. former) .569
Stage (postoperation vs. stage V) .349
CNS metastasis (present vs. absent) .644
Extrathoracic metastasis other than CNS .072 1.149 (0.431-3.065) .782
(present vs. absent)
Line of afatinib treatment (first vs. not first) .295
Prior gefitinib, erlotinib, osimertinib (present vs. absent) .830
Prior HER2-targeted treatments® (present vs. absent) 179
Co-mutations in TP53 (present vs. absent) .091 6.317 (2.180-18.302) .001
Co-mutations in PI3K-AKT-mTOR pathway (present vs. absent) .140 19.422 (4.098-92.039) <.001
HER2 mutation variants® <.001 <.001
Group 1 (A775_G776insYVMA) 1 (Reference)
Group 2 (G776delinsVC, G778_P780dup) 0.009 (0.001-0.079) <.00¢
Group 3 (missense mutations) 0.184 (0.062—0.552) .003¢

Abbreviations: Cl, confidence interval; CNS, central nervous system; ECOG, Eastern Cooperative Oncology Group; HER2, human epidermal

growth factor 2.

ICovariates with p < .10 in the univariable analysis were added in the multivariable model. Status of PI3K-Akt-mTOR pathway mutation was also

added because it was considered as a potentially relevant factor.

PPrior HER2-targeted treatments include trastuzumab (n = 3) and T-DM1 (n = 1).

°HER2 mutation variants: According to HER2 mutant alleles, we divided the 32 patients into three subgroups. Group 1 consists of the most com-
mon 12-bp exon 20 insertion, A775_G776insYVMA (n = 14); group 2 consists of other exon 20 in-frame insertions including G776delinsVC (n = 5)
and G778_P780dup (n = 5); and group 3 consists of HER2 missense mutations (n = 8).

dComparison was conducted among three groups with Group 1 as the reference. Therefore, p < .017 was considered statistically significant.

significantly lower in group 1 (35.7%; 95% Cl, 14.0%—64.4%;
p =.001) than those in group 2 (100%; 95% Cl, 65.6%—100%)
and group 3 (87.5%; 95% Cl, 46.7%—99.3%). Responses to
afatinib in different HER2 variants by mutation domain and
mutation type were detailed in supplemental online informa-
tion 5. The median PFS in group 1 (1.2 months; 95% Cl, 0-2.4
months) was shorter than the median PFS in group 2 (7.6
months; 95% Cl, 4.9-10.4; p < .001) and group 3 (3.6 months;
95% Cl, 2.6-4.5 months; p = .039; Fig. 2A). Median PFS in
group 2 was significantly longer than the median PFS in group
3 (p = .015; Fig. 2A). Between the two mutations in group 2,
G776delinsVC and G778 _P780dup, similar responses to
afatinib were recorded, but numerically, G776delinsVC had
longer median PFS (10.4 months; 95% Cl, 3.9-16.7 months)
than G778_P780dup (6.1 months; 95% Cl, 3.7-8.6 months;
p = .384). PFS and tumor shrinkage in patients with different
HER2 variants are detailed in Figure 2B. In multivariate analy-
sis adjusting for extrathoracic metastasis and patterns of co-
mutations (Table 2), the negative prognostic role of HER2
mutations in group 1 was further established (hazard ratio
[HR]s2/61, 0.009; 95% Cl, 0.001-0.079; p < .001; HRgs/c1,
0.184; 95% Cl, 0.062-0.552; p = .003). Variants in group 2
(G776delinsVC, G778_P780dup) significantly correlated with
the longest PFS among the three groups (HRg,/G3, 0.050;
95% Cl, 0.008-0.307; p = .001).

3D modeling in silico of G776delinsVC and G778_P780dup
shows that neither the G776 VC insertion (red; Fig. 3A) nor
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the G778 GSP insertion (blue; Fig. 3B) led to marked changes
in the structure of drug-binding pockets compared with
the wild-type HER2. Meanwhile, 3D modeling of A775_G7
76insYVMA reveals that the YVMA insertion (magenta;
Fig. 3C) contains two bulky side chains (Y776 and M778).
This ball-and-stick model of the HER2 YVMA insertion may
induce steric hinderance of the drug-binding pocket and
thus prevent its interaction with afatinib.

Clinical Outcomes According to Co-Mutation Patterns
To investigate whether the patterns of co-mutations affect
tumor response to afatinib, we stratified clinical outcomes of
patients in cohort B by the status of each co-mutation. TP53
is the most commonly detected co-mutation in both cohorts
(total n =61, 52%). For cohort B patients, prior therapies
(p = .518) and the line of afatinib treatment (p = .732) were
balanced between those with and without TP53 co-mutations.
In univariate analysis, co-occurring TP53 alterations were
enriched in patients with shorter PFS (2.6 vs. 4.4 months;
p = .091). This negative impact became significant after
adjusting for HER2 mutation variants (HR, 4.121; 95% Cl,
1.588-10.697, p = .004; Fig. 4A) and in multivariate analysis
(HR, 6.317; 95% Cl, 2.180-18.302; p = .001; Table 2). Impacts
of other co-mutations could not be accounted for because of
the small sample size.

Next, we expanded the analysis to genomic aberrations at
the pathway level. Seven patients (22%) in cohort B carried
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HER2 Exon 20 insertions Group N EAYVMAGVG SPYVSRLLGI C
E770_A771insAYVM EAYVMAYVMAGVGSPYVSRL
A771_Y772insYVMA 1 14 EAYVMAYVMAGVGSPYVSRL
A775_G776insYVMA EAYVMAYVMAGVGSPYVSRL
G776delinsVC 2 5 EAYVMAVCVGSPYVSRLLGI
G778_P780dup EAYVMAGVG SPGSPYVSRLL
P780_Y781insGSP 2 5 EAYVMAGVGSPGSPYVSRLL

EAYVMAGVGSPGSPYVSRLL

Figure 3. Three-dimensional (3D) modeling and the full amino acid sequences of three HER2 exon 20 insertions. (A): 3D modeling
of G776delinsVC versus wild type. The VC insertion is colored red. (B): 3D modeling of G778 _P780dup versus wild type. The dupli-
cated G778-P780 insertion is colored blue. (C): 3D modeling of A775_G776insYVMA versus wild type. The YYMA insertion is colored
magenta. (D): Three types of HER2 exon 20 insertions with full amino acid sequences (insertions are underlined).
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Figure 4. PFS according to status of co-mutations in TP53 and the PI3K/AKT/mTOR pathway. (A): Kaplan-Meier curves for PFS in
patients without TP53 co-mutations (n = 19) versus those with TP53 co-mutations (n = 13). (B): Kaplan-Meier curves for PFS in
patients without co-mutations in the PI3K/AKT/mTOR pathway (n = 25) versus those with such co-mutations (n = 7).

Abbreviations: Cl, confidence interval; HR, hazard ratio; PFS, progression-free survival.

PI3K/AKT/mTOR pathway significantly correlated with
worse clinical outcomes in HER2-mutant adenocarcinoma

co-mutations that could activate the PI3K/AKT/mTOR pathway
(PIK3CA, n =5 [p.H1047R, n =2; p.H1047L, n = 1; p.E545K,

n =1; p.P539R, n = 1]; PTEN copy number loss, n = 1, mTOR
p.E2419K, n = 1). These patients tended to have shorter
PFS in univariate analysis (2.6 vs. 3.6 months; p = .140).
After adjusting for HER2 variants, co-mutations in the
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treated with afatinib (HR, 9.395; 95% Cl, 2.661-33.173;
p = .001; Fig. 4B). Multivariate analysis yielded similar
results (HR, 19.422; 95% ClI, 4.098-92.039; p < .001;
Table 2).
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DiscussioN

To our knowledge, we present the first study to examine the
clinical impact of mutation variants and co-mutation patterns
in HER2-mutant adenocarcinoma. A total of 118 patients
with HER2-mutant lung cancers were included in this study,
making it the largest analysis dedicated to HER2-mutant lung
cancers to date.

We identified specific HER2 variants and co-mutations
as potential genomic modifiers of response to anti-HER2
therapies in lung adenocarcinoma. The best clinical out-
comes of afatinib were recorded in patients carrying
two non-YVMA exon 20 insertions, G776delinsVC or G778_
P780dup, whereas little response was observed in A775_
G776insYVMA, the predominant HER2 variant in lung can-
cer. TP53 co-mutations and the PI3K/AKT/mTOR pathway
activations confer additional resistance to afatinib beyond
HER2 variants.

Thus far, there is no standard targeted therapy for HER2-
mutant lung cancers. Studies investigating anti-HER2 strate-
gies either reported disappointing results or did not contain
a large enough sample size to provide conclusive evidence
[7, 12, 15, 16, 19, 26-28]. Despite the overall limited efficacy
of afatinib in HER2-mutant lung cancers (ORR, 15.6%; median
PFS, 3.2 months; 95% Cl, 2.0-4.5), sustained clinical benefits
were observed in patients carrying G776delinsVC (ORR, 40%;
median PFS, 10.4 months; 95% Cl, 3.9-16.7) and G778_
P780dup (ORR, 40%; median PFS, 6.1 months; 95% ClI,
3.7-8.6). Different HER2 missense mutations also exhibited
divergent sensitivities to afatinib. Although no statistical com-
parison was performed because of the small sample size, our
data identified V777L as a potentially sensitive variant and
L755P/S as a resistant one.

Consistent with our findings in afatinib, clinical trials of
dacomitinib and neratinib also indicated that different HER2
variants responded differently to individual HER2-targeted
agents [7, 12]. Responses to dacomitinib were only recorded
in G778_P780dup and M774delinsWLV [7], whereas neratinib
showed a higher potency in kinase domain missense muta-
tions [12]. Neither of them was effective for A775 G776
insYVMA, the predominant HER2 variant in lung cancer. Nota-
bly, responses to afatinib in HER2 YVMA insertions have been
described in some studies [27, 29, 30], whereas there also are
reports of rapid disease progression after the treatment of
afatinib in patients with identical mutations [19, 26]. In our
study, two out of 14 patients carrying A775_G776insYVMA
stayed on afatinib for more than 6 months. But generally,
compared with other variants, HER2 YVMA insertion corre-
lated with significantly worse clinical outcomes on afatinib
(ORR, 0%; median PFS, 1.2 months; 95% Cl, 0-2.4). In accor-
dance with our results, Nagano et al. reported higher half
maximal inhibitory concentration of afatinib against A775_
G776insYVMA compared with G776delinsVC and V777L in
preclinical models [31].

Taken together, our data support the notion that
HER2-mutant lung cancers represent a heterogenous
group of diseases with variable sensitivities to anti-HER2
treatments. Different HER2 variants should be investi-
gated independently or at least appropriately grouped.
The activity of specific anti-HER2 agent may be confined
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to specific HER2 mutations, which could be masked by a
lack of activity in other mutations when HER2-mutant
lung cancers are evaluated as a whole group. Given the
low occurrence rate of HER2 mutation in lung cancer, mul-
ticenter participation and predefined subgroup analysis of
specific HER2 variants may be worth consideration in
future studies.

Activation of the PI3K/AKT/mTOR pathway was reported
as a potential resistance mechanism in HER2-postive breast
cancer and gastric cancer [32—34], but never in lung cancer. In
our study, three patients who experienced disease progression
within 30 days of treatment carried A775_G776insYVMA plus
concomitant PIK3CA E545K, PIK3CA H1047R, and TP53 R273C,
respectively. Multivariate analyses identified co-mutations in
TP53 and the PI3K/AKT/mTOR pathway as independent nega-
tive prognostic factors in HER2-mutant lung adenocarcinomas
treated with afatinib. Collectively, these data suggest that
TP53 co-mutations and PI3K/AKT/mTOR pathway activations
play a role in the primary resistance to HER2-targeted thera-
pies in lung adenocarcinoma. The status of these co-mutations
should be considered when defining the target population for
anti-HER2 treatments, because patients carrying these
genomic aberrations may not benefit from the anti-HER2
monotherapy.

Limitations of this study include its retrospective nature
and the small sample size. Cautions should be taken in data
interpretation and extrapolation. The limited number of
patients in group 3 prevent us giving conclusive information
on the drug sensitivity of specific missense mutations. Notably,
missense mutations in transmembrane domain (V689/G660)
had been reported as sensitive mutations to afatinib [35].
However, our study only identified one patient with V659E
treated with afatinib, who had stable disease for 54 days
under afatinib treatment. Findings regarding G776delinsVC
and G778 _P780dup should be validated in studies with larger
sample sizes. Future studies are warranted to verify and
expand on our findings.

CONCLUSION

Our data suggest G778_P780dup and G776delinsVC, two non-
YVMA exon 20 insertions, derived the greatest benefits from
afatinib compared with other variants. TP53 co-mutations and
PI3K/AKT/mTOR pathway activations confer additional resis-
tance to afatinib beyond HER2 variants. Our study highlights
the heterogeneity of HER2-mutant lung cancers. Refining
patient population based on patterns of HER2 variants and
co-mutations may help identify effective anti-HER2 treat-
ments in future studies.
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