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Abstract

Background: Little is known about how meal-specific food intake contributes to overall diet quality during
pregnancy, which is related to numerous maternal and child health outcomes. Food networks are probabilistic
graphs using partial correlations to identify relationships among food groups in dietary intake data, and can be
analyzed at the meal level. This study investigated food networks across meals in pregnant women and explored
differences by overall diet quality classification.

Methods: Women were asked to complete three 24-h dietary recalls throughout pregnancy (n = 365) within a
prospective cohort study in the US. Pregnancy diet quality was evaluated using the Healthy Eating Index-2015 (HEI,
range 0-100), calculated across pregnancy. Networks from 40 food groups were derived for women in the highest
and lowest HEI tertiles at each participant-labeled meal (i.e., breakfast, lunch, dinner, snacks) using Gaussian
graphical models. Network composition was qualitatively compared across meals and between HEI tertiles.

Results: In both HEI tertiles, breakfast food combinations comprised ready-to-eat cereals with milk, quick breads
with sweets (e.g., pancakes with syrup), and bread with cheese and meat. Vegetables were consumed at breakfast
among women in the high HEI tertile only. Combinations at lunch and dinner were more varied, including
vegetables with oils (e.g., salads) in the high tertile and sugary foods with nuts, fruits, and milk in the low tertile at
lunch; and cooked grains with fats (e.g., pasta with oil) in the high tertile and potatoes with vegetables and meat in
the low tertile at dinner. Fried potatoes, sugar-sweetened beverages, and sandwiches were consumed together at
all main meals in the low tertile only. Foods were consumed individually at snacks in both tertiles; the most
commonly consumed food were fruits in the high HEI tertile and cakes & cookies in the low tertile.

Conclusions: In this cohort of pregnant women, food network analysis indicated that food combinations differed
by meal and between HEI tertiles. Meal-specific patterns that differed between diet quality tertiles suggest potential
targets to improve food choices at meals; the impact of meal-based dietary modifications on intake of correlated
foods and on overall diet quality should be investigated in simulations and intervention studies.
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Introduction
Dietary intake among U.S. pregnant women typically ex-
ceeds recommendations for sodium [1, 2], empty calo-
ries [1], and total fat [3] and is below recommendations
for whole grains [1, 2], fiber [4], vegetables [1–4], fruits
[1, 2, 4], and dairy [1, 2]. Given associations of poor diet
quality during pregnancy with numerous adverse mater-
nal and child health outcomes [5–8], improving mater-
nal diet quality is a public health priority [9, 10].
Overall diet quality results from hundreds of individual

food choices [11–13] made within the context of indi-
vidual eating occasions (i.e., meals) across days, and the
amounts and composition of eating occasions vary con-
siderably throughout the day [14]. Evidence suggests in-
dividuals consume foods within eating occasions in
predictable, socially constructed patterns; for example, a
main meal may follow a tripartite structure centered
around meat accompanied by a staple (e.g., potatoes)
and trimmings (e.g., vegetables), while a light meal may
comprise pasta with sauce, and a snack may focus on
portable items [15, 16]. However, most research investi-
gating the contribution of individual eating occasions to
overall diet quality has examined isolated meals or diet-
ary factors, such as the significance of breakfast [17–19].
Findings from few studies investigating relations of over-
all diet intake with various aspects of meal-specific in-
take at multiple eating occasions show that differences
in food choices at meals explain a large proportion of
the variation in overall energy and macronutrient intake
[20, 21], but little is known about their contribution to
diet quality. Understanding meal-specific food combina-
tions in pregnant women, and the relationships of these
food combinations with overall diet quality may identify
behavioral targets for improving overall diet quality.
Meal-specific dietary intake can be analyzed using

Gaussian graphical model (GGM) derived food net-
works, representing probabilistic graphs that show the
underlying relationship structure among food groups
using partial correlations [22, 23]. This approach pro-
vides unique information that may not be captured by
traditional methods. For example, principle component
analysis is commonly used to derive meal-specific dietary
patterns [24, 25] that can then be used in quantitative
models. However, applied to meal data, PCA can result
in dozens of patterns while explaining only a small pro-
portion of the variability of food intake, and the resulting
patterns do not provide information on the

interrelationships among food groups. In contrast, GGM
networks facilitate interpretation of dietary intake as a
set of inter-dependent food groups and reveals patterns
of food group combinations specific to each meal. The
aim of this study was to utilize GGM to identify and
qualitatively compare meal-specific food networks from
pregnant women with high and low diet quality to better
understand how meal food group composition contrib-
utes to overall diet quality during pregnancy.

Subjects and methods
Participants and recruitment
Women (n = 458) aged 18-44 years receiving prenatal
care at the obstetrics clinics at the University of North
Carolina (UNC) at Chapel Hill Healthcare System were
enrolled in the Pregnancy Eating Attributes Study
(PEAS) at ≤12 weeks gestation and assessed each preg-
nancy trimester [26]. Additional eligibility criteria in-
cluded: anticipating uncomplicated singleton pregnancy,
willing to undergo study procedures and provide in-
formed consent for her participation and assent for the
baby’s participation, BMI ≥ 18.5 kg/m2, ability to
complete self-report assessments in English, access to
internet with email, planning to deliver at UNC Hospital,
and planning to remain in the geographical vicinity for
1 year following delivery. Exclusion criteria were pre-
existing diabetes, multiple pregnancy, participant-
reported eating disorder, and any medical or psycho-
social condition contraindicating participation in the
study. Additional study details are available elsewhere
[26]. Data collection occurred from 2014 to 2018.

Dietary assessment
Participants were asked to complete three 24-h recalls
throughout pregnancy (one per trimester) using the
web-based NCI Automated Self-Administered 24-Hour
Dietary Assessment Tool [27], which prompts respon-
dents to report all food and beverages consumed at each
eating occasion over the preceding day (from awakening
until going to bed). Respondents reported the time and
type of eating occasion, which may include “breakfast”,
“brunch”, “lunch”, “dinner”, “supper”, “snack”, “just a
drink”, and “just a supplement” by order of occurrence.
The USDA’s Food and Nutrient Database for Dietary
Studies (FNDDS) [28] was used to compute nutrients,
foods, and overall diet quality as per the Healthy Eating
Index (HEI) 2015 scores. The HEI-2015, a multi-
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component diet quality score, was developed and vali-
dated to evaluate adherence to the 2015-2020 Dietary
Guidelines for Americans (DGA) [29], which applies to
Americans 2 years of age and older, including pregnant
women [29]. The HEI-2015 consists of 9 adequacy com-
ponents (total fruit, whole fruit, total vegetables, greens
and beans, whole grains, dairy, total protein foods, sea-
food and plant proteins, and fatty acids) and 4 moder-
ation components (refined grains, sodium, added sugars,
and saturated fats), scored based on energy-adjusted
food and nutrient intakes in order to enable compari-
sons across individuals with varying energy requirements
[30, 31]. The component scores are summed to yield a
total score with a maximum of 100 (higher scores indi-
cate a healthier diet). Previous studies have reported lit-
tle change in diet quality across pregnancy trimesters
[32, 33], which is consistent with data from the same
study population [34]; therefore, pregnancy diet recalls
were pooled to calculate HEI across pregnancy using the
simple HEI scoring algorithm – per person [35]. Im-
plausible reporting of energy intake has previously been
examined based on cutoffs of < 500 and > 3500 kcal in
non-pregnant adults [36]. To account for increased en-
ergy requirements of pregnancy [37], this threshold was
increased; individual food item data from dietary recalls
indicating total energy intake < 600 kcal and > 4500 kcal
were examined for implausibility by three members of
the study team. All records with energy intake < 600 kcal
were considered implausible and, therefore, excluded
from analysis, while recalls with energy intake > 4500
kcal were considered to reflect plausible intake and were,
therefore, retained for analyses.

Assessment of anthropometric and demographic data
Maternal height was measured at baseline (≤12 weeks
gestation) and weight was measured at baseline and each
pregnancy trimester (13-18 weeks, 16-22 weeks, and 28-
32 weeks gestation). Early pregnancy BMI (kg/m2) was
calculated from measured height and weight at baseline.
Gestational weight gain was calculated as the difference
between weight at the last visit (0.35 ± 0.75 weeks before
delivery) and baseline weight, and classified as inad-
equate, adequate, or excessive based on IOM guidelines
for weekly range of weight gain [9]. Mothers reported
sociodemographic data at baseline.

Food intake modeling
Foods were grouped into 40 categories (Additional File 1)
based on FNDDS categories. Mixed dishes were broken
down into component foods when the breakdown pro-
vided further information about the healthfulness of the
food or when the components themselves were a separ-
ate food group (e.g., FNDDS category “meat, poultry,
fish in gravy or sauce or creamed” was separated into

“meat”, “poultry”, or “fish”, and “sauce”). Previous re-
search suggests that people conceptualize foods in terms
of familiar dishes rather than their components [38]
(e.g., pizza versus bread, cheese, and tomato sauce).
Breaking these foods down to components may obscure
relations of the mixed dishes to the other foods eaten
with it [39]. Therefore, FNDDS mixed dishes were not
broken down into components if this resulted in a sub-
stantial alteration of the conceptualization. These foods
were categorized based on similarity of ingredients or
type of food (e.g., meatloaf and crab cakes as protein-
based patties and loaves).
Food intake for the FNDDS-based 40 food groups (in

grams) at each meal was used to derive a food network
for each meal (i.e., breakfast, lunch, dinner, and snacks)
for each HEI tertile. Dinner networks included meals re-
ported as supper. All meals were considered as inde-
pendent observations to retain the meal structure and
identify foods that were consumed together in a single
eating occasion. Meal-specific food networks were ob-
tained separately for the low and high HEI tertiles. To
examine trimester-specific meal composition variations,
trimester-specific meal networks for each HEI tertile
were also derived based on dietary recalls provided dur-
ing the first, second, and third trimesters.

Statistical analysis
To compare groups clearly different in diet quality, par-
ticipants were classified into HEI tertiles, and the low
(n = 121) and high (n = 122) tertiles were used for ana-
lysis to reflect low and high diet quality, respectively.
Networks were derived through GGM, which are prob-
abilistic, undirected graphs describing conditional inde-
pendence between variables. Resulting graphs are
networks consisting of a set of nodes (i.e. food groups)
and edges or lines between them (i.e. partial correla-
tions), representing conditional dependence between
food groups [22]. GGM networks are quantified using
the inverse covariance matrix yielding partial correla-
tions under the assumption of a normal distribution
[40]. High-dimensional multivariate data can have no or
few 0 values, which would produce a dense, less inform-
ative graph [22]. The aim of GGM is to achieve an ac-
curate and meaningful representation of the underlying
covariance structure of the data. The graphical lasso
method estimates a sparse or regularized partial correl-
ation matrix – where zeros correspond to pairs of condi-
tionally independent variables – by setting a threshold
on the off-diagonal elements of the inverse covariance
matrix, shrinking the estimated partial correlations and
avoiding overfitting of the model (i.e. false inclusion of
edges) [41]. The degree of regularization or sparsity is
set by the penalty parameter lambda (λ > 0) and de-
pends on the research question and model fit [22]. For
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this study, the penalty parameter was determined by
selecting the optimal lambda from a 5-fold cross-
validated graphical lasso. Because meal-level dietary data
are non-normally distributed (based on visual inspection
of the histograms), the semiparametric Gaussian copula
graphical model (SGCGM), a semiparametric extension
of GGM, was used. This approach uses Spearman’s rho
and Kendall’s tau to estimate the correlation matrix,
which is then entered into the parametric procedure –
the graphical lasso – to obtain the final estimate of the
regularized partial correlation matrix [42, 43]. Addition-
ally, to address the high proportion of zeros and avoid
overrepresentation of relationships between foods con-
sumed episodically (i.e., not all 40 food groups were con-
sumed in each meal, therefore many food groups within
meals have intakes of 0 g), different constraints were
tested, resulting in exclusion of foods consumed on
fewer than 5% of meals per network. Additional File 2
shows the network and community properties of the dif-
ferent constraints that were tested, including optimal
lambdas obtained from 5-fold cross-validated graphical
lasso used in the analyses. For the trimester-specific
meal networks, the same optimal lambda from the re-
spective meal and a food group threshold of 5% of meals
was used.
Communities comprised of at least two food groups

subdivide networks into smaller combinations of foods
that are more densely connected to each other than to
foods in the rest of the network. Communities were de-
tected based on the absolute value of the partial correla-
tions using the Louvain method (LM), frequently used
for analyzing large weighted networks [44, 45]. After
community detection, we classified nodes into roles ac-
cording to their intra- and inter-community connectivity
pattern measured by the within-community degree
(WC) and the participation coefficient (PC) using the
method from Guimerà et al. [46]. The WC measures
how well a node connects to the rest of its community
and is expressed as a z-score, where a higher score indi-
cates a higher internal connectivity relative to its

community. The PC measures the degree of connectivity
with other communities relative to the connections
within its own community, with a value of 0 if all edges
are within its community and close to 1 if edges are uni-
formly distributed among communities [46]. We adapted
the WC threshold to fit our data: nodes with WC greater
than or equal to 1.0 were classified as hubs and nodes
with WC lower than 1.0 as non-hubs. Nodes were fur-
ther classified according to their PC: hub nodes were di-
vided into provincial hubs (i.e., food groups having most
edges within rather than external to their community),
connector hubs (i.e., food groups having multiple edges
with other communities), and kinless hubs (i.e., food
groups having edges uniformly distributed among com-
munities) [46]. Non-hub nodes were divided into ultra-
peripheral nodes (i.e., food groups having all edges
within rather than external to their community), periph-
eral nodes (i.e., food groups having most edges within
their community), non-hub connector nodes (i.e., food
groups having multiple edges with other communities),
and non-hub kinless nodes (i.e., food groups having uni-
formly distributed among communities) [46] (Table 1).
While provincial hubs have an important structural role
within their community, connector nodes contribute to
higher connectivity between communities (i.e., greater
network integration) [47]. Food networks were evaluated
qualitatively by describing and comparing network, com-
munity, and node role (hub and connector nodes) be-
tween HEI tertiles (Additional File 3). For the purpose of
identification, communities were numbered arbitrarily;
communities composed of similar food combinations in
both HEI tertiles were assigned the same number.
The intra-class correlation (ICC) was calculated to as-

sess inter-individual and inter-meal variation of each
food group. ICC was calculated based on the multi-level
approach of Bell, et al. [48] in: 1) a three level model for
inter-meal variation (highest level of the data corre-
sponding to participants, next level corresponding to
type of meal – breakfast/lunch/dinner/snacks; ICC for
type of meal indicates variation in food intake explained

Table 1 Node role classification used in food networksa

Node role classification WCb PC Description

Provincial hub ≥ 1.0 ≤ 0.30 Most edges within its own community

Connector hub ≥ 1.0 > 0.3 and≤ 0.75 Many edges to other communities

Kinless hub ≥ 1.0 > 0.75 Edges uniformly distributed among other communities

Ultra-peripheral < 1.0 ≤ 0.05 All edges within its community

Peripheral < 1.0 > 0.05 and≤ 0.62 Most edges within its community

Non-hub connector < 1.0 > 0.62 and≤ 0.80 Many edges to other communities

Non-hub kinless < 1.0 ≥ 0.80 Edges uniformly distributed among other communities

PC participation coefficient, WC within-community degree
a Using the method from Guimerà et al. [46]
b WC threshold adapted to fit network sparsity of our data
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by type of meal); and 2) a two level model for inter-
individual variation at specific meals (highest level of the
data corresponding to participants; ICC indicates vari-
ation in food intake explained by differences between
participants at each meal).
Data management was conducted in SAS (Version 9.4,

Enterprise Guide 7.1, SAS Institute Inc., Cary, NC, USA)
and network analysis was performed in R (Version 3.6.1,
R Foundation for Statistical Computing, Vienna,
Austria). R package huge [49] was used for data trans-
formation, nethet [50] for cross-validated graphical lasso
(to find optimal lambda), glasso to obtain food networks
[51], and NetworkToolbox [52] for Louvain community
detection. Cytoscape, version 3.7.2 [53], was used for
data visualization.

Results
Of 458 women enrolled, 366 completed dietary recalls
during pregnancy. After excluding dietary recalls < 600
kcal and one with missing meal information, dietary data
from 365 women were available. Data from 121 partici-
pants in the low and 122 participants high HEI tertiles
were used for meal food network analysis; participants
in the high HEI tertile completed more dietary recalls
and consumed more snacks per day than participants in
the low HEI tertile (Fig. 1). Participants in the high HEI
tertile were on average older, had more often normal
weight and higher education level, were more often

white, employed full time, and most were married and/
or living with their partner (Table 2).
Intraclass correlation coefficients indicated that in the

low HEI tertile, between-meal variability (variability be-
tween meal type: breakfast vs. lunch vs. dinner vs.
snacks) explained over 30% of the variation in intake of
fish (higher at dinner), green vegetables (higher at lunch
and dinner), soups (higher at lunch and dinner), and cof-
fee & tea (higher at breakfast); in the high HEI tertile,
between-meal variability explained over 30% of the vari-
ation in intake of low-sugar ready-to-eat cereals (higher
at breakfast), milk (higher at breakfast), cooked grains
(higher at breakfast and dinner), and coffee & tea (higher
at breakfast) (Fig. 2).

Breakfast networks
In the low HEI tertile (Fig. 3), nodes representing most
commonly consumed food groups at breakfast included
milk (51% of breakfasts), water (36%), and white bread
(31%). Vegetables were not represented in any nodes.
Four communities were identified, with two provincial
hubs (solid fats and cheese) connecting all food groups
within their community, and two connector hubs (milk
and fried potatoes) connecting communities 1-3 exclu-
sively through negative correlations, suggesting that par-
ticipants consumed meals consisting of foods from
single communities. Milk and ready-to-eat cereals (com-
munity 2) were positively correlated (i.e., consumed to-
gether), as were sandwiches, sauces, sugar-sweetened

Fig. 1 Flow diagram of PEAS participants for analysis in the present study
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beverages (SSB), and fried potatoes (community 3); and
quick breads and sweets (community 4). In contrast, for
five food groups, (fruits, whole grain bread, coffee & tea,
cakes & cookies, and eggs), the absence of edges (correla-
tions) to other food groups indicated conditional
independence.
In the high HEI tertile (Fig. 3), nodes representing

most commonly consumed food groups at breakfast in-
cluded milk (64% of breakfasts), water (51%), fruits
(40%), and coffee & tea (37%). Five communities were
identified, with one provincial hub (high-sugar ready-to-
eat cereals) connecting all food groups within its com-
munity. Multiple connector hubs (cheese, cooked grains,
and whole grain bread) and non-hub connector nodes
(cured meat, solid fats, fruit juice, milk, and white bread)
indicate high connectivity between communities (i.e.,
greater network integration). All communities had posi-
tive correlations to other communities, suggesting that
participants consumed meals consisting of foods from
multiple communities. Communities 1, 2 and 4 were
similar to those in the low HEI tertile, but community 1
included SSB and coffee & tea and community 2 in-
cluded cooked grains (e.g., oatmeal) and nuts. Red/orange
vegetables and other vegetables were positively correlated

(community 5), while fruits and whole grain bread were
negatively correlated (community 3).
Intraclass correlation coefficients indicated that in the

low HEI tertile, between-subject variability explained
over 30% of the variation in intake of milk and coffee &
tea (Fig. 2), indicating that these nodes may not repre-
sent intake patterns of all participants in the tertile.
Similarly, in the high HEI tertile, between-subject vari-
ability explained over 30% of the variation in intake of
milk, coffee & tea, cooked grains, and low-sugar ready-to-
eat cereals.

Lunch networks
In the low HEI tertile (Fig. 3), nodes representing most
commonly consumed food groups at lunch included water
(50% of meals), sauces (43%), other vegetables (37%),
cheese (34%), white bread (32%), and SSB (32%). Five com-
munities were identified, with two provincial hubs (red/or-
ange vegetables and SSB) connecting all or most food
groups within their communities. Multiple connector
hubs (cheese, sauces, and cooked grains) and a non-hub
connector node (other vegetables) indicate high connectiv-
ity between communities. While communities 1-4 shared
at least one positive correlation, the only correlation

Table 2 Sample characteristics of the analytic sample by HEI tertilea

Characteristics HEI tertile

Low (n = 121) High (n = 122)

Age (years), mean (SD) 29.7 (5.3) 31.5 (3.6)

BMI (kg/m2)

Normal (≥ 18.5 to < 25) 50 (41.3) 75 (61.5)

Overweight (25 to < 30) 33 (27.3) 33 (27.1)

Obese (≥ 30) 38 (31.4) 14 (11.5)

Race Ethnicity

White 71 (64.0) 88 (75.2)

Black 24 (21.6) 8 (6.8)

Hispanic or Latino 11 (9.9) 8 (6.8)

Other 5 (4.5) 13 (11.1)

Education (highest degree obtained)

Some college or less 51 (46.8) 11 (9.6)

Bachelor’s Degree 28 (25.7) 41 (36.0)

Graduate Degree 30 (27.5) 62 (54.4)

Employment status

Full time 61 (56.0) 79 (69.3)

Part time 17 (15.6) 16 (14.0)

Not working 31 (28.4) 19 (16.7)

Marital status

Married and/or living with partner 92 (84.4) 110 (96.5)

Other (divorced, widowed, separated, single) 17 (15.6) 4 (3.5)

BMI Body Mass Index, HEI Healthy Eating Index-2015
a Values are frequency (%) unless otherwise indicated
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connecting community 5 to another community was a
negative correlation (cheese with sandwiches), suggesting
that a single lunch meal may consist of community 5
foods only (e.g. sandwiches, fried potatoes, and SSB), or of
combinations of foods from communities 1-4.
In the high HEI tertile (Fig. 3), nodes representing

most commonly consumed food groups at lunch in-
cluded water (71% of meals), other vegetables (49%),
sauces (37%), red/orange vegetables (35%),and cheese
(32%). Four communities were identified, with three pro-
vincial hubs (whole grain bread, white bread, and other
vegetables) connecting all or most food groups within
their communities, and with no connector hubs or non-
hub connector nodes, indicating low connectivity be-
tween communities and suggesting that participants
consumed meals consisting of foods from single com-
munities. Communities 2 and 3 included food groups
similar to those in the low HEI tertile, but with cooked

grains and solid fats constituting their own community
(community 4). In the high HEI tertile, sauces were also
positively correlated with poultry and vegetables, but not
with cooked grains or meat. For several food groups
(fruits, coffee & tea, soups, salty snacks, mayonnaise
salads, cured meat, nuts, fruit juice, water, meat, cakes &
cookies, milk, SSB, fried potatoes, and savory pies), the
absence of edges (correlations) to other food groups in-
dicated conditional independence.
In the high HEI tertile only, between-subject variability

explained over 30% of the variation in intake of some
foods (cheese, water, and coffee & tea) (Fig. 2), indicating
that these nodes may not represent intake patterns of all
participants in the tertile.

Dinner networks
In the low HEI tertile (Fig. 3), nodes representing most
commonly consumed food groups at dinner included

Fig. 2 Heatmap of inter-meal and inter-individual variation in food intake (n = 243)1. HEI: Healthy Eating Index-2015; ICC: Intra-class correlation; RTE:
ready-to-eat; SSB: sugar-sweetened beverages. ICCs of > 0.30 are marked in bold.
1 Intra-class correlation is presented for food groups consumed in at least 5% of the modelled recalls/meals by HEI tertile.
2 Variance explained by type of meal, considering inter-individual variation.
3 Variance explained by inter-individual variation for each meal type separately

Schwedhelm et al. International Journal of Behavioral Nutrition and Physical Activity          (2021) 18:101 Page 7 of 13



Fig. 3 (See legend on next page.)

Schwedhelm et al. International Journal of Behavioral Nutrition and Physical Activity          (2021) 18:101 Page 8 of 13



water (57% of meals), sauces (52%), and other vegetables
(42%). Six communities were identified, with two provin-
cial hubs (SSB and sweets) connecting all food groups
within their communities. Two connector hubs (white
bread and cooked grains) connecting communities 1-4,
and two non-hub connectors (sauces and other vegeta-
bles) connecting communities 1-3 indicate higher con-
nectivity between communities. Strong positive
correlations between communities 1-3 suggest that foods
from these communities were consumed as part of the
same meal, while communities 4-6 were conditionally
independent of each other. SSB, fried potatoes and sand-
wiches were positively correlated with each other, and
SSB was negatively correlated with water (community 4).
For five food groups (pasta-based dishes, fruit juice,
cakes & cookies, fish, and soups), the absence of edges
(correlations) to other food groups indicated conditional
independence.
In the high HEI tertile (Fig. 3), nodes representing

most commonly consumed food groups at dinner in-
cluded water (71% of meals), other vegetables (61%), and
sauces (48%). Five communities were identified, with
two provincial hubs (cheese and water) connecting all or
most food groups within their communities. Fewer con-
nector hubs (cooked grains and oils) and no non-hub
connector nodes indicate lower connectivity between
communities. Community 4 consists of only beverages,
with water most frequently consumed and correlating
negatively with SSB and milk. Community 5 was equiva-
lent to its counterpart in the low HEI tertile, with a posi-
tive correlation between fruits and salty snacks. For eight
food groups (white bread, potatoes, soups, eggs, fried po-
tatoes, fruit juice, sweets, and cakes & cookies), the ab-
sence of edges (correlations) to other food groups
indicated conditional independence.
In the low HEI tertile, between-subject variability ex-

plained over 30% of the variation in intake of soups and
fish (Fig. 2), indicating that these nodes may not repre-
sent intake patterns of all participants in the tertile.
Similarly, in the high HEI tertile, between-subject vari-
ability explained over 30% of the variation in intake of
milk.

Snacks networks
In the low HEI tertile (Fig. 3), nodes representing most
commonly consumed food groups at snacks included

water (41% of snacks), cakes & cookies (23%), and salty
snacks (18%). Three conditionally independent commu-
nities were identified, with one provincial hub (cakes &
cookies) at the center of community 1. While community
2 shows that white bread, cheese, and sauces (including
condiments) were positively correlated, negative or no
correlations in the rest of the network suggest that most
foods were consumed alone.
In the high HEI tertile (Fig. 3), nodes representing

most commonly consumed food groups at snacks in-
cluded water (54% of meals), fruits (32%), and nuts
(19%). Three communities were identified, with two con-
nector hubs (fruits and milk) and one non-hub con-
nector (cakes & cookies) connecting all communities
through negative correlations. Like the low HEI tertile
snack network, negative or no correlations suggest that
foods were consumed alone.
Intraclass correlation coefficients indicated that

between-subject variability explained less than 30% of
the variation in intake of all food groups in both HEI
tertiles (Fig. 2), indicating that nodes roughly represent
intake patterns of every participant in each tertile.

Trimester-specific meal networks
Overall, minor differences were found in meal networks
across pregnancy trimesters; nevertheless, the overall
structure remained. At main meals (i.e., breakfast, lunch,
dinner), the second and third trimester networks were
more integrated, in which case higher density of connec-
tions and fewer conditionally independent food groups
produced somewhat altered community composition,
but most of the original connections still remained (re-
sults not shown).

Discussion
GGM-derived food networks are a novel analytic ap-
proach that facilitates investigation of diet from the per-
spective of the inter-dependence of food items within
meal occasions rather than as summarizing over mul-
tiple meals and days. To our knowledge, this is the first
study to examine associations between foods consumed
within meals during pregnancy. Differences in meal pat-
terns between diet quality tertiles varied across meals
and were mostly consistent with overall diet quality clas-
sification, shown by differences in node size (indicating
percentage of meals in which a food group was

(See figure on previous page.)
Fig. 3 Meal food networks among PEAS participants in the low and the high HEI tertiles. HEI: Healthy Eating Index-2015. The thickness of the
edges is proportional to the strength of the correlation. Blue, dashed edges indicate negative correlations and red, continuous edges indicate
positive correlations. The size of the nodes is proportional to the percentage of meals in which the food was consumed and node role is
indicated by colors yellow (provincial hub), purple (connector hub), and orange (non-hub connector). Communities are shown in different
background colors around the nodes and are labeled C1-C6. An asterisk (*) next to food group labels indicates significant difference in node size
by HEI tertile (p < 0.05), determined by Chi-square test
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consumed), hub and connector nodes (indicating struc-
turally important food groups), and combinations of
food groups within communities. For example, node size
was larger for whole grain bread in the high diet quality
tertile and larger for white bread in the low diet quality
tertile at breakfast. Similarly, fried potatoes and SSB
acted as hubs for the low tertile but not for the high ter-
tile, while whole grain bread was a hub in the high but
not the low tertile.
These findings indicated several shared characteristics

of meal-specific food group networks across diet quality
tertiles. At breakfast, food group communities comprised
of white bread, cereals and milk, and quick breads were
observed in both diet quality tertiles. Also in both ter-
tiles, foods at snacks were mostly consumed alone, ra-
ther than in combinations. Positive correlations were
observed in both diet quality tertiles between two or
more less healthful foods (i.e. foods contributing to a
lower diet quality) like sweets and quick breads at break-
fast in both tertiles, between two or more healthful foods
(e.g., green vegetables and red/orange vegetables and nuts
and oils at dinner in the low and the high diet quality
tertile, respectively), as well as between more healthful
and less healthful foods (e.g., fruits and salty snacks at
dinner in both diet quality tertiles). Food networks were
more integrated at breakfast, but less integrated at lunch
and dinner in the high versus the low HEI tertile, sug-
gesting the complexity of food combinations (e.g., num-
ber of food groups, number of possible different
combinations) is not necessarily associated with diet
quality, consistent with previous findings [15, 54]. The
small differences found in trimester-specific meal net-
works could be partly randomly produced by the sample
breakdown (trimester-specific networks have sample
sizes ranging from 63 to 176 eating occasions, with a
higher number of observations in the first trimester), but
differences in network integration (lower in the first
pregnancy trimester) could reflect dietary changes trig-
gered by pregnancy symptoms, for example nausea and
cravings in early and in mid-late pregnancy, respectively.
Future studies should examine whether this is a persist-
ent observation and whether pregnancy symptoms play a
role.
Due to substantive differences in research questions

and methods used, our findings cannot be directly com-
pared with previous work on diet quality and meal com-
position during pregnancy. Studies examining dietary
patterns in pregnancy are typically based on dietary as-
sessments using FFQs [55], which preclude meal-specific
analysis. However, our findings share some similarities
with those from studies examining daily prenatal dietary
intake in the U.S. [56, 57]. In a sample of predominantly
lower- to middle-income pregnant women from North
Carolina, French fries and soft drinks were among the

top contributing foods to total energy and macronutrient
intake and carbohydrate intake, respectively, suggesting
these were commonly-consumed foods [56]. In our
study, SSB and fried potatoes were most commonly con-
sumed in the low diet quality tertile at lunch, suggesting
a potential intervention target. In a sample of low-
income pregnant women in Texas, frequent fast-food
consumers ate more vegetables but also more gravy and
less fruit [57]. Similar findings were observed in the
current study among participants in the low diet quality
tertile, in which sandwiches, fried potatoes, and SSB,
which are often obtained from fast food outlets, were
more frequently consumed, while fruits and vegetables
were less frequently consumed, than in the high diet
quality tertile.
Findings may inform potential guidance for addressing

poor diet quality in this population. For example, one
approach may include recommending the addition of
vegetables to breakfasts. In the high diet quality tertile,
cheese at breakfast was consumed with vegetables, eggs,
and whole grain bread, which could be accomplished
with a vegetable-filled omelet served with whole grain
bread. The finding that foods were mostly consumed in-
dependently (i.e., not related to other food groups) at
the snack eating occasions suggests that food intake at
snacks may be more flexible than other meals, and
therefore dietary changes at snacks may be easier to im-
plement. However, the impact of meal-specific food in-
take changes on overall diet quality should be further
investigated and confirmed in simulation and interven-
tion studies. For example, studies on interventions aim-
ing to reduce white bread intake at breakfast should
assess the impact on other food groups such as cured
meat and high-sugar ready-to-eat cereals as well as on
overall diet quality. Some observed food combinations in
the networks suggest that meal context may play an im-
portant role. For instance, the combination of fried pota-
toes, sandwiches, and SSB observed in all meal networks
in the low diet quality tertile appears characteristic of a
restaurant or fast-food meal pattern. Because food
choices are affected by meal context [58, 59], recom-
mendations aimed at changing food choices could have
low adherence if not framed accordingly.
Strengths of this study include the large sample size

and number of meal occasions, and the use of 24-h diet-
ary recalls, supporting internal validity. Although no
dietary assessment method is free of measurement error,
24-h recalls are considered to be the least biased self-
report method, capturing diet with greater precision and
detail than other methods such as food frequency ques-
tionnaires [60]. However, the generalizability of these
findings is limited given the sample demographics. The
skewed distribution with a high proportion of zeros is a
limitation of the application of GGM-derived food
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networks to meal-specific dietary data, which we addressed
by using a semiparametric extension of GGM, SGCGMs,
and by excluding food groups consumed in fewer than 5%
of the meals to avoid overrepresentation of the relationship
between episodically-consumed foods eaten together on
only a few occasions. Another consideration is that the cor-
relations for the food networks in the high HEI tertile were
based on a larger number of meals and dietary recalls. Fur-
thermore, analyzing meals as independent observations re-
tains the meal structure needed for this meal-specific
analysis but does not account for repeated recalls from the
same participant. However, most food groups had a low
intra-class correlation in complementary analyses, suggest-
ing low between-participant variation. On the contrary,
foods with high intra-class correlation should be interpreted
cautiously, such as milk and coffee & tea at breakfast, whose
intakes were more unequally distributed between partici-
pants, with milk consumers and milk non-consumers. Fi-
nally, LM community detection provided valuable
information about the structure of food combinations ob-
served in the networks, but by visually emphasizing within-
community correlations, important between-community
correlations may be overlooked. Therefore, it is important
to consider the entire network and not only the community
break-down, especially in the presence of strong between-
community correlations. Node role identification, specific-
ally of connector nodes, addresses this issue and facilitates
network interpretation.

Conclusions
These findings regarding maternal meal-based dietary
patterns may inform efforts to address overall poor diet
quality among pregnant women. This GGM-derived
meal food network analysis identified several differences
in meal-specific dietary intake between pregnant women
with low and high diet quality, including intake of vege-
tables, whole grain bread, cooked grains and nuts at
breakfast and overall healthier snacks in the high diet
quality group, and SSB, sandwiches and fried potatoes at
all main meals – but most commonly at lunch – in the
low diet quality group. Simulation studies and interven-
tion studies are needed to test how changes in foods im-
pact intake of correlated foods.
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