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China Normal University, deep residual networks model was proposed in this paper. The deep residual network
Guangzhou 510006, China was composed of a residual network (ResNet) and a convolutional attention statistics

pooling (CASP) layer. The CASP layer could aggregate frame-level features from the
ResNet into an utterance-level features. Extracting speech features for each speaker
using deep residual networks was a promising direction to explore, and a
straightforward solution was to train the discriminative feature extraction network by
using a margin-based loss function. However, a margin-based loss function often has
certain limitations, such as the margins between different categories were set to be the
same and fixed. Thus, we used an adaptive curriculum learning loss (ACLL) to address
the problem and introduce two different margin-based losses for this problem, i.e,,
AM-Softmax and AAM-Softmax. The proposed method was applied to a large-scale
VoxCeleb2 dataset for extensive text-independent speaker recognition experiments,
and average equal error rate (EER) could achieve 1.76% on VoxCeleb1 test dataset,
1.91% on VoxCeleb1-E test dataset, and 3.24% on VoxCeleb1-H test dataset. Compared
with related speaker recognition methods, EER was improved by 1.11% on VoxCeleb1
test dataset, 1.04% on VoxCeleb1-E test dataset, and 1.69% on VoxCeleb1-H test dataset.

Keywords: Text-independent, Speaker recognition, Adaptive curriculum learning loss,
Deep residual network, Convolutional attention statistics pooling

1 Introduction

Speaker recognition (SR) [1] is the process of automatically recognizing a speaker based
on original speech samples. It has become an increasingly important technology of rec-
ognizing identities in many electronic intelligent applications, law enforcement, and
forensics [2, 3]. Speaker recognition includes speaker verification (SV) and speaker iden-
tification (SI) [4], and speaker recognition can be categorized into text-dependent speaker
recognition (TD-SR) [5] and text-independent speaker recognition (TI-SR) [6]. The SV
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aims to verify whether a speech belongs to a specific enrolled speech, while the SI aims to
classify the identification of an unknown speech among a specific set of enrolled speech.
For the TD-SR system, the speech text during training must be identical to the speech
text during testing. By contrast, for the TI-SR system, the speaker recognition process
does not depend on the speech text being spoken by the speaker. Therefore, the TI-SR
case is more difficult than the TD-SR case due to larger variations introduced by different
speech transcriptions and duration. In the paper, our work focuses on the TI-SR case with
respect to speaker recognition tasks, since it is more challenging and has greater practical
significance.

Generally, speaker recognition tasks based the TI-SR system usually follow a similar
three stage pipeline: (i) frame-level feature vectors extraction, (ii) temporal aggregation of
frame-level feature vectors, and (iii) optimization of a classification loss. Frame-level fea-
ture vectors extraction processing can be achieved by using the backbone CNN structure,
which is usually a 2D CNN with convolution in time domain and frequency domain [5, 7,
8]. Utterance-level processing forms speaker representation based on the frame-level out-
put. A pooling layer is used to aggregate frame-level information to form utterance-level
representation. For the TD-SR system, all test utterance of the speaker were preseted in
a training dataset, so the TD-SR system was equivalent to one-to-one verification, which
could be regarded as a classification problems [5]. For the TI-SR system, the test dataset
and training dataset were disjoint. Therefore, the feature vectors of a speaker needed to
be projected into a discriminative embedding space, which could be treated as a metric
learning problem [7]. Generally, a research method based on TI-SR case was mainly real-
ized by the original softmax loss function. However, for text-independent metric learning
problems, the discriminativeness of learning features was not enough such as the triplet
loss [8, 9].

Recently, researchers have used several margin-based loss functions to carry out
speaker recognition experiments and have obtained competitive results. For example, A-
Softmax [10], AM-Softmax [11, 12], and AAM-Softmax [13] could significantly increase
the margins of different categories. Therefore, a powerful speaker recognition deep net-
work was proposed, based on a GhostVLAD layer and a AM-Softmax that was used to
aggregate “thin-ResNet” architecture frame features [12]. However, the margins between
different categories were set to be the same and fixed, which could not be well adapted
to various situations. For example, the AM-Softmax and AAM-Softmax loss functions
required extensive experiments to tune the two dependent super-parameters to find the
optimal values.

In addition, a clustering distance loss algorithm directly reduced intra-class varia-
tion and expanded the margins between different categories [14]. Recently, researchers
have used temporal averaging pooling (TAP) to aggregate frame-level features, and an
utterance-level features representation was formed by averaging all frame-level feature
vectors [15]. However, these methods do not distinguish speech samples well. Thus, an
attention mechanism was introduced to aggregate the frame-level features in deep learn-
ing model [14, 16]. By assigning different weights to different utterance samples, this
allows the weights to be focused on the important features. In addition, a higher-order
statistics were introduced into the field of speaker recognition to calculate the mean and
standard deviation of frame-level features [17]. Furthermore, an attention mechanism and
statistical methods were combined to propose an attention statistical pooling (ASP) [18].
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It provided an importance weighted standard deviation and weighted average of speaker
features and calculated the sample weight importance by an attention mechanism.

Therefore, a method based on an ACLL and a deep residual network was proposed for
TI-SR system in this paper, and the method realized a speaker recognition training strat-
egy. The deep residual network named Res-CASP had good time modeling ability, and
it could extract effective information of speech feature vectors. The CASP aggregated
frame-level features of the deep residual network to form an utterance-level features.
The ACLL was a loss function which optimized speaker features. Speaker features were
extracted and fed into the ACLL based a deep residual network for text-independent
speaker recognition.

2 Overall framework

As shown in Fig. 1, the overall framework consists of three parts: speech feature
vectors extraction, deep residual network Res-CASP, and ACLL. Feature vectors extrac-
tion is used to convert the original speech into 64-dimensional log filter bank feature
vectors. The Res-CASP framework includes a ResNet, a CASP layer, and a fully con-
nected (FC) layer. The CASP layer aggregates frame-level features of the ResNet into
utterance-level features, and the FC layer constrains the utterance-level feature vectors to
512-dimensional vector representation. The ACLL is the feature vectors which optimizes
the output of the Res-CASP framework. The trained Res-CASP model is used for the final
speaker recognition.

2.1 Log filter bank features extraction

The original speech signal is a one-dimensional time domain signal, and the input of deep
residual network is a two-dimensional signal data. Generally, there are two main ways to
extract features for speech: MFCC [19] and log filter bank [20]. Because MFCC is based
on log filter bank, the feature extraction of log filter bank is more in line with the essence
of speech signal, fitting the characteristics of human ear reception, and MFCC does DCT

Output

ACLL Base-Margin Softmax
Embeeding

Length Normalization
Res-CASP
CASP Layer Architecture
Deep Residual Network
Input
Feature Extractor
Training Set Evaluation Set
Fig. 1 The proposed text-independent speaker recognition framework
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decorrelation processing on log filter bank, so log filter bank contains more information
than MFCC. Therefore, the original speech signal is first extracted as a log filter bank
feature vectors. The specific steps of log filter bank feature vectors extraction [19, 20] are

as follows:
1) Pre-emphasis

Pre-emphasis is a high-pass filter whose purpose is to boost high-frequency signal com-
ponents. In terms of acoustic features extraction, the pre-emphasis filter is shown in Eq. 1.

Hiz)=1—az! 1)

where « is a pre-emphasis coefficient, and z is an input signal of original speech.
2) Framing

By dividing the speech signal into shorter frames, the signal can be regarded as a steady-
state signal in each frame, which can be processed as the steady-state signal in the same
way. At the same time, in order to make parameters between two adjacent frames more
smoothly, there is a partial overlap.

3) Windowing function

The purpose of the windowing function is to reduce the leakage in the frequency domain.
Each frame of speech signal is multiplied by a Hamming window with a frame length and
a frame shift [19]. Each frame signal after preprocessing is multiplied by the Hamming

window to increase the continuity of the frame. The calculation process is shown in Eq. 2.
T(n) = S(n) x (0.54 — 0.46¢cos[2nn/(N —1)]),0<n <N -1 2)

where S(n) is the input of speech signal after pre-emphasis and framing, and N is a frame
length.

4) Fast Fourier transform

Then, each frame of speech signal is performed with fast Fourier transform, and the time
domain data is converted into frequency domain data. As shown in Eq. 3.
N-1
X(ky=> T@me ™™ " 0<k<p (3)
n=0
where T'(n) is an input speech signal after windowing function, P is the number of Fourier
transform points, and k is the frequency index (k =0, 1,2, ..., P — 1).

5) Energy calculation of mel filter banks

The energy spectrum is fed to several triangular bandpass filters H,, (k). Each filter
has triangular filtering characteristics [18]. In the frequency domain, the energy spec-
trum |X(k)|? and the frequency domain response H,,(k) are multiplied and added. The

calculation process is shown in Eq. 4.

N-1
Ml =Y IX(K)|* Hy (k) (4)
k=0
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where X (k) is the signal after fast fourier transform, and H,, (k) is the triangular band-pass
filter. Its frequency response is shown in Eq. 5.

0, k<f(m—1)
k—f(m—1)
Hy(k) = | ooy Sm =1 <k <f(m) 5

Ak, fm) <k <f(m+1)

0, k>f(m+1)
where f (m) is the center frequency of H,,(k), 0 < m < L, and L is the number of bandpass
filters.

6) Log energy spectrum
For the mth frame, the log energy spectrum of filter is defined as Eq. 6.
e(l) = log(M(D) (6)

where M(/) is the feature vectors after calculating energy of the mel filter.

2.2 Structure of residual block

ResNet is a way to alleviate the difficulty of training deep convolutional neural network
[21, 22]. It is learning the following layers of deep network into identity mapping, that is,
h(x) = x, so the model degenerates into shallow network. The identity mapping greatly
reduces the number of training parameters in the neural network. The ResNet is com-
posed of many stacked residual blocks (Res-Blocks). The structure of Res-Blocks is shown
in Fig. 2. The Res-Blocks is composed of two 2D convolutional layers. The identity map-
ping can be used to map each Res-Blocks input feature vectors to an output feature
vectors. The expression defined by Res-Block as shown in Eq. 7.

I'=F(x W) +x @)

where x and I" are input feature vectors and output feature vectors, respectively. W; is
the learnable weight, and F(x, W;) is the output of residual mapping. In addition, the
identity mapping connection of does not add additional parameters and computational
complexity.

In order to make full use of feature learning capabilities of ResNet and reduce loss of fea-
ture information, we use identity mapping to reduce data dimensions. In addition, in each
convolutional layer, the stride is set to 1, the padding is set to SAME, and zero padding is
used to prevent information from being lost at the edge of the cube.

Conv 3x3 F(x)
BN
ReLu
F(x)+x

Fig. 2 Flow chart of residual block construction
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2.3 Structure of CASP

By combining higher-order statistics and attention mechanism, the ASP is proposed [18].
It provides importance weighted standard deviations as well as the weighted means of
frame-level features, for which the importance is calculated by an attention mechanism.
Such previous work, however, has been evaluated only in such limited tasks as fixed-
duration text-independent [18, 23]. Therefore, we propose a new pooling method, called
CASP. The CASP is used to aggregate the frame-level features of the deep residual net-
work model to form utterance-level features. This enables speaker embedding to more
accurately and efficiently capture speaker factors with respect to long-term variations.
The calculation process of CASP layer is shown in Fig. 3.

Firstly, the frame-level feature vectors {x1,xy,...,x7} of the deep residual network
are projected onto one-dimensional convolutional layers to obtain the abstract feature
vectors on hidden unit {41, h, ..., hiT}.

Secondly, the score is normalized over all frames by a softmax function, which indicates
relative importance of the hidden unit. The weight calculation formula for each sample is

shown in Eq. 8.

_ el
S exp(hy)

where /; is the input feature vectors, and w; is the weight ratio of each feature vector.

(8)

Wi

Therefore, utterance-level features can be expressed by weighted sum of frame-level
features, and the calculation formula of the weighted sum is shown in Eq. 9.

T
er = Z WiXt )
t

where x; is the input of feature vectors, and the normalized score e, is then used as the
weight in the pooling layer to calculate the weighted mean vector.

Finally, higher-order statistics with the attention mechanism are combined, that is,
CASP. It can generate the mean and standard deviation by attention mechanism. There-
fore, the weighted standard deviation is defined as Eq. 10.

T
o = ZW;X;@?C: —e Oe (10)
t

where o is the weighted standard deviation, and the advantages of higher-order statistics
and attention mechanisms are applied to the weighted standard deviation.

n xT' nxT nxl
ks Transpose X <R Standard 7R

P deviation

e € R
Matmul

W, € R™X
Fl:conv1x1 F2:convixl Softmax Transpose

Fig. 3 The calculation diagram of the CASP layer
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2.4 Structure of ACLL

Loss function design is pivotal for large-scale speaker recognition. Current state-of-the-
art deep speaker recognition methods mostly adopt softmax-based classification loss [12].
Since the learned features with the original softmax loss are not guaranteed to be dis-
criminative enough for practical speaker recognition problem, margin-based losses [24—
26] are proposed. Though the margin-based loss functions are verified to obtain good
performance, they do not take the difficultness of each sample into consideration, while
ACLL emphasizes easy samples first and hard samples later, which is more reasonable and
effective. The original softmax loss is formulated as follows:

e

where x; € R? denotes the deep feature of ith sample which belongs to the y; class, W e
R? denotes the jth column of the weight W € R*", and b; is the bias term. The class
number and the embedding feature size are n and d, respectively. In practice, the bias is
usually set to b; = 0 and the individual weight is set to H W]” = 1 by [ normalization.
The deep feature is also normalized and re-scaled to s. Thus, the original softmax can be
modified as follows:

es‘(p(coséyi)
(12)

1 N
L=—— lo,
N ; ges~<p(cost9yl.) + Zj;éy,' es-Y(t,cosG/)

where @(cosf),) and Y (¢, cosb;) are adjusted for the similarity of the positive and negative
cosine, respectively. cosf is the cosine similarity of input feature vector y; and weight w;,
s is the coefficient which can increase recognition speed of model, and N is the total
number of classified samples. In the margin-based loss function, such as AM-Softmax
[24], such that ¢(costy,) = cosby, + m and Y (¢, coshj) = cost; AAM-Softmax [25], such
that ¢(cosb)y,) = cos(0y, + m) , Y (¢, cost)) = cos;. However, it only modifies the sine and
cosine similarity of each sample to enhance feature discrimination, it could not adapt to
various situations.
Therefore, ACLL is proposed [27]. The ACLL is defined as Eq. 13.

N &Y (t,coseyi )

1
Lacrr = —— log (13)
N ; es-go(t,CDSQyi) + Zj;éyi eS~Y(t(k),c039])

where ¢(z, cosfy,) and Y (¢, cost;) are defined by Eqs. 14 and 15, respectively, and s is a
scaling factor of deep feature vectors. It should be noted that the positive cosine simi-
larity can adopt any margin-based loss functions, and here, we adopt AAM-Softmax as
an example. In the early training stage, learning from easy samples is beneficial to model
convergence. Thus, ¢ should be close to zero and I(-) = ¢ + cos6; is smaller than 1. There-
fore, the weights of hard samples are reduced, and easy samples are emphasized relatively.
As training goes on, the model gradually focuses on the hard samples, i.e., the value of ¢
shall increase and I(-) is larger than 1. Thus, the hard samples are emphasized with larger
weights. Moreover, within the same training stage, I(-) is monotonically decreasing with
0 so that harder sample can be assigned with larger coefficient according to its difficult-
ness. The value of the parameter ¢ is automatically estimated in the ACLL; otherwise,
it may require lots of efforts for manual tuning. Therefore, it can adaptively adjust the
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relative importance of simple and difficult samples.
@(cosby,) = cosby, + m (14)

where m is the feature margin between different categories, 6,, is the angle between the
feature vectors y; and the weight w; , and ¢ is the adaptive estimation parameter.

cost;, @(cosby,) > cost;

Y (¢, cost)) = [ (15)

costi(t + cost);), ¢(costy,) < cosb;
where ¢ is adaptive estimation parameters, and exponential moving average (EMA) is used
to achieve adaptive parameters. The process is shown as Eq. 16.

10 = or® 4 (1 — @)pkD (16)

where r® is the mean values of the cosine similarity of the kt/ batch. With the EMA, we
avoid the hyper-parameter tuning and make the modulation coefficients of hard sample
negative cosine similarities /(-) adaptive to the current training stage.

As shown in Fig. 4, decision conditions are from cos6), = cost); (blue line) to cos(6y, +
m) = cost; (yellow line). ACLL is applied to adaptively adjust the weights of difficult
samples and the decision condition becomes cos(8y, + m) = (¢ + cosb;)cost; (green line).
During the training process, the decision boundary of difficult samples changes from a
green line (early stage) to another green line (later stage). Simple samples are emphasized
first, and then difficult samples are emphasized. In addition, the AAM-Softmax is used as
the similarity of sine and cosine, namely ¢(Z, cos6),) = cos(0y, + m) . It can be seen from
Eq. 14 that let Y (¢, cost)j) = cos0; at the beginning of training.

2.5 Evaluation indicators

We evaluate the framework with equal error rate (EER). EER is denoted by the false rejec-
tion (FR) rate equal to the false acceptance (FA) rate, where FR is a correct signal which is
recognized as a wrong signal; FA is a wrong signal which is recognized as a correct signal.
Definitions of FR rate and FA rate are shown in Egs. 16 and 17.

NEr
N Target

I = (17)

W Later Stage

Yi

Ww.

J

Fig. 4 The blue line, yellow line, and green line are Softmax, AAM-Softmax, and our decision boundary,
respectively. m is the feature margin of AAM-Softmax. d is adaptive feature margin ranges
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Table 1 Specific experimental environment

Name Version

CPU Intel Xeon(R) Gold 5218 CPU @2.30 GHz x 64
GPU NVIDIA GeForce 2*RTX 2080Ti 11 GB

RAM RDIMM 64 GB

oS Ubuntu 18.04.2 LTS

Frameworks Pytorch-GPU 1.14.0

where Npp is the number of false rejections, and N7y is the total number of real

evaluations.

NE4
Ipp = ———— (18)
Nimpostar
where Ng4 is the number of false rejections, and Njposior is the total number of false

evaluations.

3 Experiments and results

In this part, our experimental processes and training configuration details were intro-
duced, and our method was compared with other methods. Then, our model was trained
on the VoxCeleb2 [28] dataset, and our methods were evaluated for the effectiveness of
our framework performance on the VoxCeleb1 [29] test dataset.

3.1 Experimental environment
The parameters of experimental environment were shown in Table 1.

3.2 Experimental dataset and training details

3.2.1 Experimental dataset

In order to verify the effectiveness of our proposed framework, extensive experiments
were conducted on the VoxCelebl and VoxCeleb2 datasets. We trained our proposed
model on the development dataset of VoxCeleb2. The development dataset of VoxCeleb2
contains 1,092,009 utterances of 5994 samples. All models in the experiment were used
to verify the performance of the model on the VoxCelebl test dataset. The VoxCelebl
dataset contained 153,357 utterances from 1251 samples; among them, the VoxCeleb2
development dataset and the VoxCelebl test dataset were completely disjoint (there was
no common audio signal). In addition, the VoxCeleb1 dataset provided three versions of
the test dataset: VoxCeleb1 test dataset, VoxCeleb1-E test dataset, and VoxCeleb1-H test
dataset. The VoxCelebl and VoxCeleb2 data datasets were summarized in Table 2.

3.2.2 Training details
We used Adam optimizer in our experiments, and set the initial learning rate as 1073,
During training, we used a fixed length 2-s temporal segment, extracted randomly from

Table 2 VoxCeleb1 and VoxCeleb2 dataset

Dataset # of speakers # of utterances # of pair
VoxCeleb2 dev 5994 1,092,009 -
VoxCeleb1 dev 1211 148,642 -
VoxCeleb1 test 40 4715 37720
VoxCeleb1-E test 1251 145,375 581,480

VoxCeleb1-H test 1190 138,137 552,536
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each utterance. Spectrograms were extracted with a hamming window of width 25 ms
and step 10 ms. For the Res-CASP model, the 64-dimensional log filter bank features
were used as the input to the network. Mean and variance normalization (MVN) was
performed by applying instance normalization to the network input. Since the VoxCeleb
dataset consists mostly of continuous speech, voice activity detection (VAD) was not used
in training and testing. The training time of the Res-CASP model was about 4 days, and
a total of 200 epochs were trained for each experiment. In order to minimize the effect
of random initialization, all experiments were repeated three times independently. The
trained deep residual network model was evaluated on the VoxCelebl test dataset. Ten
4-s time datasets were sampled at fixed intervals from each test segment and calculated
the similarity between all possible combinations (10x 10 = 100) in each pair of segments.
The average of 100 similarities was used as the score.

3.3 Structure of deep residual network Res-CASP

As shown in Table 3, the Res-CASP was composed of a ResNet and a CASP layer. The
ResNet was used to extract higher-dimensional abstract features with optimal classifica-
tion performance, which was composed of multiple Res-Blocks; the CASP layer was used
to aggregate frame-level features of the ResNet. Finally, the trained model was used for
final speaker recognition.

As shown in Table 3, Conv1-4 was used as the backbone of Res-CASP architecture for
scale conversion and depth conversion, and the algorithm used convolutional layers to
obtain abstract features of utterance. After each convolution operation, a ReLU activation
function and a BN batch normalization were added to the model which had nonlinear
feature conversion capabilities. The convolutional layers in residual blocks Res1-4 used
32, 64, 128, and 256 convolutional kernels of size 3 x 3, respectively, and the stride was
set to 1. Conv1 used 32 convolution kernels of size 7 x 7, the stride was set to 1. Conv2-
4 used 64, 128, and 256 convolution kernels of size 1 x 1, and the stride was set to 2.
Therefore, frame-level features of ResNet were aggregated into utterance-level features by
a CASP layer. Each signal dimension corresponded to a 64 x 200 residual network input,
and 512-dimensional frame-level features were generated by deep residual model. A fully

Table 3 VoxCeleb1 and VoxCeleb2 dataset

Layer name Kernel size Strides Output size
Conv1 7 x7,32 1 x1 (32,64,200)
3x 3,32
Res1 X 3 1 x1 (32,64,100)
3% 3,32
Conv2 1 x164 2 %2 (64,32,100)
3 x 3,64
Res2 X 4 1 x1 (64,32,100)
L 3 x 3,64
Conv3 1x1,128 2 %2 (128,16,50)
3x 3,128
Res3 X 6 1 x1 (128,16,50)
L 3% 3,128
Conv4 1 x1,256 2 x2 (256,8,25)
3 x 3,256
Res4 X 3 1x1 (256,8,25)
L 3 x 3,256
Reshape - - (2048,25)
CASP 1 x 512 1 x1 (512)

FC - - (512)
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connected (FC) layer was used to constrain the embedding vector to a 512-dimensional
unit vectors. Finally, text-independent speaker recognition was performed by the ACLL.

3.4 Res-CASP parameters selection
The Res-CASP model was trained by text-independent speaker recognition framework.

On the one hand, the training process of the Res-CASP model was a process of contin-
uously optimizing parameters in the residual network. In order to prevent the Res-CASP
model from overfitting during the learning process, the L2 regularization [30] mechanism
was introduced into the FC layer. The Adam [31] optimizer was used in experiments, and
its initial learning rate was 0.001, which was reduced by 5% every 5 epochs.

On the other hand, abstract features of the FC layer were fed into the optimized loss
function at the end of each iteration of the deep residual network. In the training phase,
parameters were optimized in the loss function. Because hyper-parameters of m and s
in the ACLL were sensitive and fixed, relatively. In order to find the best experimental
configuration for m and s, experiments were set up to explore.

On the premise of 64-dimensional log filter bank feature vectors, the hyper-parameters
m was set to 0.1, 0.2, 0.3, 0.4, and 0.5, and s was fixed at 30. As shown in Fig. 5, with the
increase of the hyper-parameters m, the EER of speaker recognition decreased first and
then increased. Therefore, in order to have the best stability performance and the lowest
EER for text-independent speaker recognitions, the best EER recognition performance
was obtained when m = 0.2, s = 30 and dimensions of the log filter bank feature vectors
was set to 64.

3.5 Performance analysis of speaker recognition

In order to verify the rationality of our proposed framework, two groups of experi-
ments were designed to perform text-independent speaker recognition on the VoxCeleb2
dataset.

EER (%)
2.4
VoxCelebl mean 2.11
1.99 1.97 1.96 ?
2.0 o 0 1
1.76 ! | !
"% | ! |
1.6 1 ! ! !
| | ! |
| | | |
| | } |
12 1 i w 1
| | | |
| | | |
| | | |
08 | | | |
| | ! |
| | ! |
| | | |
0.4 w ‘ ! ‘
| | | |
: : : :
I | | !
Loss s=30 m=0.1 m=0.2 m=0.3 m=0.4 m=0.5
Models Res-CASP
Loss ACLL
EER 1.99 1.76 1.97 1.96 2.11
Fig. 5 The average EER of text-independent speaker recognition ats = 30,m = 0.1 ~ 0.5

Page 11 of 16
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In first group of experiments, the CASP was used as an aggregated frame-level fea-
tures. AM-Softmax, AAM-Softmax and ACLL were used as the loss function. The
text-independent speaker recognition was performed on the Res-CASP model. As shown
in Fig. 6, when the CASP was used as the aggregation layer and the ACLL, AAM, and
AM were used as the loss function, the average EER was 1.76%, 1.91%, and 1.98% on
VoxCelebl; 1.91%, 2.04%, and 2.06% on VoxCelebl-E; and 3.24%, 3.38%, and 3.44% on
VoxCelebl1-H, respectively. When ACLL was used as the loss function, the model Res-
CASP obtained best performance for text-independent speaker recognition on three test
datasets, where AM and AAM represented AM-Softmax and AAM-Softmax, respec-
tively. The AM and AAM were margin-based loss function, and the ACLL was used to
adjust the weight ratio of simple samples and difficult samples by adaptive methods. In the
proposed framework, the ACLL was more effective in text-independent speaker recogni-
tion than AM and AAM, which indicated that the log filter bank signal could be effectively
extracted by adaptively adjusting simple samples and difficult samples.

In the second group of experiments, the ACLL was used as the loss function; Res-TAP,
Res-ASP, and Res-CASP models were used for text-independent speaker recognition. As
shown in Fig. 7, the Res-TAP, the Res-ASP, and the Res-ASP achieved an average EER
of 2.09%, 1.92%, and 1.76% on VoxCelebl; 2.26%, 2.08%, and 1.91% on VoxCeleb1-E; and
3.76%, 3.59%, and 3.24% on VoxCelebl-H, respectively. The Res-CASP achieved a better
speaker recognition performance on three test datasets. In the case of the same model
parameters, the Res-CASP obtained better speaker recognition performance than Res-
TAP and Res-ASP, which indicated that our model could extract features information
effectively. The speaker recognition performance of Res-ASP and Res-CASP were bet-
ter than Res-TAP, which indicated that the attention mechanism-based aggregation layer
could capture relevant information of signal features effectively.

3.6 Comparison of the results of different experimental methods
The proposed method was compared with the current recognition methods based on Res-
CASP model, which were applied to the VoxCelebl and VoxCeleb2 dataset. As shown in

4.8
EER (%) —— VoxCelebl mean VoxCelebl-E mean VoxCelebl-H mean
VoxCelebl 4.0
VoxCelebl-E = 28

3.2 ot

VoxCelebl-H

= EER deviation )4
1.98

191 ¢ =
1.6
0.8
0

Loss AM AAM ACLL AM AAM ACLL AM AAM ACLL

Models Res-CASP

Mean 1.98 1.91 1.76 2.06 2,04 191 3.44 3.38 3.24
+ Standard deviation(%) £0.02 £0.04 £0.09 £0.04 £0.04 £0.03 +£0.03 +0.07 £0.02

Fig. 6 Text-independent speaker recognition based on AM, AAM, and ACLL, where AM, AAM, and ACLL were
used as the loss function, respectively. The EER experimental results of text-independent speaker recognition
on the Res-CASP model
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EER (%) 4.8
VoxCelebl 4.0 376 .
= 3.59
VoxCelebl-E 39 il 3.24
VoxCelebl-H ™
T 19t1 o)
EER deviation 2 4 500 226 20 )
1.76 =
1.6
0.8
Mean 2.09 2.26 3.76 1.92 2.08 3.59 1.76 1.91 3.24
+Standard deviation(%) £0.06 £0.08 £0.08 £0.10 +0.04 +0.04 =£0.09 =+0.03 =+0.02
Loss ACLL
Models Res-TAP Res-ASP Res-CASP
Fig. 7 Text-independent speaker recognition based on Res-TAP, Res-ASP, and Res-CASP models. The ACLL
was used as the loss function, and the text-independent speaker recognition were performed on Res-TAP,
Res-ASP, and Res-CASP models, respectively

Table 4, the different experimental methods of speaker recognition were carried out, and
the similar methods were followed to evaluate the recognition performance. A method
based on an ACLL and a deep residual network was proposed for TI-SR system in this
paper.

Firstly, a ResNet and CASP aggregation layer was used to build a Res-CASP model
framework. As shown in Fig. 8, ResNet and GhostVLAD aggregation layers are used
to build a speaker recognition framework [11]. The experimental results showed that
the proposed method was improved EER of 1.11%, 1.04%, and 1.69%, which were lower
than theirs on Vox1, Vox1-E, and Vox1-H, respectively, where Vox1, Vox1-E, and Vox1-
H denoted the VoxCelebl, VoxCelebl-E, and VoxCelebl-H test dataset, respectively.
Therefore, the CASP layer could aggregate more useful speaker features information.

Secondly, the ACLL was used as the loss function to perform text-independent speaker
recognition experiments. As shown in Fig. 8. We used AAM-Softmax as the loss function
[32]. The experimental results showed that the proposed method was 0.56% on Voxl1,
0.88% on Vox1-E, and 1.69% lower on Vox1-H than theirs. Therefore, the ACLL could
distinguish different categories feature margins.

Table 4 Comparison of text-independent speaker recognition with related methods in recent years

EER (%)
Studies Models Encoding Layer  Loss Vox1 Vox1-E  Vox1-H
Xu et al. 2020 [34] ResNet-50 Average Dist. Triplet+N-pair+ 348 - -
Argular+softmax

Xie et al. 2019 [12] Thin-ResNet-34 GhostVLAD Softmax 322 313 5.06
Yuetal. 2019 [35] ResNet-50 TAP EAM-Softmax 294 - -
Nagranietal. 2020 [11]  Thin-ResNet-34  GhostVLAD Softmax 287 295 4.93
Jung et al. 2019 [36] ResNet-34 SPE A-Softmax 261 - -
Xiang et al. 2019 [32] TDNN (x-vector) - AAM-Softmax 224 2.76 473
Chung et al. 2020 [23] Fast ResNet-34 TAP AP 222 - -
Kye et al. 2020 [33] ResNet-34 TAP NP + Softmax 2.08 - -

Ours Res-CASP CASP ACLL 1.76 191 324




Zhong et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:45 Page 14 of 16

EER (%) -4

B ours 48
- Others

4.0

32

24 2.08

176
1.6
0.8
0
Test Dataset Voxl  Voxl-E Voxl-H Voxl  VoxI-E VoxI-H Voxl
Difference (%) | +1.11  +1.04 +1.69 +0.56  +0.88 +1.69 +0.32
Comparison of | Nagranietal. [11]  Ours Xiangetal. [32]  Ours Kyeetal. [33] Ours
methods GhostVLAD CASP | AAM-Softmax ACLL | ResNet-34  Res-CASP

Fig. 8 Comparison with traditional methods

Thirdly, on the basic of the ResNet, we fused the CASP which captured abstract local
features. And the Res-CASP were used for text-independent speaker recognition. As
shown in Fig. 8, a ResNet was used to conduct text-independent speaker recognition
experiments [33]. The experimental results showed that the proposed method on Vox1
test dataset was lower 0.32% lower than theirs, which indicated that the combination of
ResNet and ACLL was more effective for speaker recognition. Therefore, the Res-CASP
could extract more effectively information for text-independent speaker recognition.

Therefore, our method could achieve the lowest EER of text-independent speaker
recognition on VoxCelebl, VoxCeleb1-E, and VoxCeleb1-H test dataset, which was 1.76%,
1.91%, and 3.24%, respectively. Experiment verified the effectiveness of our proposed
text-independent speaker recognition based on the Res-CASP. Finally, the comparison of
related methods was summarized as shown in Table 4.

4 Conclusion

A method of text-independent speaker recognition based on a deep residual network
Res-CASP was proposed in this paper. The CASP layer could assign different weights to
each sample and could extract more useful relevant information. The proposed method
was applied to the VoxCeleb2 dataset for model training, and the EER could achieve the
best speaker recognition performance. In this paper, our innovations mainly included two
aspects. Firstly, the Res-CASP model constructed from ResNet and CASP was proposed
and used for text-independent speaker recognition. Secondly, the mining strategy of sig-
nal features was applied to the text-independent speaker recognition by using ACLL as the
loss function. Compared with existing studies, our model had a better text-independent
speaker recognition performance and could achieve the lowest EER recognition results
on the VoxCeleb1, VoxCelebl-E, and VoxCeleb1-H test dataset.
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