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Abstract
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1 Introduction
Hahn [1, 2] introduced, for x �= w/(1 – q), the quantum difference operator

Dq;wf (x) =
f (q x + w) – f (x)

(q – 1) x + w
, q ∈ (0, 1), w > 0,

D0
q;wf (x) = f (x), Dn

q;wf (x) = Dq;w
{

Dn–1
q;w f (x)

}
, n = 1, 2, . . . , (1)

where f is a function defined on an interval I of R which contains w/(1 – q). It is clear,
using L’Hopital’s rule, that

lim
x→w/(1–q)

Dq;wf (x) = f ′
(

w
1 – q

)

provided that the function f is differentiable at w/(1 – q) in the usual sense.
The Hahn difference operator Dq;w unifies (in the limit) and generalizes two well-known

difference operators; namely, the quantum q-difference operator Dq ≡ Dq;0 (see [3–7]) and
the forward difference operator �w ≡ D1;w (see [8, 9]). Included as a special case is the
discrete forward difference operator � = D1;1. In the limit, both Dq and �w generalize
the derivative operator f ′(x) = df /dx. The generalization and the limit process to these
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important operators is illustrated by the following diagram:

Dq f (x) = (f (q x) – f (x))/(q x – x), x �= 0
q→1

Dq;wf (x)

q→1

w→0

q→1, w→0

w→0, q→1
df /dx

�w f (x) = (f (x + w) – f (x))/w, w �= 0
w→0

A rigorous analysis of the calculus associated with the operator Dq;w along with the con-
struction of a proper inverse of Dq;w and the associated integral calculus can be found in
[10–12].

The Hahn operator Dq;w is an important tool in the construction of families of orthog-
onal polynomials and several approximation problems (see, for example, [13–19]).

In 2003, Çiftçi, Hall, and Saad introduced [20, 21] the asymptotic iteration method
(AIM) to solve analytically and/or approximately the second-order linear homogeneous
differential equation

y′′(x) = λ0(x) y′(x) + s0(x) y(x), ′ = d/dx, (2)

where λ0(x) and s0(x) are continuously differentiable functions. They proved that, up to
some multiplication constant, an analytic solution of this differential equation reads

y(x) = exp

(
–

∫ x sn–1(t)
λn–1(t)

dt
)

(3)

provided that, for some n > 0, (so-called terminating condition)

sn(x)
λn(x)

=
sn–1(x)
λn–1(x)

or δn(x) = λn(x)sn–1(x) – sn(x)λn–1(x) ≡ 0, (4)

given the AIM-sequences, for n = 0, 1, 2, . . . , as

λn(x) = λ′
n–1(x) + λn–1(x)λ0(x) + sn–1(x),

sn(x) = s′
n–1(x) + s0(x)λn–1(x), (5)

initiated with λ–1 = 1 and s–1 = 0. This powerful and simple technique [22] proved to be
very useful in studying the eigenvalue problems in quantum mechanics. Noting that if the
analytic solutions of the linear differential equation (2) are not available, the terminating
condition (4) plays a vital role in approximating the exact solutions with high (and almost
controllable) precision [23, 24]. Ismail and Saad [25] recently shed further insight on the
AIM mathematical foundation where the reasons for its success and the possible conver-
gence failures of the iterative aspect of it were presented.
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In another study by Ismail and Saad [26], a discrete version of the AIM was presented,
dAIM, along with applications to the classical difference equations [27]. Given the second-
order linear difference equation

�2 y(x) = λ0(x)� y(x) + s0(x) y(x), x ≥ x0, (6)

a solution, up to some constant (periodic) function, is given by

y(x) =
x–1∏

i=x0

(
1 –

sn–1(i)
λn–1(i)

)
(7)

provided that, for some n > 0,

sn(x)
λn(x)

=
sn–1(x)
λn–1(x)

, n = 1, 2, . . . , (8)

where

λn(x) = �λn–1(x) + λn–1(x + 1)λ0(x) + sn–1(x + 1),

sn(x) = � sn–1(x) + λn–1(x + 1)s0(x). (9)

Also, the quantum q-discrete version qAIM was introduced in [26]. Given a second-order
q-difference equation

D2
q y(x) = λ0(x) Dqy(x) + s0(x) y(x), 0 < q < 1, (10)

a solution, up to some constant periodic function, is given by

y(x) =
∞∏

k=0

[
1 + (1 – q) qk x

sn–1(qk x)
λn–1(qk x)

]–1

(11)

provided that

sn(x)
λn(x)

=
sn–1(x)
λn–1(x)

, n = 1, 2, . . . , (12)

where the functions λn(x) and sn(x) are generated by

λn(x) = Dq λn–1(x) + λn–1(q x)λ0(x) + sn–1(q x),

sn(x) = Dq sn–1(x) + λn–1(q x) s0(x). (13)

For the proofs and detailed examples, we refer the reader to the recently published
manuscript [26].

In the present work, we unify both the dAIM and qAIM using the Hahn operator (1). To
achieve this goal, in Sect. 2 we summarize the relevant definitions and properties of the
Hahn difference operator. Several novel properties of this operator are also introduced and
proved in that section. In particular, the polynomials in the (q; w)-space are introduced,
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and the associated Taylor polynomial expansions are derived. In Sect. 3, the solutions of
the first- and second-order linear Hahn difference equations

⎧
⎨

⎩
Dq;wy(x) = α(x) y(x) + β(x),

D2
q:w y(x) = λ0(x) Dq:wy(x) + s0(x) y(x),

(14)

are examined. The necessary and sufficient conditions for the existence of polynomial
solutions of the second-order linear Hahn difference equation are derived and proved.
In Sect. 4, the solutions of the hypergeometric equation [28]

(
e x2 + 2 f x + g

)
D2

q;w y(x) + (2 ε x + γ ) Dq;w y(x) + τ y(x) = 0 (15)

are deduced. The necessary and sufficient conditions of the polynomial solutions are es-
tablished and applied to construct the first few solutions explicitly.

2 Preliminary definitions and properties of Hahn operator
To make this paper self-contained, we review the mathematical properties of the Hahn
operator [1, 2, 10, 11, 18, 29–32] in this section and provide the proofs for other new
properties developed for the present work.

Theorem 1 If f , g : I →R and a, b ∈R are q; w-differentiable functions and x ∈ I , then:
1. Linearity:

Dq;w
[
a f (x) + b g(x)

]
= a Dq;wf (x) + b Dq;wg(x). (16)

2. Product rule:

Dq;w
(
f (x) g(x)

)
= f (qx + w)Dq;wg(x) + g(x)Dq;wf (x)

= g(qx + w)Dq;wf (x) + f (x)Dq;wg(x). (17)

3. Quotient rule:

Dq;w

(
f (x)
g(x)

)
=

g(x)Dq;wf (x) – f (x)Dq;wg(x)
g(qx + w)g(x)

=
g(q x + w)Dq;wf (x) – f (q x + w)Dq;wg(x)

g(qx + w)g(x)
, (18)

provided that g(qx + w) g(x) �= 0 for all x ∈ I .

Lemma 1 For q �= 0 and n = 1, 2, . . . ,

f

(

qnx + w
n–1∑

j=0

qj

)

= f (x)

+
(
(q – 1)x + w

) n–1∑

j=0

qjDq;wf

(

qjx + w
j–1∑

i=0

qi

)

. (19)
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Proof By definition

[
(q – 1)x + w

]
Dq;wf (x) = f (qx + w) – f (x),

thus, replacing x with q x + w, it follows that

q
[
(q – 1)x + w

]
Dq;wf (qx + w) = f

(

q2x +
1∑

j=0

qjw

)

– f (qx + w).

Repeating the process, we have recursively that

qk[(q – 1)x + w
]
Dq;wf

(

qkx +
k–1∑

j=0

qjw

)

= f

(

qk+1x +
k∑

j=0

qjw

)

– f

(

qkx +
k–1∑

j=0

qj w

)

. (20)

The assertion then follows by sum of these equations for j = 0 to k. �

The following gives a generalization to Lemma 1.

Lemma 2 For x �= w/(1 – q),

n∑

j=0

qjf

(

qjx + w
j–1∑

i=0

qi

)

Dq;wg

(

qjx + w
j–1∑

i=0

qi

)

=
f (qn+1x + w

∑n
j=0 qj) g(qn+1x + w

∑n
j=0 qj) – f (x) g(x)

(q – 1)x + w

–
n∑

j=0

qjg

(

qj(qx + w) + w
j–1∑

i=0

qi

)

Dq;wf

(

qjx + w
j–1∑

i=0

qi

)

, (21)

where identity (19) follows for g(x) or f (x) is a constant function.

Proof We note

n∑

j=0

qjDq;w

[

f

(

qjx + w
j–1∑

i=0

qi

)

g

(

qjx + w
j–1∑

i=0

qi

)]

=
f (qn+1x + w

∑n
j=0 qj)g(qn+1x + w

∑n
j=0 qj) – f (x)g(x)

(q – 1)x + w
.

By the product rule of Dq;w[f (qjx + w
∑j–1

i=0 qi) g(qjx + w
∑j–1

i=0 qi)], see (17), we have

n∑

j=0

qj

[

g

(

qj(qx + w) + w
j–1∑

i=0

qi

)

Dq;wf

(

qjx + w
j–1∑

i=0

qi

)

+ f

(

qjx + w
j–1∑

i=0

qi

)

Dq;wg

(

qjx + w
j–1∑

i=0

qi

)]
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=
f (qn+1x + w

∑n
j=0 qj)g(qn+1x + w

∑n
j=0 qj) – f (x)g(x)

(q – 1)x + w
,

which completes the proof after some simple arrangements. �

Theorem 2 For a q; w-differentiable function f ,

f

(

qnx + w
n–1∑

k=0

qk

)

=
n∑

k=0

(
n
k

)

q
q

1
2 k(k–1) [(q – 1) x + w

]k Dk
q;wf (x), (22)

where
(n

k
)

q is the q-binomial coefficients [27, formula 12.1.4].

Proof We prove this by induction on n. The result holds for n = 1 by the definition

f (q x + w) = f (x) +
[
(q – 1) x + w

]
Dq;wf (x).

For the inductive step, assume that for some n the theorem is true. For n + 1, it follows
using the well-know identity [33], for n ≥ 1 and 1 ≤ k ≤ n,

(
n + 1

k

)

q
=

(
n
k

)

q
+ qn+1–k

(
n

k – 1

)

q
, (23)

that

n+1∑

k=0

(
n + 1

k

)

q
qk(k–1)/2[(q – 1) x + w

]kDk
q;wf (x)

=
n+1∑

k=0

(
n
k

)

q
qk(k–1)/2[(q – 1) x + w

]kDk
q;wf (x)

+
n+1∑

k=0

qn+1–k
(

n
k – 1

)

q
qk(k–1)/2[(q – 1) x + w

]kDk
q;wf (x).

However, using the properties of the q-binomial coefficient
( n

n+1
)

q = 0 and
(n

0
)

q = 1, we have

n+1∑

k=0

(
n + 1

k

)

q
qk(k–1)/2[(q – 1) x + w

]kDk
q;wf (x)

=
n∑

k=0

(
n
k

)

q
qk(k–1)/2[(q – 1) x + w

]kDk
q;wf (x)

+
n+1∑

k=1

qn+1–k
(

n
k – 1

)

q
qk(k–1)/2[(q – 1) x + w

]kDk
q;wf (x).

For 1 ≤ k ≤ n + 1, we have for j = k – 1, where 0 ≤ j ≤ n, that

n+1∑

k=0

(
n + 1

k

)

q
qk(k–1)/2[(q – 1) x + w

]kDk
q;wf (x)

=
n∑

k=0

(
n
k

)

q
qk(k–1)/2[(q – 1) x + w

]kDk
q;wf (x)
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+
n∑

j=0

qn–j
(

n
j

)

q
q(j+1)j/2[(q – 1) x + w

]j+1Dj+1
q;wf (x)

= f

(

qnx + w
n–1∑

k=0

qk

)

+ qn[(q – 1) x + w
]

×
n∑

j=0

(
n
j

)

q
qj(j–1)/2[(q – 1) x + w

]jDj
q;w

(
Dq;wf (x)

)
,

which, using (20), finally implies

n+1∑

k=0

(
n + 1

k

)

q
qk(k–1)/2[(q – 1) x + w

]kDk
q;wf (x)

= f

(

qnx + w
n–1∑

k=0

qk

)

+ qn[(q – 1) x + w
]
Dq;wf

(

qnx + w
n–1∑

k=0

qk

)

= f

(

qn+1x + w
n∑

k=0

qk

)

.

This completes the proof. �

For example, if n = 3, then this lemma implies

f

(

q3 x + w
2∑

i=0

qi

)

= f (x) +
(
1 + q + q2)((q – 1)x + w

)
Dq;wf (x)

+ q
(
q2 + q + 1

)(
(q – 1)x + w

)2D2
q;wf (x) + q3((q – 1)x + w

)3D3
q;wf (x). (24)

A slightly different form of the following theorem was given in [34, Lemma 2.1]; however,
we give here a direct proof based on the method of mathematical induction.

Theorem 3 Let f be a q; w differentiable function on I . Then, for x �= w/(1 – q), the nth q; w
derivative is evaluated using

Dn
q;wf (x) =

q–n(n–1)/2

((q – 1) x + w)n

×
n∑

k=0

(–1)n–k q(n–k)(n–k–1)/2
(

n
k

)

q
f

(

qk x + w
k–1∑

i=0

qi

)

. (25)

Proof Again, by induction on n, the result holds for n = 1 by

Dq;wf (x) =
(
(q – 1)x + w

)–1[f (q x + w) – f (x)
]
.
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Assume it is true for n. Then, for n + 1,

Dn+1
q;w f (x) = Dn

q;w
(
Dq;wf (x)

)

=
q–n(n–1)/2

((q – 1)x + w)n

n∑

k=0

(–1)n–kq(n–k)(n–k–1)/2
(

n
k

)

q
Dq;wf

(

qk x + w
k–1∑

i=0

qi

)

.

However, by definition,

Dq;wf

(

qk x + w
k–1∑

i=0

qi

)

=
f (qk+1x + w

∑k
j=0 qj) – f (qkx + w

∑k–1
j=0 qj)

qk[(q – 1)x + w]
,

it follows that

Dn+1
q;w f (x) =

q–n(n–1)/2

((q – 1)x + w)n+1

×
n∑

k=0

(–1)n–kq(n–k)(n–k–1)/2–k
(

n
k

)

q
f

(

qk+1 x + w
k∑

i=0

qi

)

–
q–n(n–1)/2

((q – 1)x + w)n+1

×
n∑

k=0

(–1)n–kq(n–k)(n–k–1)/2–k
(

n
k

)

q
f

(

qk x + w
k–1∑

i=0

qi

)

.

Shifting the index in the first sum, it follows that

Dn+1
q;w f (x) = q–n(n–1)/2((q – 1)x + w

)–n–1

×
n+1∑

k=1

(–1)n–k+1q(n–k+1)(n–k)/2–k+1
(

n
k – 1

)

q
f

(

qk x + w
k–1∑

i=0

qi

)

– q–n(n–1)/2((q – 1)x + w
)–n–1

×
n∑

k=0

(–1)n–kq(n–k)(n–k–1)/2–k
(

n
k

)

q
f

(

qk x + w
k–1∑

i=0

qi

)

and using
( n

n+1
)

q =
( n

–1
)

q = 0, this expression can be written as

Dn+1
q;w f (x) = q–n(n–1)/2((q – 1)x + w

)–n–1

×
n+1∑

k=0

(–1)n–k+1q(n–k+1)(n–k)/2–k+1
(

n
k – 1

)

q
f

(

qk x + w
k–1∑

i=0

qi

)

– q–n(n–1)/2((q – 1)x + w
)–n–1

×
n+1∑

k=0

(–1)n–kq(n–k)(n–k–1)/2–k
(

n
k

)

q
f

(

qk x + w
k–1∑

i=0

qi

)

.
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Further simplification yields

Dn+1
q;w f (x) =

q–n(n–1)/2

((q – 1)x + w)n+1

n+1∑

k=0

(–1)n–k+1q(n–k–1)(n–k)/2–k

×
[

qn–k+1
(

n
k – 1

)

q
+

(
n
k

)

q

]
f

(

qk x + w
k–1∑

i=0

qi

)

or simply using (23)

Dn+1
q;w f (x) =

q– 1
2 n(n+1)

((q – 1)x + w)n+1

×
n+1∑

k=0

(–1)n–k+1q
1
2 (n–k)(n+1–k)

(
n + 1

k

)

q
f

(

qk x + w
k–1∑

i=0

qi

)

as required. �

Remark 1 For arbitrary n = 1, 2, . . . , the identity

n∑

k=0

(–1)k qk (k–1)/2
(

n
n – k

)

q
= 0 (26)

follows directly from Theorem 3 for the constant function f (x) and the fact that
∑n

k=0 An–k =
∑n

k=0 Ak . Further, for 0 < m < n,

n∑

k=0

(–1)kq
1
2 (n–k)(n–k–1)

(
n
k

)

q

(

qk x + w
k–1∑

i=0

qi

)m

= 0. (27)

Remark 2 For arbitrary n, m = 1, 2, . . . ,

Dn
q;w xm

=

⎧
⎨

⎩
0, if m < n,

q–n(n–1)/2

((1–q)x–w)n
∑n

k=0(–1)kq 1
2 (n–k)(n–k–1)(n

k
)

q(qk x + w
∑k–1

i=0 qi)m, if m ≥ n,
(28)

that follows directly from Theorem 3 for the function f (x) = xm.

Definition 1 We define the nth-degree polynomials in the (q; w)-space as

Pn(x) =
n–1∏

j=0

(

x – w
j–1∑

i=0

qi

)

(29)

recalling the empty product and sum:
∏–1

k=0 ak = 1 and
∑–1

k=0 ak = 0.
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The first few polynomials are given explicitly as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0(x) = 1,

P1(x) = x,P2(x) = x(x – w),

P3(x) = x(x – w)(x – (q + 1) w),

P4(x) = x(x – w)(x – (q + 1) w)(x – (q2 + q + 1) w),

P5(x) = x(x – w)(x – (q + 1) w)(x – (q2 + q + 1) w)(x – (q3 + q2 + q + 1) w).

Theorem 4 The q; w-derivative of the nth-degree polynomial Pn(x) is given by

P0(x) = 1, Dq;wPn(x) =

( n–1∑

j=0

qj

)

Pn–1(x), n ≥ 1. (30)

Proof For arbitrary n,

Dq;wPn(x) =
∏n–1

j=0 (qx + w – w
∑j–1

i=0 qi) –
∏n–1

j=0 (x – w
∑j–1

i=0 qi)
(q – 1)x + w

=
qn(x – w(q–1–1)

q–1 )
∏n–1

j=1 (x – w(qj–1–1)
q–1 ) –

∏n–1
j=0 (x – w(qj–1)

q–1 )
(q – 1)x + w

.

Since 1 ≤ j ≤ n – 1 implies 0 ≤ j – 1 ≤ n – 2, let i = j – 1, and it follows that j = i + 1. Thus

Dq;wPn(x) =
qn(x – w(q–1–1)

q–1 )
∏n–2

j=0 (x – w(qj–1)
q–1 ) –

∏n–1
j=0 (x – w(qj–1)

q–1 )
(q – 1)x + w

=
n–2∏

j=0

(
x –

w(qj – 1)
q – 1

)qn(x – w(q–1–1)
q–1 ) – (x – w(qn–1–1)

q–1 )
(q – 1)x + w

=
n–2∏

j=0

(
x –

w(qj – 1)
q – 1

)
qn – 1
q – 1

=

( n–1∑

j=0

qj

) n–2∏

j=0

(
x –

w(qj – 1)
q – 1

)

=

( n–1∑

j=0

qj

)

Pn–1(x)

as required. �

Theorem 5 In terms of the polynomials {Pn(x)}n=0, an arbitrary r degree polynomial Pr(x)
can be represented by the following expansion:

Pr(x) =
r∑

k=0

Dk
q;wPr(0)

(1 – q)–k(q; q)k
Pk(x). (31)

Proof Let Pr(x) be the rth degree polynomial of x that can be written as

Pr(x) =
r∑

k=0

Ak Pk(x),
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where Ak are constants to be determined. Using the direct derivative for k = 0, 1, 2, . . . ,
followed by the substitution x = 0 to compute the corresponding Ak , it is not difficult to
prove that

Ak =
Dk

q;wPr(0)
(1 + q)(1 + q + q2)(1 + q + q2 + q3) · · · (1 + q + q2 + · · · + qk–1)

=
Dk

q;wPr(0)
∏k–1

j=0 (
∑j

i=0 qi)
=

Dk
q;wPr(0)

(1 – q)–k(q; q)k
.

Thus,

Pr(x) =
r∑

k=0

Dk
q;wPr(0)

(1 – q)–k(q; q)k

(k–1∏

j=0

(

x – w
j–1∑

i=0

qj

))

.
�

For example, the expansions of the polynomials x2, x3, x4 in terms of {Pn(x)} are

x2 = w x + x (x – w),

x3 = w2 x + (q w + 2w) x (x – w) + x(x – w)
(
x – (q + 1)w

)
,

x4 = w3 x +
(
q2 + 3q + 3

)
w2 x (x – w)

+
(
q2 + 2q + 3

)
w x (x – w)

(
x – (1 + q)w

)

+ x (x – w)
(
x – (1 + q) w

) (
x –

(
1 + q + q2)w

)
. (32)

Corollary 1 If Pr(x) is an r-degree polynomial, then

Dn
q;wPr(x) = 0, for all n ≥ r + 1.

3 q;wAIM for Hahn difference equations
Several papers over the past few years have addressed the theory of the linear Hahn differ-
ence equations [17, 35–40]. The existence and uniqueness theorems of solutions of linear
Hahn difference equations are given in [35]. In [10], Annaby, Hamza, and Aldwoah solved
the first order linear Hahn difference equations with constant coefficients.

3.1 First-order linear Hahn difference equations
We consider in this subsection the first-order Hahn difference equation with variable co-
efficients

Dq;wy(x) = α(x) y(x) + β(x), 0 < w, 0 < q < 1, (33)

where α(x) and β(x) are arbitrary functions. Note that, using Hahn’s operator definition
(1), equation (33) can be written as

y(q x + w) =
(
1 +

(
(q – 1) x + w

)
α(x)

)
y(x) +

(
(q – 1) x + w

)
β(x). (34)
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Theorem 6 For 0 < q < 1, the general solution of the q; w-difference equation of the first-
order Hahn difference equation (33) or (34) is

y(x) =
c

∏∞
k=0(1 + qk((q – 1)x + w)α(w

∑k–1
i=0 qi + x qk))

–
∞∑

k=0

qk((q – 1)x + w)β(w
∑k–1

i=0 qi + xqk)
∏k

j=0(1 + qj((q – 1)x + w)α(w
∑j–1

i=0 qi + x qj))
, (35)

where c(qx + w) = c(x) is a periodic (constant) function.

Proof We prove this theorem by direct substitution. By the given solution

y(qx + w) =
c

∏∞
k=0(1 + qk+1((q – 1)x + w)α(w

∑k
i=0 qi + qk+1x)

–
∞∑

k=0

qk+1((q – 1)x + w)β(w
∑k

i=0 qi + qk+1x)
∏k

j=0(1 + qj+1((q – 1)x + w)α(w
∑j

i=0 qi + qj+1x))
,

shift the indices of the finite products

y(qx + w) =
c

∏∞
k=1(1 + qk((q – 1)x + w)α(w

∑k–1
i=0 qi + qkx)

–
∞∑

k=1

qk((q – 1)x + w)β(w
∑k–1

i=0 qi + qkx)
∏k–1

j=0 (1 + qj+1((q – 1)x + w)α(w
∑j

i=0 qi + qj+1x))
,

which can be written as

y(qx + w) =
(1 + ((q – 1)x + w)α(x)) c

∏∞
k=0(1 + qk((q – 1)x + w)α(w

∑k–1
i=0 qi + qkx)

–
∞∑

k=1

qk((q – 1)x + w)β(w
∑k–1

i=0 qi + qkx)
∏k–1

j=0 (1 + qj+1((q – 1)x + w)α(w
∑j

i=0 qi + qj+1x))
.

Using the given solution again, it follows that

y(qx + w) =
(
1 +

(
(q – 1)x + w

)
α(x)

)

×
(

y(x) +
∞∑

k=0

qk((q – 1)x + w)β(w
∑k–1

i=0 qi + qk x)
∏k

j=0(qj((q – 1)x + w)α(w
∑j–1

i=0 qi + xqj) + 1)

)

–
∞∑

k=1

qk((q – 1)x + w)β(w
∑k–1

i=0 qi + qkx)
∏k–1

j=0 (1 + qj+1((q – 1)x + w)α(w
∑j

i=0 qi + qj+1x))
,

which simplifies to

y(q x + w) =
(
1 +

(
(q – 1)x + w

)
α(x)

)
y(x) +

(
(q – 1)x + w

)
β(x). �

Remark 3 For 0 < q < 1, a solution of the homogeneous q; w-difference equation

Dq;wy(x) = α(x) y(x)
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up to a multiplicative constant is

y(x) =
∞∏

k=0

(

1 + qk((q – 1)x + w
)
α

(

w
k–1∑

i=0

qi + x qk

))–1

. (36)

Remark 4 The exact solution of the limiting case w → 0 [26]

Dqy(x) = α(x) y(x) + β(x), 0 < q < 1,

is

y(x) =
c

∏∞
k=0(1 – qk(1 – q) xα(qk x))

–
∞∑

k=0

qk(q – 1) xβ(qk x)
∏k

j=0(1 + qj(q – 1)xα(qj x))
(37)

as developed earlier in [26].

Example 1 The solution of the first-order Hahn difference equation

Dq;w y(x) = y(x), 0 < q < 1,

up to some multiplicative constant is

y(x) =
1

∏∞
k=0(1 + qk((q – 1)x + w))

=
1

((1 – q) x – w; q)∞
,

which is the q; w-exponential function [27, Theorem 12.2.6] as expected for this difference
equation.

Example 2 The solution of the first-order Hahn difference equation

Dq;w y(x) = a y(x) + b, 0 < q < 1,

where a and b are real constants, is

y(x) =
c

(a((1 – q)x – w); q)∞
–

∞∑

k=0

b qk((q – 1)x + w)
(a((1 – q)x – w); q)k+1

.

3.2 q;wAIM for the second-order Hahn difference equations
In this section, we consider the second-order Hahn difference equation

y
(
q2 x + (1 + q) w

)
= α(x) y(q x + w) + β(x) y(x), (38)

where α(x) and β(x) are (q; w)-differentiable functions. Using the easily proved identity

D2
q;wf (x) =

f (q2 x + (1 + q)w) – (1 + q)f (qx + w) + qf (x)
q((q – 1)x + w)2 , (39)
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equation (38) can be written equivalently as

D2
q;wy(x) = λ0(x) Dq;wy(x) + s0(x) y(x), (40)

where

λ0(x) =
α(x) – q – 1

q ((q – 1) x + w)
, s0(x) =

α(x) + β(x) – 1
q ((q – 1) x + w)2 . (41)

Although these two forms (38) and (40) are equivalent, we shall focus our attention on the
form (40) to investigate the solutions of the second-order linear Hahn difference equation
(40) with variable coefficients.

3.2.1 General solution
Acting by the Hahn difference operator Dq;w on equation (40) yields

D3
q;w y(x) = Dq;w

(
D2

q;w y(x)
)

= Dq;w
(
λ0(x) Dq;w y(x)

)
+ Dq;w

(
s0(x) y(x)

)
.

However, by means of the product rule (17), it easily follows that

D3
q;w y(x) = λ1(x)Dq;wy(x) + s1(x)y(x),

where
⎧
⎨

⎩
λ1(x) = Dq;wλ0(x) + λ0(qx + w)λ0(x) + s0(qx + w),

s1(x) = Dq;ws0(x) + λ0(qx + w)s0(x).

Similarly, applying the Hahn difference once more yields

D4
q;w y(x) = λ2(x)Dq;wy(x) + s2(x) y(x),

where
⎧
⎨

⎩
λ2(x) = Dq;w λ1(x) + λ1(qx + w)λ0(x) + s1(qx + w),

s2(x) = Dq;w s1(x) + λ1(qx + w) s0(x).

In general, we may apply this process to obtain, for n = 1, 2, . . . , that

Dn+1
q;w y(x) = λn–1(x) Dq;w y(x) + sn–1(x) y(x), (42)

Dn+2
q;w y(x) = λn(x) Dq;w y(x) + sn(x) y(x), (43)

where
⎧
⎨

⎩
λn(x) = Dq;w λn–1(x) + λn–1(q x + w)λ0(x) + sn–1(q x + w),

sn(x) = Dq;w sn–1(x) + λn–1(q x + w) s0(x).
(44)
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The general form (43) can be proved by induction on n. For n = 1, the identity is true by
construction. Assume it is true for n + 1, then for n + 2

Dn+2
q;w y(x) = Dq;w

(
Dn+1

q;w y(x)
)

= Dq;w
(
λn–1(x) Dq;w y(x) + sn–1(x) y(x)

)
,

and by the product rule (17),

Dn+2
q;w y(x) = λn–1(qx + w) D2

q;w y(x) + Dq;wy(x)Dq;wλn–1(x)

+ sn–1(qx + w)Dq;wy(x) + y(x)Dq;wsn–1(x).

Using (40) and simplifying, we obtain

Dn+2
q;w y(x) =

(
Dq;wλn–1(x) + λn–1(qx + w)λ0(x) + sn–1(qx + w)

)
Dq;wy(x)

+
(
Dq;wsn–1(x) + λn–1(x)s0(x)

)
y(x)

= λn(x)Dq;wy(x) + sn(x)y(x)

as expected. Now dividing (42) and (41), we obtain

Dn+2
q;w y(x)

Dn+1
q;w y(x)

=
λn(x)[Dq;wy(x) + sn(x)

λn(x) y(x)]

λn–1(x)[Dq;wy(x) + sn–1(x)
λn–1(x) y(x)]

.

Thus, if for some n ≥ 1 the so-called terminating condition

sn(x)
λn(x)

=
sn–1(x)
λn–1(x)

(45)

is satisfied, then it follows that

Dn+2
q;w y(x)

Dn+1
q;w y(x)

=
λn(x)

λn–1(x)
. (46)

This is easily written as a first-order difference equation in Dn+1
q;w y(x)

Dq;w
[
Dn+1

q;w y(x)
]

=
λn(x)

λn–1(x)
Dn+1

q;w y(x) (47)

with a solution for 0 < q < 1 given by, see Theorem 6,

Dn+1
q;w y(x) =

c2
∏∞

k=0[1 + qk(w + (q – 1) x) λn(qk x+w
∑k–1

i=0 qi)
λn–1(qk x+w

∑k–1
i=0 qi)

]
(48)

for some periodic (constant) function c2. Equation (41) reduces to

Dq;wy(x) = –
sn–1(x)
λn–1(x)

y(x)

+
1

λn–1(x)
c2

∏∞
i=0[1 + qi(w + (q – 1) x) λn(qi x+w

∑i–1
l=0 ql)

λn–1(qix+w
∑i–1

l=0 ql)
]
,
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with the general solution given by

y(x) =
c1

∏∞
k=0[1 + qk((1 – q) x – w) sn–1(xk )

λn–1(xk ) ]

–
∞∑

i=0

qi((q–1)x+w)
λn–1(xi)

∏i
j=0[1 + qj((1 – q)x – w) sn–1(xj)

λn–1(xj)
]

× c2
∏∞

j=0[1 + qi+j((q – 1)x + w) λn(qi+j x+w
∑i+j–1

l=0 ql)

λn–1(qi+j x+w
∑i+j–1

l=0 ql)
]
, (49)

where xk = qk x + w
∑k–1

j=0 qj and ci, i = 1, 2, are periodic functions with the property that
Dq;w ci = 0, i = 1, 2. It is a straightforward exercise to show that the two solutions are linearly
independent by proving that the (q; w)-Casorati determinant

∣∣∣∣∣
y1(x) y1(q x + w)
y2(x) y2(q x + w)

∣∣∣∣∣
(50)

does not vanish. We summarize this result in the following theorem.

Theorem 7 A solution of the second-order Hahn linear difference equation

D2
q:wy(x) = λ0(x) Dq:wy(x) + s0(x) y(x)

is given by

yn(x) =
∞∏

k=0

[
1 + qk((1 – q) x – w

) sn–1(xk)
λn–1(xk)

]–1

provided that, for some n > 0,

sn(x)
λn(x)

=
sn–1(x)
λn–1(x)

or δn(x) ≡ λn(x)sn–1(x) – λn–1(x)sn(x) = 0,

where
⎧
⎨

⎩
λn(x) = Dq;w λn–1(x) + λn–1(q x + w)λ0(x) + sn–1(q x + w),

sn(x) = Dq;w sn–1(x) + λn–1(q x + w) s0(x).

Remark 5 In general, the terminating condition (45) is satisfied for n → ∞. As discussed
and proved in the next section, the condition holds for finite n if the difference equation
can be solved exactly by a polynomial of at most n degree. As far as we know, it is not
possible to predict whether such a condition will hold for specific n without an experiment.

3.2.2 A criterion for polynomial solutions
We give in Theorems 8 and 9 below the necessary and sufficient conditions respectively
for a second order linear Hahn difference equation (40) to have a polynomial solution.
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Theorem 8 If a solution of the difference equation

D2
q:w y(x) = λ0(x) Dq:wy(x) + s0(x) y(x)

is a polynomial of at most of degree n, then δn(x) = 0.

Proof Multiplying equation (41) by λn(x) and (42) by λn–1(x) yields

λn(x)Dn+1
q;w y(x) = λn(x)λn–1(x)Dq;wy(x) + λn(x)sn–1(x)y(x),

λn–1(x)Dn+2
q;w y(x) = λn–1(x)λn(x)Dq;wy(x) + λn–1(x)sn(x)y(x).

Subtracting these two equations, it follows that

λn(x)Dn+1
q;w y(x) – λn–1(x)Dn+2

q;w y(x) =
[
λn(x)sn–1(x) – λn–1(x)sn(x)

]
y(x)

= δn(x)y(x).

Consequently, if y(x) is a polynomial of at most n, it follows by Corollary 1 that Dn+2
q;w y(x) =

Dn+1
q;w y(x) = 0; and δn(x) = 0. �

Lemma 3 If

y(x) =
1

∏∞
k=0[1 + qk((1 – q) x – w) sn–1(qk x+w

∑k–1
i=0 qi)

λn–1(qk x+w
∑k–1

i=0 qi)
]
,

then

Dq;wy(x) = –
sn–1(x)
λn–1(x)

× y(x). (51)

Proof It is not difficult to show, by shifting the indices of the product definitions of y(x)
and y(q x + w), that the difference y(q x + w) – y(x) reduces to

y(qx + w) – y(x) =
∞∏

k=1

[
1 + qk((1 – q)x – w

) sn–1(qkx + w
∑k–1

i=0 qi)
λn–1(qkx + w

∑k–1
i=0 qi)

]–1

–
∞∏

k=0

[
1 + qk((1 – q) x – w

) sn–1(qkx + w
∑k–1

i=0 qi)
λn–1(qkx + w

∑k–1
i=0 qi)

]–1

.

Thus, by definition of the difference operator,

Dq;wy(x) =
y(qx + w) – y(x)

(q – 1)x + w

= y(x) × [1 + ((1 – q)x – w) sn–1(x)
λn–1(x) ] – 1

(q – 1)x + w
= –y(x) × sn–1(x)

λn–1(x)
. �

Theorem 9 If δn = 0 and λn–1(x) �= 0, then the solution of the difference equation

D2
q:w y(x) = λ0(x) Dq:w y(x) + s0(x) y(x)

is a polynomial of at most degree n.
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Proof Given δn(x) = 0, it follows by Theorem 6 that

y(x) =
1

∏∞
k=0[1 + qk((1 – q) x – w) sn–1(qk x+w

∑k–1
i=0 qi)

λn–1(qk x+w
∑k–1

i=0 qi)
]
,

which allows one to evaluate Dq;wy(x) as, see Lemma 3,

Dq;wy(x) = –y(x) × sn–1(x)
λn–1(x)

.

Thus, using equation (41), we have

Dn+1
q;w y(x) = λn–1(x)Dq;wy(x) + sn–1(x)y(x)

=
(

–λn–1(x)
sn–1(x)
λn–1(x)

+ sn–1(x)
)

y(x) = 0. �

Theorem 10 Let λn(x) and sn(x) be as in (44), and set δn(x) = λn(x) sn–1(x) – λn–1(x) sn(x).
If δn(x) = 0, then δn′ (x) = 0 for all n′ ≥ n + 1.

Proof Note that, by the sequence relations of λn(x) and sn(x), we have

δn+1(x) = λn+1(x)sn(x) – λn(x)sn+1(x)

= sn(x)Dq;w λn(x) + sn(x)λn(qx + w)λ0(x) + sn(qx + w)sn(x)

– λn(x)Dq;w sn(x) – λn(x)λn(qx + w) s0(x).

This equation can be easily written as

δn+1(x) = sn(qx + w)sn(x)
(

sn(x)Dq;w λn(x) – λn(x)Dq;w sn(x)
sn(qx + w)sn(x)

)

+ sn(qx + w)sn(x) + sn(x)λn(qx + w)λ0(x) – λn(x)λn(qx + w) s0(x),

where the quotient rule yields

δn+1(x) = sn(qx + w)sn(x)Dq;w

(
λn(x)
sn(x)

)

+ sn(qx + w)sn(x) + sn(x)λn(qx + w)λ0(x) – λn(x)λn(qx + w) s0(x).

Further simplification implies

δn+1(x) = sn(qx + w)sn(x)

×
[

Dq;w

(
λn(x)
sn(x)

)
+ 1 +

λn(qx + w)
sn(qx + w)

λ0(x) –
λn(x)λn(qx + w) s0(x)

sn(x)sn(qx + w)

]
.

Using the terminating condition, it follows that

δn+1(x) = sn(qx + w)sn(x)

×
[

Dq;w

(
λn–1(x)
sn–1(x)

)
+ 1 +

λn–1(qx + w)
sn–1(qx + w)

λ0(x) –
λn–1(x)λn–1(qx + w) s0(x)

sn–1(x)sn–1(qx + w)

]
,
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which implies

δn+1(x) = sn(qx + w)sn(x)
[

sn–1Dq;wλn–1(x) – λn–1(x)Dn–1sn–1(x)
sn–1(x)sn–1(qx + w)

+ 1 +
λn–1(qx + w)
sn–1(qx + w)

λ0(x) –
λn–1(x)λn–1(qx + w) s0(x)

sn–1(x)sn–1(qx + w)

]

= sn(qx + w)sn(x)
[

sn–1(x)Dq;wλn–1(x) – λn–1(x)Dq;wsn–1(x)
sn–1(x)sn–1(qx + w)

+
sn–1(x)sn–1(qx + w)
sn–1(x)sn–1(qx + w)

+
sn–1(x)λn–1(qx + w)
sn–1(x)sn–1(qx + w)

λ0(x)

–
λn–1(x)λn–1(qx + w) s0(x)

sn–1(x)sn–1(qx + w)

]
.

Finally, we have

δn+1(x) = sn(qx + w)sn(x)

×
[

sn–1(x)(Dq;wλn–1(x) + λn–1(qx + w)λ0(x) + λn–1(qx + w))
sn–1(x)sn–1(qx + w)

–
λn–1(x)(Dn–1sn–1(x) + λn–1(qx + w) s0(x))

sn–1(x)sn–1(qx + w)

]

= sn(qx + w)sn(x)
[

sn–1(x)λn(x) – λn–1(x)sn(x)
sn–1(x)sn–1(qx + w)

]
= 0

because by assumption δn = 0. Since δn+1 = 0, δn+2 = 0, and so on. Therefore, δn′ = 0 for all
n′ ≥ n + 1, which completes the proof. �

4 Examples
We consider first the Hahn difference equation with constant coefficients

D2
q;wy(x) = λ0 Dq;wy(x) + s0 y(x), (52)

where a and b are real constants. Although it is clear, for all n ≥ 1, that Dq;wλn–1 =
Dq;wsn–1 = 0, the terminating condition δn does not equal 0 for any fixed n. The q;wAIM
sequences λn = λn–1 λ0 + sn–1 and sn = λn–1 s0, however, yield

sn

λn
=

λn–1s0

λn–1λ0 + sn–1
.

Thus, as n → ∞, the terminating condition reads

s∞
λ∞

=
s0

λ0 + s∞
λ∞

.

This is a quadratic equation with solution given by

s∞
λ∞

=
–λ0 ±

√
λ2

0 + 4s0

2
.
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The two linearly independent solutions are then

y±(x) =
∞∏

i=0

[
1 – qi((q – 1)x + w

)–λ0 ±
√

λ2
0 + 4s0

2

]–1

=
1

( –2λ0±
√

λ2
0+4s0

2 (w + (q – 1)x); q)∞
. (53)

As a second example, we consider the q; w-hypergeometric equation [28]

D2
q;w y(x) = –

2 ε x + γ

e x2 + 2 f x + g
︸ ︷︷ ︸

λ0(x)

Dq;w y(x) –
τ

e x2 + 2 f x + g
︸ ︷︷ ︸

s0(x)

y(x), (54)

with the constant coefficients ε, γ , e, f , g , and τ .
Considering the terminating condition for n = 1,

δ1 = λ1s0 – s1λ0 = τ (2ε + τ ) ≡ 0 if τ = 0, –2ε.

Thus, for τ = 0, the polynomial solution y(x) = Pn(x) is P0(x) = 1.
For τ = –2ε, the exact polynomial solution, up to a multiplicative constant, is

P1(x) = lim
m→∞

1
∏m

k=0[1 + qk((1 – q) x – w) s0(qk x+w
∑k–1

i=0 qi)
λ0(qk x+w

∑k–1
i=0 qi)

]
= x +

γ

2 ε
.

The second iteration n = 2 yields

δ2 = λ2s1 – s2λ1 = τ (2 ε + τ )
(
(1 + q)(e + 2 ε) + τ

)
,

where
⎧
⎨

⎩
λ1(x) = 2εγ w+γ (2f +γ +e w)–g(2ε+τ )+((e+2ε)(γ +γ q+2εw)–2f τ )x+(2ε(e+2ε)q–eτ )x2

(g+x (2f +e x))(g+(w+q x)(2f +e (w+qx))) ,

s1(x) = τ (2f +γ +(e+2ε)w)+((1+q)e+2εq)τ x
(g+x (2f +e x))(g+(w+q x)(2f +e (w+qx))) ,

(55)

then δ2 = 0 if

τ = 0, –2ε, –(1 + q)(e + 2ε).

For τ = –(1 + q)(e + 2ε), the second-order polynomial solution is then

P2(x) = lim
m→∞

1
∏m

k=0[1 + qk((1 – q) x – w) s1(qk x+w
∑k–1

i=0 qi)
λ1(qk x+w

∑k–1
i=0 qi)

]

= x2 +
(2 f + γ )(1 + q) + 2 ε w

(1 + q) e + 2ε q
x

+
2 ε g q + γ (2f + γ + 2 ε w) + e ((1 + q) g + γ w)

(e + 2 ε)((1 + q) e + 2 ε q)
.
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Next, the third iteration n = 3 yields

δ3 = τ (2ε + τ )
(
(q + 1)(e + 2ε) + τ

)((
q2 + q + 1

)(
(1 + q) e + 2ε

)
+ τ

)
. (56)

Thus, for

τ = –
(
1 + q + q2)((1 + q)e + 2ε

)
,

the third-order polynomial reads as follows:

P3(x) = x3 +
τ2

q(2 ε q + e (1 + q)2)
x2 +

τ1

(q(e(q + 1)2 + 2εq)(e
∑2

i=0 qi + 2εq))
x

+
τ0

(q((1 + q) e + 2ε)(2ε q + e(1 + q)2)(2εq + e(1 + q + q2)))
,

where

τ2 =
(
γ + 2f (1 + q)

) 2∑

i=0

qi +
(
2(1 + 2q)ε + e(1 + q)(2 + q)

)
w,

τ1 =
2∑

i=0

qi(γ 2 + 4 f 2(1 + q) + 2f γ (2 + q) + gq
(
2 ε q + e (1 + q)2))

+ 2
(
(1 + q)e + 2ε

) 2∑

i=0

qi(γ + f (2 + q)
)
w + 2ε

(
2ε(1 + q) + e

(
2 + q(2 + q)

))
w2,

τ0 = 4 f 2 γ (1 + q) + γ
(
γ 2 + 2 ε g q (1 + 2q)

)
+ 2 ε

(
2 ε g q (1 + q)2 + γ 2 (2 + q)

)
w

+ 4 ε2 γ (1 + q) w2 + e2 (1 + q) w
(
g (1 + q) (2 + q)

(
1 + q + q2) + γ

(
2 + q(2 + q)

)
w

)

+ 2f
(
2 ε g q (1 + q)2 + γ 2(2 + q) + 2ε γ

(
2 + q(2 + q)

)
w

)

+ e
(
g(1 + q)

(
γ + 2(1 + q)

(
γ q + f

(
1 + q + q2)))

+
(
2ε g (1 + q)3(1 + 2q) + γ

(
2f (1 + q)

(
3 + q(2 + q)

)

+ γ
(
3 + q(3 + q)

)))
w + 2εγ

(
3 + 2q(2 + q)

)
w2).

In general, it is not difficult to show that

δn =
n∏

k=0

(( k–1∑

j=0

qj

)(

2 ε + e
k–2∑

j=0

qj

)

+ τ

)

≡ 0, (57)

and the necessary condition for the existence of the n-degree polynomial solution (see also
[28, formula 10.1.1]) of the (q; w)-hypergeometric equation (54), for n = 1, 2, . . . , is that

τn = –

( n–1∑

j=0

qj

)(

2 ε + e
n–2∑

j=0

qj

)

. (58)

With the q;wAIM technique under disposal, we hope it will be useful to study the ana-
lytic and approximate solutions of the q-difference equation. It will also be a practical tool



MacQuarrie et al. Advances in Difference Equations        (2021) 2021:354 Page 22 of 23

in the construction of q-orthogonal polynomials and deepen our understanding of their
mathematical properties.
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