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Abstract 

Mycoplasma hyopneumoniae is the primary agent of enzootic pneumonia in pigs. Although cell mediated immu‑
nity (CMI) may play a role in protection against M. hyopneumoniae, its transfer from sows to their offspring is poorly 
characterized. Therefore, maternally-derived CMI was studied in piglets from vaccinated and non-vaccinated sows. 
The potential influence of cross-fostering before colostrum ingestion on the transfer of CMI from dam to piglets was 
also investigated. Six M. hyopneumoniae vaccinated sows from an endemically infected herd and 47 of their piglets, 
of which 24 piglets were cross-fostered, were included, as well as three non-vaccinated control sows from an M. 
hyopneumoniae-free herd and 24 of their piglets. Vaccinated sows received a commercial bacterin intramuscularly at 
6 and 3 weeks prior to farrowing. The TNF-α, IFN-γ and IL-17A production by different T-cell subsets in blood of sows, 
colostrum and blood of piglets was assessed using a recall assay. In blood of sows cytokine producing T-cells were 
increased upon M. hyopneumoniae vaccination. Similarly, M. hyopneumoniae-specific T-cells were detected in blood 
of 2-day-old piglets born from these vaccinated sows. In contrast, no M. hyopneumoniae-specific cytokine producing 
T-cells were found in blood of piglets from control sows. No difference was found in M. hyopneumoniae-specific CMI 
between cross-fostered and non-cross-fostered piglets. In conclusion, different M. hyopneumoniae-specific T-cell sub‑
sets are transferred from the sow to the offspring. Further studies are required to investigate the role of these trans‑
ferred cells on immune responses in piglets and their potential protective effect against M. hyopneumoniae infections.
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Introduction
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the 
primary agent of enzootic pneumonia in pigs, causing 
significant economic losses in swine production world-
wide [1, 2]. Colonization with M. hyopneumoniae may 
occur already during the first weeks of life, and dam-
to-piglet transmission has been shown to be a major 

transmission route [3, 4]. Maternally-derived immunity 
(MDI) might confer some protection against M. hyo-
pneumoniae colonization in piglets [5, 6]. As pigs have an 
epitheliochorial placenta, piglets depend on the ingestion 
of colostrum to receive MDI [7]. Colostral immunity con-
sists of a humoral component and a cellular component. 
In addition to macrophages and neutrophils, colostrum 
also contains lymphocytes which can be divided in B-cells 
and different T-cell subsets; CD8+, CD4+, CD8+CD4+ 
and CD8−CD4− [8, 9]. Antibodies and lymphocytes are 
transferred from sows to piglets via the colostrum [10]. 
Antibodies can be taken up by the piglets from colos-
trum originating from their mother sow or from another 
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cross-fostered sow. However, colostral immune cells are 
considered to be taken up only from colostrum coming 
from the own mother via yet unknown mechanisms [11–
13]. Besides antibodies and lymphocytes, also cytokines 
are transferred from sow to piglet via colostrum [14].

Vaccination of sows during gestation increases vaccine-
specific antibodies in serum and colostrum, which are 
then transferred to the suckling piglets [6, 15, 16]. Those 
piglets have higher serum antibody concentrations and 
are less often colonized with M. hyopneumoniae at wean-
ing compared to piglets from non-vaccinated sows and 
gilts [5, 6].

Nevertheless, cell mediated immunity (CMI) might 
play a more important role in the protection against M. 
hyopneumoniae as serum antibody levels are not corre-
lated with the degree of protection [17–21]. Although a 
positive effect of sow vaccination on M. hyopneumoniae 
colonization in piglets has been shown, it is not com-
monly practiced [22].

In a previous study [23], M. hyopneumoniae vaccina-
tion of sows resulted in the presence of vaccine-specific 
lymphocytes in colostrum, which were able to proliferate 
after in vitro M. hyopneumoniae stimulation. These cells 
were transferred to their offspring because after colos-
trum intake, the lymphocytes, isolated from the blood of 
the piglets, proliferated as well after in vitro stimulation. 
When piglets from vaccinated dams were injected intra-
dermally with purified killed M. hyopneumoniae (300 µg/
mL in 0.1  mL) antigen, a delayed-type hypersensitivity 
(DTH) reaction was observed, indicating the presence 
of M. hyopneumoniae specific Th1 cells [23]. This DTH 
reaction was not present in piglets that were cross-fos-
tered between M. hyopneumoniae vaccinated sows [13]. 
It is well known that vaccination of piglets against M. hyo-
pneumoniae can activate T-cells [18, 20, 21, 24], whereas 
the influence of sow vaccination on the sow’s CMI has 
not been evaluated yet. Those T-cells play a central role 
in the host immunity against pathogens, as activated 
T-cells influence both innate and adaptive immunity [25]. 
Activated T-cells produce cytokines like tumor necrosis 
factor alpha (TNF-α), which is an activation marker, and 
Th1 cells produce interferon gamma (IFN-γ) whereas 
Th17 cells produce interleukin 17A (IL-17A) [26, 27]. To 
gain better insights into immune responses of young pig-
lets upon M. hyopneumoniae vaccination and infection, 
it might be important to characterize the different M. 
hyopneumoniae-specific T-cell subsets and their ability to 
produce cytokines in blood of sows, colostrum and the 
transfer to neonatal piglets [6, 28, 29].

The objectives of this study were first to investigate if 
vaccination of sows with an inactivated M. hyopneumo-
niae vaccine may activate T-cells in the sows and second 
to explore if these M. hyopneumoniae-specific T-cells are 

transferred to their offspring. Therefore, M. hyopneumo-
niae-specific humoral and cell-mediated immunity in 
blood of sows, colostrum and blood of 2-day-old piglets 
were investigated. The presence of IFN-γ, TNF-α, and 
IL-17A producing T-cell subsets and their proliferative 
ability after in vitro stimulation with M. hyopneumoniae 
antigen were analyzed. The potential influence of cross-
fostering before colostrum ingestion on the transfer of 
CMI from dam to piglets was also investigated.

Materials and methods
Study population and animal experiments
The study was performed after approval by the Ethi-
cal Committee for Animal Experiments of the Research 
Institute for Agriculture, Fisheries and Food (ILVO, 
Merelbeke, Belgium) (approval number 2019/339) and 
after approval by the Ethical Committee of the Faculty of 
Veterinary Medicine and the Faculty of Bioscience Engi-
neering, Ghent University (approval number 2019/12). 
Two commercial farrow-to-finish farms were included 
in the study. Farm A was endemically infected with M. 
hyopneumoniae (pathogen isolated from slaughterhouse 
lungs) and farm B was free of M. hyopneumoniae. The 
free status was based on historic information such as 
absence of clinical signs, lung lesions and serum antibod-
ies upon routine serological testing. The farm also tested 
negative for M. hyopneumoniae using PCR on tracheo-
bronchial swabs (pigs at 10, 14, 18 and 22 weeks of age) 
prior to onset of the study. The experimental design used 
on the two farms is shown in Figure 1.

On farm A, six sows (mixed breed and of different 
parities) were intramuscularly vaccinated with a com-
mercial M. hyopneumoniae vaccine, constituted of inac-
tivated whole cells of the J strain (Ingelvac MycoFLEX®, 
Boehringer Ingelheim Vetmedica GmbH, Ingelheim am 
Rhein, Germany), at 6 and 3 weeks before farrowing to 
boost M. hyopneumoniae-specific immune responses. 
Farrowing was induced at 115 days of gestation by intra-
muscular injection of 2  mL prostaglandin (Dinolytic 
5  mg/mL, Zoetis, Leuven, Belgium) followed by intra-
muscular injection of 1  mL oxytocin 24  h later (Oxy-
tocine Kela 10 i.u./mL, Kela, Hoogstraten, Belgium). 
Immediately after birth and prior to colostrum inges-
tion, piglets were placed in plastic tubs under a heat lamp 
for maximum six hours. From each sow, the first seven 
to eight piglets (n = 47) with a birth weight of at least 
1.0  kg were ear notched to allow individual identifica-
tion. Four piglets (n = 24) from each sow were moved to 
another dam within 6 h after birth and before colostrum 
ingestion, while the other three to four piglets (n = 23) 
remained with their mother.

On farm B, three Naima sows and eight piglets per 
sow (n = 24) with a birth weight of at least 1.0  kg were 
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included in the study. No M. hyopneumoniae vaccina-
tion was performed on the farm and piglets were not 
cross-fostered.

On farm A, blood was collected in sterile serum (clot-
ted blood) and EDTA tubes (non-clotted blood), from 
all sows before the first vaccination and within 6 h after 
farrowing. In farm B, blood was only collected from the 
sows within 6 h after farrowing. In addition to the blood 
samples, the sows on both farms were sampled using a 
laryngeal swab (Portex® Dog Catheter with Female Luer 
Mount, Smiths Medical International Ltd., Kent, UK). 
Colostrum (45  mL) from all sows in the study was col-
lected shortly after birth and before the piglets were 
allowed to suckle. Different teats (pectoral, abdominal 
and inguinal) were sampled and the colostrum samples 
were pooled to obtain one sample per sow.

At 2 days of age, blood was taken from all piglets by 
puncture of the jugular vein in sterile serum and EDTA 
tubes.

Nested PCR for M. hyopneumoniae DNA detection
To test for the presence of M. hyopneumoniae, DNA was 
extracted from the laryngeal swabs using a commercial 
kit (DNeasy® Blood & Tissue kit, Qiagen, Venlo, The 
Netherlands) and a nested PCR (nPCR) was performed 
[30].

Mycoplasma hyopneumoniae specific antibodies
The serum was analyzed for the presence of M. hyopneu-
moniae antibodies with a commercial blocking ELISA 
(IDEIA™ Mycoplasma hyopneumoniae EIA kit, Oxoid 
Limited, Hampshire, UK) following the manufacturer’s 
instructions. Samples were considered positive if the 
optical density (OD) of the sample was lower than 50% 
of the average OD of the buffer control. Samples were 
considered negative if the OD of the sample was equal to 
or higher than 50% of the average OD of the buffer con-
trol. To determine M. hyopneumoniae-specific immuno-
globulin (Ig) G and IgA levels in serum and colostrum, an 
indirect in-house ELISA was used as described by others 
[24]. Serum was diluted 1/200 for IgG and 1/100 for IgA, 
while colostrum was diluted 1/100 for both antibodies. 
All samples were tested in duplicate. Samples were con-
sidered positive if the average OD of the duplicates was 
higher than the cut-off value calculated as the average of 
the OD of the negative control samples (serum of M. hyo-
pneumoniae negative pigs from experimental trials) plus 
three times the standard deviation (SD).

T cell cytokine production
Peripheral blood mononuclear cells (PBMCs) were iso-
lated from fresh, unclotted blood using a Lymphoprep™ 

Figure 1  Design of the study. Farm A: endemically infected with M. hyopneumoniae; Farm B: free of M. hyopneumoniae. On farm A, six sows 
and 47 piglets were included (23 non-cross-fostered and 24 cross-fostered before colostrum ingestion), while on farm B three sows and 24 
non-cross-fostered piglets were included. w = weeks, d = days.
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density gradient (Stemcell technologies, Vancouver, 
Canada). Colostral mononuclear cells (CMCs) were 
purified using a Ficoll-Paque® density gradient (GE 
Healthcare, Illionis, USA). The stimulation and stain-
ing of the PBMCs and CMCs was based on the proto-
col described by others [24]. Briefly, cells were plated in 
24-well plates at 2.5 × 106 cells/well in 0.5 mL of AIM-V 
medium (Gibco™, ThermoFisher Scientific, Waltham, 
MA, USA) and stimulated in vitro overnight (20 h) with 
3.125 × 107 CCU of M. hyopneumoniae J strain bacterin 
in 0.5  mL of AIM-V medium. The M. hyopneumoniae 
J strain bacterin was made based on the protocol for 
the production of M. hyopneumoniae F7.2C bacterin 
[31]. Concanavalin A (10 µg/mL, Sigma-Aldrich, Saint 
Louis, MO, USA) stimulation was used as a positive 
control and AIM-V medium as a negative control. Due 
to low cell yields from the colostral samples and blood 
of 2-day-old piglets, some samples lacked enough cells 
to include a negative and positive control. To investi-
gate TNF-α, IFN-γ and IL-17A production, protein 
secretion was inhibited by adding Brefeldin A (eBio-
science, San Diego, CA, USA) to each well for the last 
4  h of stimulation. Subsequently, cells were harvested 
and stained. First, cells were incubated with a LIVE/
DEAD™ Fixable Aqua Dead Cell Stain Kit (Invitrogen™, 
ThermoFisher Scientific, Waltham, MA, USA) followed 
by incubation with anti-CD4 (clone 74-12-4) and anti-
CD8α (clone 11-295-33) monoclonal antibodies. Next, 
corresponding secondary antibodies anti-mouse IgG2b 
FITC (Biolegend, San Diego, CA, USA) and anti-mouse 
IgG2a PE-Cy7 (Abcam, Cambridge, UK) were added 
together with anti-CD3 DyLight755 (clone PPT3, in 
house labeling). Following surface staining, fixation 
and permeabilization (BD Fix/Perm, Becton Dickin-
son, Franklin Lakes, NJ, USA), intracellular cytokine 
staining was performed by staining the cells with anti-
human TNF-α AlexaFluor 647 (clone Mab11, Bioleg-
end, San Diego, CA, USA), anti-pig IFN-γ PerCP-Cy5.5 
(clone P2G10, BD Pharmingen™, Becton Dickinson, 
Franklin Lakes, NJ, USA) and anti-human IL-17A PE 
(clone SCPL1362, BD Pharmingen™, Becton Dickin-
son, Franklin Lakes, NJ, USA). Since no IL-17A produc-
tion was observed upon stimulation of PBMCs from 
2-day-old piglets of farm A, for piglets of farm B, IL-
17A staining was omitted allowing us to stain CD3 with 
primary anti-CD3 (clone PPT3) and anti-mouse IgG1 
PE (Biolegend, San Diego, CA, USA). Before the start 
of the cytokine staining, an additional blocking step 
was performed with mouse IgG1 (10 µg/mL). Data were 
acquired with a CytoFLEX flow cytometer (Beckman 
Coulter, Bea, CA, USA) and the results were further 
analyzed with CytExpert software (Beckman Coulter). 
The gating hierarchy is shown in Additional file 1.

T cell proliferation assay
PBMCs were labeled using a CellTrace™ Cell Prolifera-
tion Kit (Invitrogen™, ThermoFisher Scientific, Waltham, 
MA, USA) following the manufacturer’s instructions. 
Afterwards, cells were plated in 24-well plates at 1 × 106 
cells/well in 0.5 mL complete cell culture medium (Dul-
becco’s Modified Eagle Medium, 10% fetal calf serum, 1% 
penicillin/streptomycin, 1% nonessential amino acids) 
and stimulated in  vitro for 87  h with 3.125 × 107 CCU 
of M. hyopneumoniae J strain bacterin. Concanavalin A 
(10 µg/mL) was used as a positive control and complete 
cell culture medium as a negative control. Cells were har-
vested and a surface staining protocol was performed. 
First, cells were incubated with anti-CD4 and anti-CD8α 
monoclonal antibodies and subsequently with the cor-
responding secondary antibodies anti-mouse IgG2b 
FITC (Biolegend, San Diego, CA, USA) and anti-mouse 
IgG2a AlexaFluor 647 (Biolegend, San Diego, CA, USA) 
together with anti-CD3 DyLight755 and propidium 
iodide. Data were acquired with a CytoFLEX flow cytom-
eter and the results were further analyzed with CytExpert 
software. The gating hierarchy is shown in Additional 
file 2.

Data analyses
Statistical analyses were performed using IBM SPSS® 
Statistics Version 26 (IBM, Chicago, IL, USA). Kolmogo-
rov–Smirnov and Shapiro–Wilk tests were used as tests 
for normality distribution of the residuals. The paired-
samples T-test or the Wilcoxon signed-rank test were 
used for analyzing statistical differences in CMI param-
eters in blood of sows before and after vaccination. The 
independent-samples T-test or Mann–Whitney U test 
were used for comparing the CMI data (1) from sows and 
2-day-old piglets on farm A and B and (2) from 2-day-old 
non-cross-fostered and cross-fostered piglets. To inves-
tigate correlations in CMI between sows and 2-day-old 
piglets, a Spearman-rank test was performed. Differences 
were considered statistically significant if the P-value was 
lower than 0.05.

Results
M. hyopneumoniae‑specific antibodies
Commercial ELISA
To investigate M. hyopneumoniae-specific antibodies in 
the sows upon M. hyopneumoniae vaccination and their 
transfer to piglets via colostrum, antibody levels were 
assessed in colostrum and serum of sows and piglets. 
At the time of farrowing, all sows and 2-day-old piglets, 
were positive for M. hyopneumoniae specific antibodies 
on farm A, whereas all animals were negative on farm B 
(Additional file 3).



Page 5 of 14Biebaut et al. Vet Res           (2021) 52:96 	

Isotype‑specific ELISA
To further evaluate the vaccine boosted antibody 
responses, M. hyopneumoniae-specific serum IgG and 
IgA levels in sows were determined. As shown in Fig-
ures 2A and B, vaccination of sows on farm A increased 
both IgG and IgA levels in most animals. One sow (sow 3) 
remained negative for both M. hyopneumoniae-specific 

IgG and IgA, while another sow (sow 1) did not show an 
IgA response after vaccination. On farm B one sow had 
M. hyopneumoniae-specific serum IgA levels above the 
threshold (Figures 2A and B). M. hyopneumoniae-specific 
IgG and IgA levels in colostrum were detected in all sows 
on farm A, while the levels were below or just above the 
threshold for the sows on farm B (Figures 2C and D). In 

Figure 2  Mycoplasma hyopneumoniae-specific IgG and IgA levels in sows and piglets. Farm A: endemically infected with M. hyopneumoniae; 
Farm B: free of M. hyopneumoniae. A, B: individual levels in serum of sows; C, D: individual levels in colostrum of sows; E, F: average levels in serum 
of 2-day-old piglets (4 piglets per sow on farm A; 8 piglets per sow on farm B). On farm A, sows (n = 6) were vaccinated against M. hyopneumoniae 
at 6 and 3 weeks before farrowing and blood samples were taken before the first vaccination (pre vacc.) and at the time of farrowing (post vacc.). 
On farm B, blood of the sows (n = 3) was sampled at the time of farrowing. Color coding of the piglets corresponds to the color of their mother of 
which they ingested colostrum. Red line: cut-off optical density value for positive samples.
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serum of 2-day-old piglets, the M. hyopneumoniae-spe-
cific antibody levels reflected the levels observed in the 
serum of the respective sows. Piglets with antibody levels 
below the threshold were born from sows with no or a 
low IgG or IgA response upon vaccination and low anti-
body levels in colostrum. Two sows (sow 3 and 4) had low 
IgG levels in colostrum and their piglets had serum IgG 
levels below the threshold. Two sows (sow 1 and 3) had 
low IgA levels in colostrum and their piglets had serum 
IgA levels below the threshold. On farm B piglets from 
one sow had IgA levels in serum above the threshold, this 
sow had serum IgA levels above and colostrum IgA levels 
below the threshold. An overview of the antibody con-
centrations in serum of 2-day-old piglets is given in Fig-
ures 2E and F. In summary, the results of the commercial 
ELISA and the isotype-specific ELISA in farm A showed 
transfer of vaccine-boosted maternal antibodies to pig-
lets via colostrum.

PCR testing for M. hyopneumoniae on laryngeal swabs
All laryngeal swabs from the sows taken 6 weeks before 
farrowing (farm A) and taken at farrowing (farm A and 
B) tested negative for the presence of M. hyopneumoniae 
DNA.

T‑cell subsets
The frequency of the different T-cell subsets after in vitro 
M. hyopneumoniae stimulation was investigated.

M. hyopneumoniae vaccination induced a significant 
(P = 0.03) decrease in the frequency (average % ± SD) of 
peripheral blood CD8+ T-cells in sows (Figure 3A). The 
frequency of CD8+ T-cells in blood of sows after in vitro 
stimulation was 34.6% ± 7.6 and 25.9% ± 4.1 before vac-
cination and 6 weeks after vaccination, respectively. At 
the time of farrowing, the dominant T-cell population 
in blood of sows was CD8+CD4+ cells on both farms, 
while CD8−CD4− T-cells had the lowest frequency. No 

Figure 3  Frequencies (%) of CD3+ T-cells in sows and piglets. Farm A: endemically infected M. hyopneumoniae; Farm B: free of M. 
hyopneumoniae. A Blood of sows; B colostrum; C, D blood of 2-day-old piglets (4 piglets per sow on farm A; 8 piglets per sow on farm B). On 
farm A, sows (n = 6) were vaccinated against M. hyopneumoniae at 6 and 3 weeks before farrowing and blood samples were taken before the first 
vaccination (pre vacc.) and at the time of farrowing (post vacc.), on farm B blood was sampled of the sows (n = 3) at the time of farrowing. *, P < 0.05 
between pre- and post-vaccination on farm A; **, P < 0.05 between farm A and B.
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significant differences were observed in the frequencies 
of the different T-cell populations in blood of sows on 
farm A and B at the time of farrowing (Figure 3A).

In colostrum of sows on farm A, CD4+ T-cells were 
dominant, whereas on farm B almost no CD4+ T-cells 
were present, this difference was significant (P = 0.04) 
(Figure 3B).

In blood of 2-day-old piglets from both farms, the 
dominant T-cell populations were CD4+ T-cells, followed 
by CD8−CD4− T-cells, CD8+ T-cells, and CD8+CD4+ 
T-cells. The only significant difference between piglets 
on both farms was observed for the CD8+CD4+ T-cells 
(P < 0.01) with a frequency of 0.9% ± 0.7 and 0.07% ± 0.05, 
on farm A and B, respectively (Figures 3C and D).

T‑cell cytokine production
To investigate the transfer of CMI from mother to off-
spring, the cytokine production by different T-cell sub-
sets of PBMCs was assessed in recall assays.

The CMI response 6 weeks after vaccination was fur-
ther investigated by analyzing the presence of TNF-α, 
IFN-γ and IL-17A producing T-cells in the blood of sows 
after in  vitro stimulation with M. hyopneumoniae bac-
terin. Six weeks after vaccination, M. hyopneumoniae-
specific T-cells were present. CD3+ T-cells isolated from 
blood before vaccination did not proliferate upon in vitro 
simulation, while proliferation was observed for all sows 
after vaccination (Additional file  4). In blood of sows, 
vaccination resulted in a significant increase in IL-17A+ 
CD4+ T-cells (P = 0.03), TNF-α+ (P = 0.047) and IFN-γ+ 
(P = 0.04) CD8+CD4+ T-cells, and in TNF-α+ (P = 0.03), 
TNF-α+IFN-γ+ (P = 0.03) and IL-17A+ (P = 0.03) 
CD8−CD4− T-cells compared to before vaccination 
(Figures 4A–D). At the time of farrowing, sows on farm 
B had significantly less IFN-γ+ (P = 0.02) CD8+ T-cells, 
TNF-α+ (P = 0.04) and IL-17A+ (P = 0.02) CD4+ T-cells, 
TNF-α+ (P = 0.04) and IFN-γ+ (P = 0.01) CD8+CD4+ 
T-cells, and TNF-α+IFN-γ+ (P = 0.02) CD8−CD4− 
T-cells in their blood compared to sows on farm A at the 
time of farrowing (Figures 4A–D). However, IL-17A pro-
ducing CD8+ T-cells were significantly more present in 
the blood of sows on farm B compared to sows on farm 
A at the time of farrowing (P = 0.02). Before vaccina-
tion, IFN-γ producing T-cells were mainly CD8+, while 
after vaccination there was a significant decrease in INF-
γ+CD8+ T-cells (P = 0.03) and a significant increase in 
INF-γ+CD8+CD4+ T-cells (P = 0.02) (Figure 4E). No sig-
nificant differences were observed in INF-γ producing 
T-cells in blood of sows between both farms at the time 
of farrowing (Figure 4E).

To assess whether vaccine-induced T-cell responses 
are transferred from sow to piglets, the presence of TNF-
α, IFN-γ and IL-17A producing T-cells was investigated 

in the blood of 2-day-old piglets after in  vitro stimula-
tion with M. hyopneumoniae bacterin. M. hyopneumo-
niae-specific cytokine producing T-cell subsets could 
be detected in the blood of the offspring. As shown in 
Figures  5A–C, piglets from vaccinated sows had sig-
nificantly more TNF-α+ (P < 0.01), IFN-γ+ (P < 0.01) 
and TNF-α+IFN-γ+ (P < 0.01) CD8+ T-cells, INF-γ+ 
(P = 0.02) CD4+ T-cells, IFN-γ+ (P < 0.01) and TNF-
α+IFN-γ+ (P < 0.01) CD8+CD4+ T-cells, and more TNF-
α+ (P < 0.01) and IFN-γ+ (P < 0.01) CD8−CD4− T-cells in 
their blood as compared to piglets from non-vaccinated, 
M. hyopneumoniae negative sows. In blood of piglets 
from vaccinated sows, significantly more IFN-γ+CD8+ 
(P < 0.01) and IFN-γ+CD8+CD4+ (P < 0.01) T-cells were 
present, while in blood of piglets from M. hyopneumo-
niae negative sows, significantly more IFN-γ+CD4+ 
(P < 0.01) T-cells were present (Figure 5E). Also, in blood 
of piglets from vaccinated sows, significantly more IFN-
γ+CD3− (P < 0.01) cells were present than in blood of pig-
lets from M. hyopneumoniae negative sows (Figure 5D). 
These IFN-γ+CD3− lymphocytes, in blood of piglets 
from M. hyopneumoniae vaccinated sows, were mainly 
CD3−CD8− (89.1%).

Effect of cross‑fostering on transfer of humoral and CMI 
to the piglets
Cross-fostering did not influence the levels of M. hyo-
pneumoniae-specific IgG and IgA antibodies in serum 
of piglets at 2-days of age as compared to non-cross-fos-
tered piglets (Figures 6A and B).

To investigate if cross-fostering affected the uptake of 
CMI by the piglets, the presence of peripheral cytokine 
producing T-cells was compared between cross-fostered 
and non-cross-fostered 2-day-old piglets.

No significant differences were observed in the pres-
ence of cytokine producing T-cell populations in blood of 
2-day-old non-cross-fostered and cross-fostered piglets 
after in vitro stimulation with M. hyopneumoniae bacte-
rin (Figures 6C–E). In addition, no significant difference 
was observed in the percentage of proliferating CD3+ 
T-cells between non-cross-fostered and cross-fostered 
piglets upon M. hyopneumoniae stimulation (Figure 6F).

The potential correlation between the presence of 
cytokine producing T-cells in the blood of sows and 
their offspring was examined. Significant (P < 0.01) and 
positive correlations were found for TNF-α+ and TNF-
α+IFN-γ+ CD8+ T-cells between non-cross-fostered and 
cross-fostered piglets and their birth sow and between 
cross-fostered piglets and their adoption sow (Additional 
file 5). The correlations ranged between 0.58 and 0.80 and 
were similar between piglets that had suckled their birth 
sow or a foster sow. Other correlations were very low 
and/or not significant.
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Discussion
In this study, we showed that M. hyopneumoniae 
vaccination of sows resulted in activation of M. 

hyopneumoniae-specific cytokine producing T-cells. 
These M. hyopneumoniae-specific T-cells were trans-
ferred to the offspring via colostrum and after isolation 

Figure 4  CirculatingMycoplasma hyopneumoniae-specific cytokine producing T-cell subsets and IFN-γ production in blood of sows. A–D 
Circulating Mycoplasma hyopneumoniae-specific cytokine producing T-cell subsets in blood of sows; E average IFN-γ production by the different 
T-cell subsets. PBMCs were stimulated with M. hyopneumoniae J strain bacterin and T-cell phenotype and cytokine production were assessed by 
flow cytometry. Farm A: endemically infected with M. hyopneumoniae; Farm B: free of M. hyopneumoniae. On farm A, sows (n = 6) were vaccinated 
against M. hyopneumoniae at 6 and 3 weeks before farrowing, blood samples were taken before the first vaccination (pre vacc.) and at the time of 
farrowing (post vacc.), on farm B blood was sampled of the sows (n = 3) at the time of farrowing. *, P < 0.05 between pre- and post-vaccination on 
farm A; **, P < 0.05 between farm A and B.
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from the blood of the piglets, they were able to react with 
cytokine production upon in  vitro stimulation with M. 
hyopneumoniae J strain bacterin. On the M. hyopneumo-
niae infected farm A, a non-vaccinated sow group was 
not included as the vaccinated sows served as their own 
control. The M. hyopneumoniae-specific immune status 
of the sows was compared before and after M. hyopneu-
moniae vaccination. As farm A was endemically infected, 
infection and possible triggering of the immune system 
of the sows during the study could not be excluded. 

Therefore, sows and piglets from a M. hyopneumoniae 
negative farm were included as control. On farm A the 
laryngeal swabs taken from the sows were all negative. 
The likelihood of detecting an infection with M. hyopneu-
moniae might have been higher when a tracheobron-
chial swab was used [32, 33]. It should be noted that both 
farms were different in terms of genetics, and some envi-
ronmental conditions, and that these factors might have 
influenced the results of the present study in some way. 
As only one commercial M. hyopneumoniae vaccine was 

Figure 5  Circulating Mycoplasma hyopneumoniae-specific cytokine producing T-cell subsets and IFN-γ production in blood of neonatal 
piglets. A–C Circulating Mycoplasma hyopneumoniae-specific cytokine producing T-cell subsets in neonatal piglets; D IFN-γ production by CD3− 
cells; E IFN-γ production in different T-cell subsets. PBMCs were stimulated with M. hyopneumoniae J strain bacterin and T-cell phenotype and 
cytokine production were assessed by flow cytometry. Farm A: n = 23 piglets, endemically infected with M. hyopneumoniae; Farm B: n = 24 piglets, 
free of M. hyopneumoniae. On farm A, sows were vaccinated against M. hyopneumoniae at 6 and 3 weeks before farrowing, while sows on farm B 
were not vaccinated. *, P < 0.05 between farm A and B.
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used, it is unsure whether the vaccine-induced responses 
observed in this study are also applicable to responses 
with other commercial vaccines. The adjuvant of the vac-
cine used in this study is a carbopol adjuvant. Studies 
done in mice demonstrated that carbopol has an impact 

on the adaptive immune response, directing it towards a 
Th1 response [34, 35].

To confirm that the transfer of M. hyopneumoniae-
specific MDI from sows to piglets did occur, antibody 
levels in serum of sows before and after vaccination, 

Figure 6  Effect of cross-fostering on maternally-derived immunity in piglets. A, B Mycoplasma hyopneumoniae-specific IgG and IgA levels; 
C–E percentage of Mycoplasma hyopneumoniae-specific cytokine producing T-cells; F Mycoplasma hyopneumoniae-specific proliferation of CD3+ 
T-cells in blood of 2-day-old non-cross-fostered (n = 23) and cross-fostered (n = 24) piglets on an endemically infected M. hyopneumoniae farm. Red 
line: cut-off optical density value for positive samples.
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in colostrum and in serum of 2-day-old piglets were 
investigated. On farm A, seroconversion was evident 
in four sows, but one sow remained negative for both 
M. hyopneumoniae-specific IgG and IgA antibodies, 
while another sow did not show an IgA response after 
vaccination. These results corroborated with previous 
studies indicating that seroconversion of sows upon M. 
hyopneumoniae vaccination can be variable [5, 16, 36]. 
As expected, the M. hyopneumoniae-specific IgG and IgA 
levels in colostrum corresponded with the sow’s serum 
levels at farrowing and the serum levels of 2-day-old pig-
lets corresponded with the concentrations in serum and 
colostrum of their mother sow [15, 37–39]. The two non-
responder sows were not excluded from the study since 
their CD3+ T-cells, isolated from blood after vaccination, 
showed a proliferation response to in vitro M. hyopneu-
moniae stimulation, indicating a positive CMI response 
upon M. hyopneumoniae vaccination [20]. The observed 
M. hyopneumoniae-specific immune response in sows 
following vaccination, might be a primary response or 
a booster of the existing M. hyopneumoniae immunity. 
Although all sows tested negative on nPCR performed on 
the laryngeal swabs, the farm was endemically infected 
with M. hyopneumoniae. Therefore, sows might have 
experienced a previous M. hyopneumoniae infection. 
On farm B, the M. hyopneumoniae-specific IgG and IgA 
levels in serum and colostrum of sows and serum of the 
2-day-old piglets were low. At the time of farrowing, one 
sow had IgA levels in serum above the (in-house set) 
threshold value for positive samples, and two sows had 
IgG levels in colostrum above the threshold, which can 
be due to cross-reactivity between antibodies against M. 
hyopneumoniae, M. hyosynoviae and/or M. flocculare 
[40]. The serum of all sows was negative based on the 
commercial ELISA results.

Previous studies have shown that piglets from M. hyo-
pneumoniae vaccinated sows are less often colonized with 
M. hyopneumoniae at weaning, although serum antibody 
levels are not correlated with the degree of protection [6]. 
Several authors suggested that CMI might play a role in 
the protection against M. hyopneumoniae infections [18–
21]. As M. hyopneumoniae is primarily an extracellular 
pathogen, CD4+ T-cells, mainly the Th1 cells, are critical 
to protect against disease, probably due to IFN-γ activa-
tion of macrophages [25]. Stimulation of CD4+ T-cells, in 
pigs and a few other animal species such as chickens, mice 
and dogs, results in maturation to CD8+CD4+ T-cells, a 
T-cell subset with an antigen-specific memory function 
[41–44]. Six weeks after the first and three weeks after 
the second M. hyopneumoniae vaccination, there was 
a significant decrease in CD8+ T-cells in blood of sows. 
Vaccination increased the number of CD8+CD4+ T-cells, 
although the difference was not significant. This increase 

could be due to maturation of CD4+ T-cells. Further-
more, no significant difference was seen in the percent-
age of T-cell subpopulations in blood of sows at the time 
of farrowing on farm A versus farm B. These findings are 
in line with other studies, in which no significant differ-
ences were found in the percentage of T-cells between 
vaccinated and non-vaccinated groups [18, 19]. Unlike the 
results in blood, CD4+ T-cells were the dominant popu-
lation in colostrum of sows on farm A, while on farm B 
the CD4+ T-cells were the least present. Previous stud-
ies demonstrated that CD8+ T-cells predominate over 
CD4+ T-cells in colostrum [8, 9, 39, 45], but these studies 
did not restimulate the isolated cells with M. hyopneumo-
niae antigen. The percentage of T-cell subsets in blood of 
2-day-old piglets corresponds with the findings of previ-
ous research, investigating the T-cell subsets in blood 
of 1-day-old piglets [46]. CD4+ T-cells dominate over 
CD8+ T-cells and CD8+CD4+ T-cells are almost absent in 
newborn piglets [46, 47]. The percentage of CD8+CD4+ 
T-cells was significantly higher in the blood of 2-day-old 
piglets born from M. hyopneumoniae vaccinated sows 
compared to piglets from farm B. This could be explained 
by the fact that the vaccinated sows transferred M. hyo-
pneumoniae-specific CD8+CD4+ memory T-cells via 
colostrum to the piglets, while the sows on farm B did not 
have M. hyopneumoniae-specific memory cells to trans-
fer. However, comparing T-cell subsets with other studies 
remains difficult as PBMCs and CMCs in this study were 
first in vitro stimulated with M. hyopneumoniae bacterin 
before measuring the percentage of T-cell subpopulations. 
Although cells are stimulated in vitro, the measured per-
centage of the T-cell subsets is the total amount of cells 
present after M. hyopneumoniae stimulation and not only 
the M. hyopneumoniae-specific T-cells.

To the authors’ knowledge, no other studies have been 
conducted in which the effect of sow vaccination against 
M. hyopneumoniae on the presence of cytokine produc-
ing T-cells in the blood of sows was investigated. Vacci-
nation of piglets against M. hyopneumoniae increased the 
number of IFN-γ secreting lymphocytes in the blood [18, 
20, 21, 48]. Production of IFN-γ is crucial in the immune 
response. It directly promotes CMI as it stimulates a Th1 
response, resulting in activation of natural killer cells and 
macrophages [26]. Most studies investigated the total 
amount of IFN-γ producing PBMCs with ELISPOT while 
the current study looked at the IFN-γ production by the 
individual T-cell subsets. In our study, the IFN-γ pro-
duction was only significantly increased in CD8+CD4+ 
T-cells after vaccination. M. hyopneumoniae vaccina-
tion of sows resulted in a shift from IFN-γ production by 
CD8+ T-cells to IFN-γ production by CD8+CD4+ T-cells.

Bandrick et  al. [23, 39] demonstrated the transfer of 
functional M. hyopneumoniae-specific lymphocytes and 
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natural killer cells from sow to offspring. The present 
study further characterized the cytokine production of 
these M. hyopneumoniae-specific T-cells. In blood of 
2-day-old piglets from M. hyopneumoniae vaccinated 
sows, significantly higher percentages of IFN-γ produc-
ing T-cells were present compared to 2-day-old piglets 
from non-vaccinated sows. In blood of piglets from vac-
cinated sows, IFN-γ is mainly produced by CD8+ T-cells. 
Furthermore, piglets from M. hyopneumoniae vaccinated 
sows had higher percentages of TNF-α producing CD8+ 
and CD8−CD4− T-cells and of TNF-α and IFN-γ produc-
ing CD8+ and CD8+CD4+ T-cells. Lymphocytes with a 
memory function, such as CD8+CD4+ T-cells, which 
produce cytokines that work synergistically, e.g. TNF-α 
and IFN-γ, are expected to be important in the protection 
against pathogens [49]. Production of IFN-γ by B-cells 
has been described in mice [50]. Also, CD3−CD8− lym-
phocytes, which included B-cells, produce significantly 
more IFN-γ in blood of piglets from vaccinated sows. 
Interestingly, IFN-γ producing B-cells were recently 
described in the context of PRRSV vaccination [51]. Fur-
ther research is needed to elucidate the role of IFN-γ pro-
ducing B-cells in the protection of pigs against pathogens.

The results obtained in our study confirm the transfer of 
M. hyopneumoniae-specific CMI from sows to their off-
spring. In addition, we showed that 2-day-old piglets from 
vaccinated sows have more M. hyopneumoniae specific 
cytokine producing T-cells in their blood than piglets from 
non-vaccinated sows on a M. hyopneumoniae negative 
farm. This indicates that vaccination of sows against M. hyo-
pneumoniae in late gestation might have a positive effect on 
the pathogen specific CMI in their 2-day-old offspring.

It remains to be determined if the presence of M. hyo-
pneumoniae-specific CMI in blood of neonatal piglets 
plays a role in protection against M. hyopneumoniae 
infections and if the passively acquired immunity inter-
feres with the development of vaccine-induced immunity. 
Piglets with different statuses of M. hyopneumoniae-
specific MDI were challenged [52]. They observed that 
piglets receiving full M. hyopneumoniae MDI, both cells 
and antibodies, had less and slower M. hyopneumoniae 
shedding but more lung lesions than piglets with no M. 
hyopneumoniae MDI. A study demonstrated that pig-
lets from M. hyopneumoniae vaccinated sows did not 
show increased IgG levels after vaccination [53]. This in 
contrast to other studies showing that M. hyopneumo-
niae MDI had no effect on the development of M. hyo-
pneumoniae-specific vaccine induced responses [28, 29]. 
However, based on the results of this study, we cannot 
elaborate further as the piglets were not M. hyopneumo-
niae challenged nor vaccinated.

On the M. hyopneumoniae positive farm, piglets were 
cross-fostered before colostrum ingestion and they were 

moved to a sow of a different breed. Cross-fostering had 
no impact on the transfer of M. hyopneumoniae-specific 
IgG and IgA antibodies, as previously shown [13]. Surpris-
ingly, we were also not able to observe an impact of cross-
fostering on the presence of M. hyopneumoniae-specific 
T-cells in the blood of 2-day-old piglets, in contrast to 
others [13]. Furthermore, the present study was not able 
to show differences in cytokine producing T-cells between 
2-day-old piglets cross-fostered from a M. hyopneumoniae 
vaccinated dam to another vaccinated dam before colos-
trum ingestion on the one hand, and non-cross-fostered 
piglets on the other hand. In both, cross-fostered and non-
cross-fostered piglets, CD3+ T-cells had the capacity to 
proliferate upon in  vitro M. hyopneumoniae stimulation. 
Other studies suggested that colostral cells are expected to 
pass the intestinal epithelium only when the piglet suck-
led colostrum from its own mother sow [11, 12]. Previous 
research demonstrated that piglets cross-fostered from 
their M. hyopneumoniae vaccinated birth gilt to another 
M. hyopneumoniae vaccinated gilt before colostrum inges-
tion had a smaller DTH reaction than piglets cross-fos-
tered 12 h or 20 h after birth [13]. A DTH reaction is the 
result of tissue damage caused by the activation of CD4+ 
T-cells, CD8+ T-cells, macrophages and natural killer cells 
following recognition of an antigen [54]. In contrast to 
this in vivo CMI response, we conducted an in vitro recall 
experiment to investigate the influence of cross-fostering 
on M. hyopneumoniae specific CMI in 2-day-old piglets.

The distribution of the T-cell subsets in blood of sows, 
colostrum and in blood of piglets after colostrum ingestion 
did not show similarities [39], which is in line with our find-
ings. We found a significant positive correlation between 
TNF-α and TNF-αIFN-γ producing CD8+ T-cells in blood 
of M. hyopneumoniae vaccinated sows at the time of farrow-
ing and the blood of their 2-day-old piglets, irrespective of 
cross-fostering. However, no other relevant correlations for 
cytokine producing T-cells between blood of sows and blood 
of piglets could be found. Unfortunately, data from cytokine 
production by colostral cells are lacking in this study due to 
the low cell yields from the colostral samples.

In conclusion, the present study showed that vaccina-
tion of sows against M. hyopneumoniae during late gesta-
tion induces M. hyopneumoniae-specific antibodies and 
poly-functional T-cells in sows, which are transferred 
via colostrum to neonatal piglets. M. hyopneumoniae-
specific cytokine producing T-cells are found in blood 
of piglets from M. hyopneumoniae vaccinated sows. Fur-
ther studies are warranted to investigate the role of these 
transferred maternally-derived poly-functional T-cells 
for the immune system in young piglets and for protec-
tion of piglets against M. hyopneumoniae infection.
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