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Abstract 

Background:  Semantic segmentation of white matter hyperintensities related to focal cerebral ischemia (FCI) and 
lacunar infarction (LACI) is of significant importance for the automatic screening of tiny cerebral lesions and early pre-
vention of LACI. However, existing studies on brain magnetic resonance imaging lesion segmentation focus on large 
lesions with obvious features, such as glioma and acute cerebral infarction. Owing to the multi-model tiny lesion areas 
of FCI and LACI, reliable and precise segmentation and/or detection of these lesion areas is still a significant challenge 
task.

Methods:  We propose a novel segmentation correction algorithm for estimating the lesion areas via segmentation 
and correction processes, in which we design two sub-models simultaneously: a segmentation network and a correc-
tion network. The segmentation network was first used to extract and segment diseased areas on T2 fluid-attenuated 
inversion recovery (FLAIR) images. Consequently, the correction network was used to classify these areas at the cor-
responding locations on T1 FLAIR images to distinguish between FCI and LACI. Finally, the results of the correction 
network were used to correct the segmentation results and achieve segmentation and recognition of the lesion areas.

Results:  In our experiment on magnetic resonance images of 113 clinical patients, our method achieved a precision 
of 91.76% for detection and 92.89% for classification, indicating a powerful method to distinguish between small 
lesions, such as FCI and LACI.

Conclusions:  Overall, we developed a complete method for segmentation and detection of WMHs related to FCI 
and LACI. The experimental results show that it has potential clinical application potential. In the future, we will collect 
more clinical data and test more types of tiny lesions at the same time.

Keywords:  White matter hyperintensities, Focal cerebral ischemia, Lacunar infarct, Magnetic resonance imaging, 
Multi-modality
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Background
White matter hyperintensities (WMHs) are features 
of very small vessel disease of the brain [1, 2], which 
they present as hyperintense regions on fluid-attenu-
ated inversion recovery (FLAIR) images. Accurately 
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identifying and classifying WMHs can help radiologists 
diagnose diseases and determine the course of such dis-
eases [3, 4].

Among them, detection and recognition for WMHs 
related to focal cerebral ischemia (FCI) and lacunar 
infarction (LACI) signals are of great significance for 
the clinical diagnosis and prevention of lacunar cerebral 
infarction. FCI presents high value signals on T2 FLAIR 
images and no obvious signal on T1 FLAIR images. These 
abnormal signals are mainly caused by demyelination [5, 
6]. In patients who experienced an ischemic event, treat-
ing the underlying cause in time is critical for the preven-
tion of further episodes. If its duration is long enough, 
FCI will lead to irreversible brain tissue necrosis or 
infarction in the ischemic areas [7]. In other words, FCI 
can generally be cured, while infarction cannot. LACI is 
a common type of infarction. Patients considered to have 
had LACI usually present high value signals similar to 
those observed in FCI on T2 FLAIR images and low value 
signals on T1 FLAIR images. These abnormal signals are 
caused by demyelination and structural changes. Thus, 
patients with LACI who undergo diagnostic imaging 
should be educated on common stroke symptoms and 
how to manage the onset of stroke [8]. In addition, con-
tinuous follow-up with a physician is necessary for these 
patients so that the physician can monitor drug dosage 
and risk factors [9]. Therefore, it is important to recog-
nize between these two abnormal signals.

Because the signals of FCI and LACI are indistinguish-
able on T2 FLAIR images, diagnosis with both T1 FLAIR 
and T2 FLAIR images is usually required [10]. Clinically, 
the conventional method of finding and distinguish-
ing focal abnormal signals from a patient relies on care-
ful examination by multiple radiologists. The manual 
method is time-consuming and can easily cause missed 
diagnosis and misdiagnosis, especially after doctors 
review a large number of radiological images at once. A 

practical tool that can assist radiologists in finding and 
distinguishing focal abnormal signals is urgently needed.

However, it is a challenge to accurately detect and dis-
tinguish focal abnormal signals of the brain. Although 
many researchers have worked on lesion segmentation, 
the solution of cerebral focal abnormal signal segmen-
tation lacks relevant experience. First, focal abnormal 
signals are always tiny objects and are difficult to detect 
accurately. Existing solutions of medical image analysis 
often underperform with tiny objects. Second, lesions 
cannot be accurately diagnosed using single-modal mag-
netic resonance imaging (MRI) data; however, how to 
apply multi-modal MRI data effectively is a challenge. 
Most of the existing multi-modal methods use feature 
fusion, which is not suitable for focal abnormal signal 
segmentation. Figure  1a shows the T1 and T2 FLAIR 
images of a patient with both FCI and LACI. In clini-
cal diagnosis, radiologists first observed the T2 FLAIR 
images for focal abnormal signals and then compared 
these images at the same location on T1 FLAIR images. 
To our knowledge, existing methods have never been 
explored in a similar process. Finally, the size and num-
ber of lesions vary greatly for different subjects. Figure 1b 
shows a comparison of two patients with focal abnormal 
signals on T2 FLAIR images. It is difficult to use the same 
model to intelligently determine the number of lesions in 
a different subject.

To overcome the aforementioned challenges, we herein 
propose a new framework to estimate the lesion areas 
via segmentation and correction processes, in which we 
simultaneously train two models: a segmentation net-
work and a correction network. The segmentation net-
work was first used to extract and segment potentially 
diseased areas on T2 FLAIR images. The correction 
network was then used to classify these areas at the cor-
responding locations on T1 FLAIR images to assess the 
probability that a patient has had LACI. Through the 

Fig. 1  a Comparison of FCI and LACI signals on T2 FLAIR and T1 FLAIR images.This patient had both of these lesions on the same slice. It is observed 
that the signals of FCI and LACI can only be distinguished on T1 FLAIR images. b Two slices with strong differences in the number and brightness of 
abnormal signals. These differences make it difficult for the segmentation model to accurately segment both types of slices at the same time
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combination of these two networks, we achieved seman-
tic segmentation of two different lesions.

Related work
Segmentation of white matter hyperintensities
Most related work focuses on automate segmentation 
of WMHs. The abnormal signals of FCI and LACI also 
belong to WMHs but are difficult to use for classify-
ing and grading lesions. Moreover, all the existing work 
focuses on abnormal signals with large areas, and there 
is a lack of exploration on the segmentation of abnor-
mal signals with very small areas. These methods can be 
divided into unsupervised, semi-supervised, and super-
vised methods.

Unsupervised segmentation
The advantage of unsupervised segmentation methods 
is that manual labeling is not required. Most of these 
methods use intensity-based clustering methods, such as 
fuzzy C-means methods [11], EM-based algorithms [12], 
and Gaussian mixture models [13]. Some studies have 
designed probabilistic generative models for stroke lesion 
segmentation, such as those proposed in reference num-
bers [14, 15]. Additionally, several studies have focused 
on the fact that WMHs are best observed on FLAIR 
magnetic resonance images and identified differently on 
T1-weighted magnetic resonance images [16, 17]. These 
studies generated synthetic images and then compared 
them with real FLAIR images to detect any abnormali-
ties. An important disadvantage of these methods is that 
they are not designed to find and distinguish between 
FCI and LACI. Therefore, these methods cannot accu-
rately segment the diseased area nor can they distinguish 
whether the infarct has occurred in the segmented area.

Semi‑supervised segmentation
Existing semi-supervised segmentation methods mainly 
depend on regional growth techniques. Kawata et al. [18] 
proposed a region-growing method, which was adaptive 
selection on WMH regions based on a support vector 
machine. Qin et  al.  [19] proposed an algorithm to opti-
mize the kernel-based max-margin objective function. 
Although these methods are well motivated and have 
yielded some progress, transferring useful knowledge 
from unlabeled data remains a challenge. Therefore, 
semi-supervised WMH segmentation methods cannot 
completely replace supervised methods.

Supervised segmentation
Recently, a variety of convolutional neural networks 
(CNNs) have been widely utilized in the medical field 
and have often been reported to be the state of the art 
[20–22]. Guerrero et  al.  [23] used a CNN that is able 

to segment hyperintensities and differentiate between 
WMHs and stroke lesions. Brosch et al. [24] proposed a 
deep convolutional encoder network for the prediction 
of MS lesions. Kamnitsas et  al.  [25] proposed a dual-
pathway 3D CNN for brain lesion segmentation. Ghafoo-
rian et al. [26] proposed several deep CNN architectures 
to consider multi-scale patches or take explicit location 
features. However, none of these methods can achieve 
semantic segmentation of WMHs related to FCI and 
LACI.

Tiny objects
Processing tiny objects is notoriously challenging. The 
most common methods of distinguishing tiny objects 
are increasing the input image resolution [27] and fusing 
high-resolution features from low-resolution images [28, 
29]. However, these methods greatly increase the com-
putational overhead and do not address the class imbal-
ance between tiny objects and backgrounds. Li et al. [30] 
proposed a perceptual generative adversarial network 
(PGAN). The PGAN lifts representations of tiny objects 
to “super-resolved” ones, achieving characteristics similar 
to those of large objects. Improving tiny object proposals 
was proposed on the basis of different resolution layers in 
a region proposal network [31]. Ren et al. [32] leveraged 
the context information and thereby further improving 
the performance of tiny object detection.

Our contributions
The main contributions of this research are as follows:

•	 For the first time, we achieved accurate segmentation 
of and discrimination between FCI and LACI signals.

•	 We proposed a novel auxiliary network for discrimi-
nating between FCI and LACI signals in the T1 
FLAIR modality.

•	 We proposed a series of oversampling and augmenta-
tion strategies to achieve tiny lesion segmentation.

Methods
Our proposed framework consisted of a primary net-
work and a secondary network, as shown in Fig.  2. The 
primary network was used to focus on the segmentation 
of tiny brain lesions. Thereafter, the secondary network 
was used to receive the ROI that was extracted either 
from FCI masks or LACI masks and to output a scalar of 
0 or 1 for each ROI to identify the type of lesion. Finally, 
the results of the secondary network were used to correct 
the segmentation results. Besides, to enable the model to 
process magnetic resonance images of different courses 
at the same time, we used a series of oversampling and 
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augmentation strategies, each designed for the character-
istics of tiny lesion segmentation in the brain.

Primary network
To segment the lesions accurately and reliably, we 
deployed a primary network based on T2 FLAIR images. 
The proposed primary network had a symmetric model 
structure, as shown in Fig. 3. U-Net [33] forms the foun-
dation of this architecture. It consisted of an encoding 
path and a decoding path. The encoding path comprised 
10 convolutions with a kernel size of 3 × 3 for generating 
a set of feature maps. These maps were applied by batch 

normalization (BN) and a rectified linear unit (ReLU). 
After each two continuous stack of convolution + BN + 
ReLU, a 2 × 2 max-pooling layer was applied for down-
sampling. Each decoding path had an up-sampling pro-
cess of the feature map with a 2 × 2 deconvolution that 
halved the number of feature channels, each followed by 
a BN layer and a ReLU layer; each feature map was con-
nected to the coding path after up-sampling. Thereafter, 
further feature extraction and selection were conducted 
for the concat feature map-based continuous convolu-
tion + BN + ReLU operations. At the final process, two 
continuous 1 × 1 convolutions were applied for mapping 
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each component eigenvector to the required number of 
classes. When the size of the feature map was constant, 
two continuous 1 × 1 convolutional layers were used to 
increase the depth of the main network and significantly 
increase the nonlinear characteristics.

Secondary network
Although the primary network segmented the lesions, 
semantic segmentation of WMHs related to FCI and 
LACI had not yet been implemented. We deployed the 
secondary network to implement this challenge based 
on T1 FLAIR images. The proposed secondary network 
comprised five convolutional layers with 3 × 3 kernels, 
five ReLUs, three average pooling layers, and two fully 
connected layers with dropout, as shown in Fig. 4. After 
each two continuous convolution + BN + ReLU layers, a 
2 × 2 max-pooling layer for down-sampling was applied. 
At the final process, two continuous 1 × 1 convolutional 
layers were used to discriminate the class of the entire 
import image. With regard to training, the secondary 
network first received either the predicted FCI masks or 
the LACI masks from the primary network. Thereafter, 
the secondary network outputted a single scalar to deter-
mine whether the predicted masks had the characteristics 
of FCI or LACI. When the secondary network success-
fully discriminated the type of input image, this result 
was returned to correct the segmentation results, and the 
semantic segmentation result was then generated.

Global optimization
The updates of our network were based on the cross-
entropy loss function. For optimization, we used the 
RMSProp algorithm [34] as follows:

where gt denotes the gradient of the cost function; E[g2]t 
denotes the gradient’s mean value of t times square; α 
is the moving average parameter set to 0.9; η is the base 
learning rate set to 0.01; and ǫ is a parameter added to 
prevent division by zero.

Data and experiments
Original data and ground truth
The proposed framework was evaluated on a dataset of 
113 clinical patients (61 men and 52 women). The aver-
age age of the patients was 52 ± 26 years. All MRI data 
were acquired using the GE Signa Horizon HDxt 1.5T 
clinical scanner (General Electric, Milwaukee, WI, USA), 
with a self-shielding gradient set at a maximum of 33 
mT/m and an 8-channel phased-array head coil. The MRI 
examination comprised T1 FLAIR (TE = 23 ms, TR = 
1750 ms) and T2 FLAIR (TE = 155 ms, TR = 8500 ms). 
The field-of-view of all sequences was 512 × 512 mm, and 
the slice thickness was 6 mm. The dataset contained 30 
patients with LACI (70 images), 68 patients with FCI (191 

(1)E[g2]t =αE[g2]t−1 + (1− α)g2t ,

(2)Wt+1 =Wt −
η
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Fig. 4  Secondary network: semantic correction network
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images), and 37 healthy patients (152 images). According 
to the imaging diagnostic criteria, the training set was 
labeled with the boost of two experienced radiologists. 
The basic facts of the classification were extracted from 
clinical reports and reviewed by two doctors.

Oversampling and augmentation strategies
The lesion region of WMHs related to FCI and LACI is 
usually very small and hard to recognize. In the experi-
ment, we found that if we simply select images randomly 
for training, the model would classify all pixel points into 
negative pixels regardless of how the network sets the 
objective weight. According to Van Nguyen et  al.  [17], 
we speculate that this result is attributed to two factors: 
(1) Fewer images contain lesions, and (2) the lesions are 
not apparent in the image containing them. To solve 
this problem, we designed oversampling and augmenta-
tion strategies to encourage the model to focus on lesion 
regions.

Oversampling
We addressed the issue of relatively fewer images con-
taining lesions by oversampling those images during 
training [35]. Based on the characteristics of tiny objects, 
we identified the slices with a large number of tiny lesions 
for pre-training. After the model converges, we input all 
the data used for training to the network.

Dataset augmentation
To focus on lesion segmentation, we introduced a data-
set augmentation strategy. After careful confirmation by 
two radiologists on different MRI modalities, we finally 
selected 48 slices that had more than 5 WMHs related 
to FCI and LACI from 113 clinical patients. Each slice 
was rotated 5 ◦ to 10◦ clockwise or counterclockwise. All 
images and labels were shuffled and checked one by one 
to ensure that they had no errors after data augmentation.

Images used by secondary network
The images used by the secondary network were derived 
from the centroids of each connected component of the 
segmentation mask. Each image was an ROI from a cen-
troid with a size of 32 × 32. To facilitate the calculation, 
we up-sampled the image to a size of 64 × 64 before being 
used as the input to the secondary network.

Owing to the very small size of these extracted images, 
the difference between the minimum and maximum val-
ues of the pixel intensity was within 100. To make the fea-
tures of these images easier to extract, we leveraged the 
gamma transformations of the image intensity. To mod-
erately stretch the pixels with high-intensity levels in the 
image and compress the pixels with low-intensity levels, 
we set the γ value to 1.5.

Experiments
We used the standard five-fold cross-validation method 
for the performance evaluation of our proposed method 
[36]. We divided the data into five parts, each time select-
ing four groups for training and one group for testing. 
When all the experiments were completed, we calcu-
lated the average value as the model metrics. Finally, all 
slices were used for training and testing, and each slice 
was used for testing only once. We implemented the pro-
posed method using Python 3.7 based on the TensorFlow 
1.13 library on a workstation equipped with GPUs of 
NVIDIA TESLA V100.

Performance evaluation
We evaluated our proposed method in three dimensions: 
segmentation, detection, and classification. Among them, 
the evaluation index of segmentation was the dice coef-
ficient, and that of detection and classification was pre-
cision. Precision was utilized to evaluate the accuracy of 
the results. In general, precision is defined as the ratio of 
true positives to all positives. A correct detection is only 
counted as a true positive detection if the predicted mask 
or bounding box has an intersection over union (IoU) 
higher than 0.6. In this study, our primary interest was 
precision in distinguishing each lesion region.

Results
We proposed a novel method for segmentation of WMHs 
related to FCI and LACI. In our experiment on 113 sets 
of clinical patients’ MRI scans, our method achieved a 
precision of 91.76% for detection and 92.89% for clas-
sification. The results demonstrated the validity of the 
proposed method for semantic segmentation of WMHs 
related to FCI and LACI.

To investigate the effectiveness of our proposed 
method, we compared the experimental results with 
those from other networks. We analyzed the effects of 
the secondary network, oversampling, and augmenta-
tion on the detection results. Table 1 provides the experi-
mental configurations and results. The results showed 
that our proposed method could distinguish the WMHs 
related to FCI and LACI effectively. Notably, there is no 
classification metric for the primary network in Table 1 
because it only completes semantic segmentation accord-
ing to the lesion area.

Discussion
The experimental results of this study are presented in 
Table  1. The experiment is similar to an ablation study 
previously conducted to demonstrate the effect of each 
novel module. In the experiment, each index of the pri-
mary network had two results. This is because in the early 
stage of this research, we first thought that the processes 
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of segmentation and classification were completed simul-
taneously; however, the results obtained were poor (ref-
erence to task a in Table  1 for more details). Although 
the introduction of data augmentation and oversampling 
strategy improved the results in the later stage, it still 
could not meet the requirements of high-precision seg-
mentation and recognition. Therefore, we introduced a 
two-stage learning strategy, in which the primary net-
work was only focused on segmenting the lesion areas, 
and the task of identifying the lesions was completed by 
the secondary network (reference to task b in Table 1 for 
more details). This two-stage network originated from 
clinical practice and completely simulated the diagnostic 
process used by radiologists. The final results also proved 
the effectiveness of our two-stage network. After deploy-
ment of the secondary network, the model significantly 
improved the classification effect for FCI and LACI. In 
addition, the experiments showed that oversampling is 
necessary for tiny lesions, which may be attributed to 
the small proportion of the lesions. Data augmentation 
technology effectively improves the ability of the model 
to detect lesions. This shows that in future research, col-
lecting more data may be the key point for improving the 
accuracy of the model.

Conclusions
In this study, we developed a complete method for seg-
mentation of WMHs related to FCI and LACI. This is 
the first method to distinguish between small lesions, 
such as FCI and LACI. The experiments with 113 sets 
of clinical data showed that our method is accurate and 
reliable. This method first leverages the primary net-
work to achieve segmentation of the lesions. Thereafter, 
the secondary network is deployed to classify the lesion 

type. Although existing studies have achieved semantic 
segmentation of multiple lesions, some of them (e.g., tiny 
lesions) have not been fully considered. In the future, we 
will collect more clinical data and test more types of tiny 
lesions at the same time.
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