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Abstract: Reflectionless potentials play an important role in constructing exact solutions
to classical dynamical systems (such as the Korteweg-de Vries equation), non-perturbative
solutions of various large-N field theories (such as the Gross-Neveu model), and closely
related solitonic solutions to the Bogoliubov-de Gennes equations in the theory of super-
conductivity. These solutions rely on the inverse scattering method, which reduces these
seemingly unrelated problems to identifying reflectionless potentials of an auxiliary one-
dimensional quantum scattering problem. There are several ways of constructing these
potentials, one of which is quantum mechanical supersymmetry (SUSY). In this paper,
motivated by recent experimental platforms, we generalize this framework to develop a
theory of lattice solitons. We first briefly review the classical inverse scattering method in
the continuum limit, focusing on the Korteweg-de Vries (KdV) equation and SU(N) Gross-
Neveu model in the large N limit. We then generalize this methodology to lattice versions
of interacting field theories. Our analysis hinges on the use of trace identities, which are
relations connecting the potential of an equation of motion to the scattering data. For a
discrete Schrödinger operator, such trace identities had been known as far back as Toda;
however, we derive a new set of identities for the discrete Dirac operator. We then use
these identities in a lattice Gross-Neveu and chiral Gross-Neveu (Nambu-Jona-Lasinio)
model to show that lattice solitons correspond to reflectionless potentials associated with
the discrete scattering problem. These models are of significance as they are equivalent to
a mean-field theory of a lattice superconductor. To explicitly construct these solitons, we
generalize supersymmetric quantum mechanics to tight-binding models. We show that a
matrix transformation exists that maps a tight-binding model to an isospectral one which
shares the same structure and scattering properties. The corresponding soliton solutions
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have both modulated hopping and onsite potential, the former of which has no analogue in
the continuum limit. We explicitly compute both topological and non-topological soliton
solutions as well as bound state spectra in the aforementioned models.
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1 Introduction

Solitons are ubiquitous in nature and occur in a plethora of classical and quantum systems,
among which include water waves [1–4], optical fibers [5], magnets [6], superfluids [7–9] and
superconductors [10–13] — an incomplete list. While solitons have been observed for cen-
turies, the elegant mathematical structure behind them, known as the inverse scattering
method, is comparatively recent. The development of the inverse scattering method was
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highly influenced by the Fermi-Pasta-Ulam-Tsingou (FPUT) problem — numerical exper-
iments carried out by Fermi et al. in 1954-1955 [14]. Fermi and co-workers were interested
in the question of thermalization and sought to observe it in a discrete chain of non-linear
oscillators. However, they numerically observed a recurrent, almost periodic behavior in-
stead, which became known as the Fermi-Pasta-Ulam-Tsingou paradox [15]. This paradox
motivated the work by Kruskal and Zabusky ten years later, who showed that the FPUT
problem maps onto the Korteweg-de Vries (KdV) equation in the continuum limit [2]. They
performed their own simulations of the dynamics of the KdV equation, which showed a
number of features, surprising at the time, but understood now in terms of integrable dy-
namics. Kruskal and Zabusky coined the term “soliton” and their work on the KdV equa-
tion gave impetus to the development of the inverse scattering method. The inverse scat-
tering method eventually provided complete understanding of the nature of integrable solu-
tions in both the KdV equations and other continuous classical integrable theories [16–20].
At the heart of the method is a mapping of the KdV equation to an auxiliary quantum
scattering problem, whose time-evolved potential is a solution to the KdV equation.

This link between the purely classical problem of waves in shallow water and quantum
mechanics has led to a number of other unexpected discoveries. Notably, Dashen, Hass-
lacher, Neveu, Shei and others [21–23] showed in the 1970s that inverse scattering methods
can be used to construct non-perturbative soliton solutions to saddle-point equations of
1 + 1 dimensional quantum field theories (justified in the large-N limit). The saddle point
equations of the Gross-Neveu (GN) model are mathematically equivalent to the auxiliary
scattering problem in the KdV equation. It was also shown, using trace identities for the
scattering problem, that the saddle points are achieved for reflectionless potentials.

These results further propagated to condensed matter physics. In particular, Brazovsky
and others recognized that the chiral Gross-Neveu model is equivalent to the problem of
interacting electrons in one dimension and therefore the (classical) solitons of the chiral
GN model represent static solitons in either Peierls-insulating charge-density-wave states
(for repulsive fermions) or superconducting states (for attractive fermions) [11–13, 24–30].
In these cases too, the solitons originated from the reflectionless self-consistent solutions of
the Bogoliubov-de Gennes (BdG) equations — the classical saddle point of the action de-
scribing the superconductor/Peierels insulator. More recently, these methods were applied
to Larkin-Ovchinnikov-Fulde-Ferrel superconducting phases [31, 32] and time-dependent
superconductors, featuring a solitonic lattice and periodic-in-time soliton trains of the
superconducting order parameter correspondingly [10, 30, 33–41]. Moving solitons have
also been considered in both high-energy context [42] and for cold-atom superfluids [7–
9, 18, 43, 44]. Another more controversial example has been the attempt to construct
soliton trains in imaginary time (to represent hypothetical at this stage imaginary-time
crystals) [45–47]. In all these cases however, the mathematical construction of solitons
hinges on the reflectionless potentials of the underlying scattering problem.

A useful method for constructing such potentials is supersymmetric quantum mechan-
ics (for a comprehensive review, see [48]). Continuous quantum-mechanical supersymmetry
involves writing the Schrödinger operator — the Hamiltonian — as a product of two oper-
ators H = A†A and constructing another Schrödinger operator H̃ = AA†. It can be shown
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that the two corresponding Hamiltonians/potentials are (almost) isospectral and share the
same scattering data. This allows for the construction of non-trivial reflectionless poten-
tials. The simplest example is to start with the transparent constant potential and find its
superpartner, which happens to be related to the simplest KdV single-soliton solution. The
process can be iterated and a series of reflectionless potentials can be constructed including
multi-soliton solutions.

All in all, the combination of the inverse scattering method and quantum-mechanical
supersymmetry (SUSY) allows to build exact analytic non-linear soliton solutions to a
variety of diverse problems from bound states in large-N field theories to non-linear exci-
tations in superfluids and superconductors, with both static and dynamic solitons recently
of interest.

The resolution of the Fermi-Pasta-Ulam paradox has been understood through both
KdV limit and the Toda lattice — a fully integrable classical lattice model, which gives
rise to the FPUT problem as its Taylor expansion [49]. The first appearance of inverse
scattering methods applied to a lattice field theory is in the Ablowitz-Ladik model [50].
However, surprisingly the lattice field theoretical and superconducting analogies of the Toda
lattice have not been fully explored. A large number of integrable lattice models have been
considered using more modern methods in quantum integrability that go beyond classical
inverse scattering [51, 52]. However, it appears that the role of reflectionless potentials and
their explicit construction have not been fully investigated in the context of interacting
tight-binding models. This paper fills this gap and develops a general framework to study
solitons in a family of large-N lattice field theories.

In particular, we first introduce a lattice variant of the Gross-Neveu model that has site
dependent hoppings. With the aid of previously known trace identities relating scattering
data of the equations of motion and parameters of the Lagrangian, we rewrite the action
of the Gross-Neveu model in terms of scattering data (using the first few trace identities)
and compute the saddle points of this action. This gives us both the bound state spectrum
for non-topological lattice solitons and the result that the saddle point corresponds to
reflectionless potentials associated with the equations of motion. We use the remaining
trace identities to construct a hierarchy of lattice field theories which admit exact soliton
solutions also corresponding to reflectionless potentials.

Next, we construct these reflectionless potentials directly from lattice supersymme-
try (also called the Darboux transformation). We show that local tight-binding models
in an onsite potential map under discrete SUSY onto the same class of models, but with
site-dependent hoppings. This observation had been previously made and exact albeit re-
stricted soliton hierarchies were previously constructed (see Note Added section). However,
we present a formalism where the onsite potential and hopping can be iteratively obtained
by evaluating a continued fraction — this generalizes the topological soliton solutions pre-
viously obtained. We also describe a novel recipe for constructing non-topological solitons
under this continued fraction formalism. This approach can be easily extended to more
exotic soliton solutions with non-uniform boundary conditions.

We finally consider the chiral Gross-Neveu model, whose equations of motion coincide
with the BdG equations for a lattice superconductor. We derive a previously unknown
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set of trace identities for this system and use these identities to show that the saddle
point of this lattice field theory corresponds to reflectionless potentials of the associated
equations of motion. The simplest non-trivial class of solutions can be obtained directly
from supersymmetry methods, which describe solitons exhibiting a nontrivial phase slip
(also known as twisted-kinks) — since such solitons should have nontrivial dynamics, this
motivates the pursuit of the theory of dynamical solitons for such lattice systems. We end
by discussing the similarities of these lattice field theories to coupled Toda chains.

2 Gross-Neveu model and Korteweg-de Vries equation

We start with a review of soliton solutions in continuum systems. The simplest model which
exhibits such solutions is the Korteweg-de Vries equation, which was first used to describe
shallow water waves [1]. The KdV equation can be generalized to construct a hierarchy of
nonlinear differential equations, each of which also supports soliton solutions. A seemingly
unrelated system is the Gross-Neveu model, which is field theory of N flavors of massless
fermions subject to an attractive potential. When N is large, the Gross-Neveu model is
a toy model of quantum chromodynamics: it is asymptotically free, and spontaneously
breaks chiral symmetry, which results in the fermions acquiring a mass, therefore gapping
the theory. The mean field theory of a chiral version of the Gross-Neveu model, also known
as the Nambu-Jona-Lasinio model, can be shown to be equivalent to BCS superconductivity
in 1D [13, 30]. Both the Gross-Neveu and the chiral Gross-Neveu model have nontrivial
saddle point solutions which correspond to solitons.

It turns out that the construction of soliton solutions for the KdV equation and the
Gross-Neveu field theories are nearly identical. This is because both the KdV equation
as well as the equations of motion for the Gross-Neveu model can be mapped onto a 1D
quantum scattering problem. Based on a series of trace identities that connect the poten-
tial of the scattering problem to the scattering properties of plane wave solutions, it can be
shown that soliton solutions correspond to reflectionless potentials of the scattering prob-
lem. Constructing these reflectionless potentials can be achieved through several methods,
one of which is quantum mechanical supersymmetry. In this section, we will briefly review
these results, which have been summarized in figure 1.

2.1 Gross-Neveu (GN) model

The Lagrangian for the Gross-Neveu model in (1 + 1) dimensions is given by [21]:

L =
N∑
k=1

iψ
(k)/∂ψ(k) + g2

2

(
N∑
k=1

ψ
(k)
ψ(k)

)2

, (2.1)

where ψ(k)(x, t) is a two-component fermionic field and k, which ranges from 1 to N , labels
fermion flavor. Throughout the analysis, we assume that N is large, which justifies the use
of mean field theory. We also adopt the standard definitions ψ(k) = ψ†(k)γ0 and /∂ = γµ∂

µ

with γµ being the Dirac matrices in (1+1) dimension. Throughout the text, we will choose
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Figure 1. A schematic depicting the sequence of steps used to generate a soliton hierarchy. We
start with a hierarchy of field theories (the first of which is the Gross-Neveu field theory) or a
hierarchy of dynamical systems/partial differential equations (the first in the Toda hierarchy is the
Toda lattice, and the third in the KdV hierarchy is the KdV equation). The equations of motion
of the GN field theory and a suitable change of variables for the KdV equation/Toda lattice map
these seemingly unrelated systems to a one-dimensional scattering problem. With the help of trace
identities derived in this scattering problem, we may rewrite either the action or the Hamiltonian
in terms of scattering data, i.e. the reflection coefficient, the transmission coefficient, and the bound
state energies of the scattering problem. There are also a hierarchy of trace identities, and each one
uniquely maps onto one of the field theories or dynamical systems in the original hierarchies. The
saddle point of the action corresponds to a reflectionless potential, and the equations of motion of
the Hamiltonian systems imply the conservation of the magnitude of the reflection coefficient. In
both cases, reflectionless potentials are either valid saddle points of the action or solutions to the
dynamical system. These potentials are retrieved explicitly using supersymmetry methods, or more
elaborately using the Gelfand-Levitan equation and the inverse scattering formalism.

the representation where γ0 = −σx, γ1 = −iσz, and γ5 = γ0γ1 = σy. For the sake of
brevity, we also introduce the following notations:

ψ/∂ψ ≡
N∑
k=1

ψ
(k)/∂ψ(k), (2.2)

ψψ ≡
N∑
k=1

ψ
(k)
ψ(k). (2.3)

In the path integral formulation the real time functional can be written as

Z =
∫
DψDψ exp

[
i

∫
d2x

(
−iψ/∂ψ − g2

2
(
ψψ
)2
)]

(2.4)

We introduce a Hubbard-Stratonovich field ∆(x, t), so that the path integral becomes

Z =
∫
DψDψD∆ exp

[
i

∫
d2x

(
−iψ/∂ψ − g∆ψψ − ∆2

2

)]
, (2.5)

Following a standard mean field assumption, we assume that the Hubbard-Stratonovich
field possesses no dynamics, and we search for static solutions which correspond to the
saddle point of the action. We further restrict our search of saddle point solutions to
those that satisfy lim|x|→∞∆(x) = ∆0. Due to the time independence of the HS field, the
equations of motion for the fermionic fields map onto a one-dimensional scattering problem
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for each component of the fermionic field; the effective scattering problem is equivalent to
the time independent Schrödinger equation

− ∂2
xψ1,2 + u1,2(x)ψ1,2 = k2ψ1,2. (2.6)

where ψ1 and ψ2 are two components of the fermion, k2 is the energy and the effective
potential

u1,2(x) , u±(x) = g2(∆2 −∆2
0)± gd∆

dx
(2.7)

vanishes asymptotically. The saddle point solutions can therefore be constructed by re-
casting the action in terms of scattering data of this scattering problem.

2.2 Korteweg-de Vries (KdV) equation

The KdV equation is a non-linear partial differential equation used to describe a wide range
of phenomena from waves on a shallow water surface [1, 53, 54] to ion-acoustic waves in
plasma [55, 56]. For a function u(x, t) the KdV equation is

∂u

∂t
− 6u∂u

∂x
+ ∂3u

∂x3 = 0. (2.8)

At first sight, eq. (2.8) does not seem to have anything in common with Gross-Neveu model
discussed in the previous subsection. However, the KdV equation can also be mapped
onto a time independent Schrödinger equation, whose effective potential coincides with the
function u(x, t). To explicitly see this mapping, define a function v(x, t) which satisfies

u = v2 + ∂v

∂x
. (2.9)

Substituting v = ∂ logψ
∂x into eq. (2.9) one finds

u = ∂2
xψ

ψ
. (2.10)

Note that if u(x, t) is a solution of KdV equation then so is ū(x, t) = u(x + 6λt, t) + λ.
This foreshadows the fact that the KdV equation possesses soliton solutions which move
without changing shape. Thus, we can replace u in eq. (2.10) with u− λ to write it as

− ∂2
xψ + uψ = λψ. (2.11)

If we set λ = k2 then eq. (2.11) is same as eq. (2.6) derived for the GN model.1 In the KdV
equation, propagating solitons are described by the time-evolved potential u(x, t); under
the mean field assumption, solitons are static in the GN model and are described by ∆(x),
which is related to u(x, t = 0) via eq. (2.7).

1The reader should note that the appearance of Schrödinger equation in both the GN and the KdV
models does not imply their equivalence — the Schrödinger equation and soliton solutions emerge as a
result of linearizing the GN model, while the soliton solutions in the KdV equation are exact.
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2.3 Trace identities for Schrödinger equation

Both the GN model and the KdV equation map onto a time independent Schrödinger
equation. Solutions to the Schrödinger equation can be both bound as well as scattering,
and the scattering data must account for both types of states. In the asymptotic limit
x→ ±∞, scattering states have the form

lim
x→−∞

ψ(x, k) = eikx + r(k)e−ikx (2.12)

lim
x→∞

ψ(x, k) = t(k)eikx, (2.13)

where r(k) and t(k) are the momentum-dependent reflection and transmission coefficients
respectively. For a bound state with energy −κ2

` , the wavefunction has the asymptotic form

lim
|x|→∞

ψ`(x) = N`e
−κ`|x|, (2.14)

where N` is a normalization. We now define the scattering data as the set {r(k), t(k), κ`}.
Remarkably, there exists a hierarchy of trace identities that relates integrals of powers and
derivatives of the potential to the reflection coefficient and the bound state energies [57–60].
Suppose the potential we are given has N bound states. Then, the trace identities are given
by

1
2πi

∫ ∞
−∞

q2n log
[
1− |r (q) |2

]
dq − 2

2n+ 1

N∑
`=1

(iκ`)2n+1 = − 1
(2i)2n+1

∫ ∞
−∞

β2n+1(x) dx,

(2.15)
where n is a non-negative integer and βn are functions of the potential which are recursively
determined from the coupled differential equations

βn+1(x) = − d

dx
βn(x)−

n−1∑
m=1

βm(x)βn−m(x) (2.16)

β1(x) = u(x). (2.17)

For clarity and convenience, we explicitly reproduce the first three identities below:

− 1
2i

∫ ∞
−∞

u dx = 1
2πi

∫ ∞
−∞

log
(
1− |r (q) |2

)
dq − 2

∑
`

(iκ`), (2.18)

− 1
8i

∫ ∞
−∞

u2 dx = 1
2πi

∫ ∞
−∞

q2 log
(
1− |r (q) |2

)
dq − 2

3
∑
`

(iκ`)3, (2.19)

− 1
32i

∫ ∞
−∞

(2u3 + u2
x) dx = 1

2πi

∫ ∞
−∞

q4 log
(
1− |r (q) |2

)
dq − 2

5
∑
`

(iκ`)5. (2.20)

In particular, the first identity relates the integral of the potential to the reflection coeffi-
cient and bound state energies; this will be useful for performing a change of variables in
the Gross-Neveu action.
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2.4 Soliton solutions are reflectionless potentials

One can formulate both the Gross-Neveu mean field action and the KdV equation in
terms of scattering data using the trace identities of section 2.3. For the GN model, the
Lagrangian in eq. (2.5) is quadratic in the fermion fields ψ and ψ. Consequently the
fermions can be integrated out, yielding an effective action for the HS field

Seff(∆) = − log
[∫
DψDψ exp

(
−
∫ ∞
−∞

dx

∫ T

0
dt ψ

(
i/∂ − g∆

)
ψ

)]
− 1

2

∫ ∞
−∞

dx

∫ T

0
dt∆2.

(2.21)
Using the first trace identity given by eq. (2.18) and other standard results from path inte-
gration and scattering theory one can write the effective action as a function of scattering
data [21] as

Seff ∝
1
g2

∫ ∞
−∞

log
[
1− |r (k) |2

]
dk + 4π

g2 k0

− 1
π

∫ ∞
0

kdk√
k2 + g2∆2

0

(
log

(
1− |r (k) |2

)
+ 4π tan−1 k0

k

)
+ const. (2.22)

where it has been assumed that there is only one bound state with energy −k2
0. The saddle

point of the effective action can be determined by first extremizing over the reflection
coefficient; we see that the minimum corresponds to a reflectionless potential, i.e the choice
of ∆(x) such that the reflection coefficient r(k) = 0.

A similar connection to reflectionless potentials can be made for the KdV equation.
It has been has shown that the KdV equation is a Hamiltonian system and arises from
the Hamiltonian H[u] =

∫∞
−∞ dx

[
u3(x) + u2

x
2

]
[61]. One can check that the Hamiltonian H

yields the KdV equation in the form

∂u

∂t
= ∂

∂x

δH

δu
, (2.23)

where δH
δu indicates a functional derivative of H. Using the third non-trivial trace identity

(eq. (2.20)), this Hamiltonian can be written solely in terms of scattering data as

HKdV = − 8
π

∫ ∞
−∞

k4 log
(
1− |r(k)|2

)
dk − 32

5

N∑
i=1

k5
i , (2.24)

where N is the number of bound states and −k2
i is the energy of the ith bound state. How-

ever, one must argue that the scattering data can be rewritten as pairs of canonically con-
jugate variables. This was first verified by Faddeev and Zakharov, and the corresponding
Hamilton’s equations of motion imply that one class of solutions to the KdV equation are
time-dependent reflectionless potentials. In fact, a particular combination of the scattering
data turns out to be action-angle coordinates for the KdV Hamiltonian, which manifestly
indicates the integrable nature of the system (see [57, 62]).

The remaining question left is how to construct such potentials, which correspond to
soliton solutions. One such method utilizes supersymmetric quantum mechanics, which is
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briefly summarized in section 4.1. In particular, applying the supersymmetry transforma-
tion to a constant potential results in a nontrivial reflectionless potential for the Schrödinger
equation; this corresponds to a kink soliton.

Note that for the KdV equation the third trace identity serves as the Hamiltonian.
However, in general, one can consider any of the trace identities as a candidate Hamilto-
nian and construct equations of motion; each such equation of motion corresponds to a
nonlinear higher-order differential equation for u(x, t), each of which is integrable. The set
of equations constructed in this manner form the KdV hierarchy [4, 63].

2.5 Field theory hierarchy

While the KdV hierarchy is a celebrated concept in classical integrability theory, it is
possible to construct a similar hierarchy for the Gross-Neveu field theories. Note that
only the first trace identity given by eq. (2.18) has been used to write the action of GN
model as a function of the scattering data. We may similarly use the other trace identities
to construct a hierarchy of field theories whose saddle point corresponds to reflectionless
potential. To construct the field theory after the Gross-Neveu model in the hierarchy, we
replace the first trace identity by hand with the second trace identity, obtaining the action

L2 = iψ/∂ψ − g∆ψψ −
(
g4∆4 + g2∆∂2∆

∂x2

)
. (2.25)

One can integrate out the HS field to write the Lagrangian only in terms of the fermions as

L2 = iψ/∂ψ − log
(∫

d∆ exp
[∫

dx

(
ig∆ψψ − g2∆∂2∆

∂x2 − g
4∆4

)])
. (2.26)

This is the second field theory in the hierarchy. In principle, one can construct one such
field theory per trace identity; however, each higher order field theory is intractable and
non-local when one attempts to integrate out the HS field.

3 Solitons in a lattice Gross-Neveu model

In the continuum Gross-Neveu field theory, it was argued that stationary solutions to the
action correspond to choices of ∆(x) such that the equations of motion describe a particle
in a reflectionless potential. In lattice systems, which are currently achievable in cold
atom experiments, there are several differences that may result in exotic soliton solutions.
Firstly, there exist non-unique discretization schemes of placing fermions on a lattice that
give rise to different microscopic dynamics even if they reduce to the same theory in the
continuum limit. Secondly, if a lattice theory possesses soliton solutions, then a solitonic
texture may arise in both the onsite potential and the hopping, which is not seen in the
continuum limit. And lastly, at the scale of the lattice spacing, the dispersion relation looks
like a band structure, thus differing markedly from the dispersion in the continuum limit;
this may result in different characteristic soliton spectra and propagation velocities (the
latter of which we do not consider in this paper). The aforementioned reasons therefore
make it enticing to study solitons in discretized field theories.
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For lattice systems we will adopt a reverse engineering approach, starting with known
discrete trace identities due to Toda [49] and using these identities to subsequently construct
lattice models whose saddle points correspond to reflectionless potentials. In section 5, we
perform the same analysis for the chiral Gross-Neveu model which is an effective description
for a lattice superconductor. In the process, we derive previously unknown trace identities
for the discrete Dirac operator.

3.1 Trace identities for tight-binding Hamiltonians

Before introducing the lattice Gross-Neveu model, we first set out to derive trace identities
for discrete scattering problems. To define the scattering problem we consider a generic
tight binding Hamiltonian with nearest neighbour hopping, written out explicitly as

H =
∞∑

n=−∞
(−tn+1|n〉〈n+ 1|+ h.c. + un|n〉〈n|) , (3.1)

The Hamiltonian describes a particle in a discrete Schrödinger equation, which we write as

− (tn+1ψn+1 + tnψn−1) + unψn = λψn, (3.2)

where n is the site number, tn is a site-dependent hopping which is absent in the continuum
case, and un is a discrete onsite potential. Both tn and un will later be shown to be
expressible in terms of the HS parameter. The energy λ is independent of n, and we can
determine it by constructing eigenfunctions in the asymptotic limit when n → ∞; these
eigenfunctions satisfy

− (ψn+1 + ψn−1) + uψn = λψn, (3.3)

where we have used that limn→±∞ un = u and limn→±∞ tn = 1. The solution for eq. (3.3)
is ψn = eiφn ≡ zn where φ is a quasi-momentum constrained to lie within the interval
[0, 2π); this gives the dispersion λ = 2 cosφ+ u.

Next, we will reproduce the trace identities analogous to eq. (2.15) that relate the
potential un to the scattering data of the discrete Schrödinger equation, which were pre-
viously known to Toda et al. [49, 64]. We first make a choice of two independent basis
functions of eq. (3.30). We denote those two bases as {fn(z), fn(1

z )} and {gn(z), gn(1
z )};

their asymptotic behavior is given by

lim
n→∞

fn(z) = zn, (3.4)

lim
n→−∞

gn(z) = z−n. (3.5)

These are known as the Jost functions, which is a frequently used representation in scatter-
ing theory. This choice of basis is necessary in order to derive well-behaved trace identities.
Since both fn and gn independently form a basis, one may be written as a linear combina-
tion of the other. Thus, we have the relation

fn(z) = b(z)gn(z) + a(z)gn
(1
z

)
, (3.6)
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where we have introduced coefficients a and b which can be shown to be related to the
reflection and transmission coefficients of the original discrete scattering problem. A valid
scattering eigenstate for the discrete Schrödinger equation in terms of the Jost functions
is ψn(z) = fn(z)

a(z) ; the asymptotic behavior of this solution assumes a form familiar from
scattering theory:

ψn(z) =


zn + b(z)

a(z)z
−n, for n→ −∞

1
a(z)z

n, for n→∞
(3.7)

From eq. (3.7) we find that the reflection coefficient r(z) and the transmission coefficient
t(z) are related to a(z) and b(z) according to the relations r(z) = b(z)

a(z) and t(z) = 1
a(z) .

Since the reflection and transmission coefficients satisfy |r|2 + |t|2 = 1 we have

|a(z)|2 = 1
1− |r(z)|2 . (3.8)

So far, we have considered the scattering states for the discrete Schrödinger operator; it may
consist of discrete bound states as well, which are necessary for a complete characterization
of the scattering data. The location of the bound states occur at z = zj for which a(zj) =
0; these correspond to eigenstates which scale as znj for large n. We also require the
physical constraint that |zj | < 1 in order for the wavefunction to be normalizable and
decay exponentially at infinity. Thus, we require the following constraints on a(z):

|a(z)|2 = 1
1− |r(z)|2 when |z| = 1, (3.9)

a(zj) = 0 for some discrete |zj | < 1. (3.10)

Appealing to the theory of meromorphic functions, the properties of a(z) allow us to
uniquely define log |a(z)| within the unit disk |z| < 1 via the Poisson-Jensen theorem:

log |a(z)| =
M∑
j=1

log
∣∣∣∣∣ z − zj1− zjz

∣∣∣∣∣− 1
4π

∫ 2π

0
<
(
eiφ + z

eiφ − z

)
log

[
1− |r(eiφ)|2

]
dφ, (3.11)

where M is the number of bound states and <[z] means the real part of z. We can expand
the right hand side of the equation above using the following series expansions:

log z − zj
1− zjz

= log zj +
∞∑
p=1

zpj − z
−p
j

p
zp, (3.12)

<
(
eiφ + z

eiφ − z

)
= 1 + 2

∞∑
p=1

cos (pφ− pθ)|z|p. (3.13)

where z = |z|eiθ. Substituting these expansions, we may write

log |a(z)|
|a(0)| =

∞∑
p=1

 M∑
j=1
<
(
zpj − z

−p
j

p
zp
)
− |z|

p

2π

∫ 2π

0
log

[
1− |r(eiφ)|2)

]
cos (pφ− pθ)dφ

 .
(3.14)
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One can write log(a(z)/a(0)) to the onsite potential via the following relation:

− log a(z)
a(0) =

∞∑
n=1

(−1)nTr (Hn − (H0)n)
n(z + 1

z )n
, (3.15)

where H and H0 are tridiagonal matrices; H is the Hamiltonian for the Schrödinger op-
erator with elements Hn,n−1 = −tn, Hn,n+1 = −tn+1, and Hn,n = un, and H0 is the
asymptotic form of the Hamiltonian with matrix elements (H0)n,n−1 = (H0)n,n+1 = −1
and (H0)n,n = u. The derivation of the eq. (3.15) is given in appendix A. In section 5, we
derive similar identities for the Dirac operator in the case of the chiral Gross Neveu model.

We can expand the right hand side of eq. (3.15) as a power series of z to write
∞∑
p=1

Kpz
p =

∞∑
n=1

(−1)n+1Tr (Hn − (H0)n)
n(z + 1

z )n
, (3.16)

where Kp are real coefficients that depend on the potential and the hopping. We have
already derived an alternate expression for log (|a(z)|/|a(0)|) in eq. (3.14) which we can
compare with eq. (3.16) to write

∞∑
p=1

Kp|z|p cos pθ =
∞∑
p=1

[
− |z|

p

2π

∫ 2π

0
log

(
1− |r(eiφ)|2

)
cos (pφ− pθ) dφ

+
M∑
j=1
<
(
zpj − z

−p
j

p
zp
)]

. (3.17)

In general, and for the cases we will consider, the Hamiltonian is real; thus the eigenstates
can be chosen to be real and we expect the bound states to monotonically decay at infinity
without spatial oscillations. This implies that zj is real. With this simplification, we set
θ = 0 and compare the coefficients of zp in the above equation to get

Kp = − 1
2π

∫ 2π

0
log

(
1− |r(eiφ)|2

)
cos (pφ) dφ+

M∑
j=1

zpj − z
−p
j

p
. (3.18)

Matching to the series expansion in terms of the onsite potential and hopping yields a
discrete version of the trace identities discussed in Dashen et al. [21]. For convenience, we
write the first two identities associated with matching the two lowest order terms in both
series expansions:

∞∑
n=−∞

un = − 1
2π

∫ 2π

0
log

(
1− |r(eiφ)|2

)
cos (φ) dφ+

M∑
j=1

(
zj −

1
zj

)
, (3.19)

∞∑
n=−∞

u2
n + 2t2n = − 1

2π

∫ 2π

0
log

(
1− |r(eiφ)|2

)
cos (2φ) dφ+ 1

2

M∑
j=1

(
z2
j −

1
z2
j

)
. (3.20)

Much like in the continuous case, sums of the hopping and onsite potentials can be related
directly to the reflection coefficient of the scattering problem and the locations of the bound
states.
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3.2 Lattice Gross-Neveu model

Motivated by the continuous case we can formulate the discrete version of the Gross-Neveu
model. For a discrete two-component fermionic field Ψn(t), where n is the lattice site index,
the action S = ∑

n Ln can be specified by the lattice Lagrangian

Ln =
N∑
k=1

Ψ†(k)
n (t)

(
i ∂∂t ∂n
∂†n i ∂∂t

)
Ψ(k)
n (t) + g2

2
(
Ψ†(k)
n (t)γ0Ψ(k)

n (t)
)2
, (3.21)

where N is the number of flavors of fermions and Ψ(k)
n (t) =

(
ψ

(1,k)
n (t), ψ(2,k)

n (t)
)T

can be
written as a two-component field. Throughout the text, we will assume that N is large
in order to justify subsequent saddle point computations. The operators ∂n and ∂†n the
analogues of derivative operators in the continuum limit but will be represented as discrete
“shift” operators with matrix elements ∂nfn , τn+1fn+1. The fermionic field is always
assumed to be time dependent but for the sake of brevity we will not explicitly write it.
We also suppress the sum over flavors by introducing the following notation:

Ψ†nMΨn ≡
N∑
k=1

Ψ†(k)
n MΨ(k)

n , (3.22)

where M is a 2×2 matrix. We introduce a discrete Hubbard-Stratonovich (HS) field ∆n(t)
to write an equivalent Lagrangian:

Ln = Ψ†n

(
i ∂∂t ∂n + g∆n(t)

∂†n + g∆n(t) i ∂∂t

)
Ψn −

∆2
n(t)
2 . (3.23)

As in the continuous case, we may recover the original Lagrangian after integrating out
the HS field. We work in the large-N/mean field limit, and thus assume that the HS
parameter is time-independent. The Lagrangian is quadratic in the fermionic field, so we
may integrate out the fermions to get the effective action for ∆:

Seff(∆) = S1(∆)− log
∫
DΨDΨ† exp [−S2 (Ψ,∆)] , (3.24)

where

S1(∆) = −T2
∑
n

∆2
n (3.25)

S2(Ψ,∆) =
∑
n

∫ T

0
dtΨ†n

(
i ∂∂t ∂n + g∆n

∂†n + g∆n i ∂∂t

)
Ψn. (3.26)

Note that the integration measure in the path integral is defined as Dψ = ∏
n dψn. We will

show that the effective action can be written as a function of the scattering data according
to the following equation:

Seff
T

= 1
4πg2

∫ 2π

0
log

(
1− |r(eiφ)|2

)
cos (φ) dφ− 1

g2

M∑
j=1

(
zj + z−1

j

)
+ 2N

∫ 2π

0

dφ

2π
sin(φ)√
u− 2 cosφ

δt(φ), (3.27)
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where r is the reflection coefficient of the scattering problem associated with the equations
of motion, zj is related to the energy of the bound states, M is the number of bound states
and δt(φ) is the phase of the transmission coefficient. In the rest of this subsection, we will
derive the above equation and analyze its saddle point solutions. First note that from the
action in eq. (3.23), the equations of motion for the fermionic fields ψ1

n and ψ(2)
n are

i
∂ψ

(1)
n

∂t
= −g∆nψ

(2)
n − ∂nψ(2)

n ,
(
−Aψ(2)

)
n
, (3.28)

i
∂ψ

(2)
n

∂t
= −g∆nψ

(1)
n − ∂†nψ(1)

n ,
(
−A†ψ(1)

)
n
, (3.29)

where A and A† are matrices whose actions on the fields are encoded in the relations above.
Note that there are a total of N pairs of equations of the above form, one for each flavor
of fermion. If ∆n is time-independent, taking a time derivative of eq. (3.28) and (3.29)
gives the equations of motion ψ̈(1) = −AA†ψ(1) and ψ̈(2) = −A†Aψ(2). These equations of
motion have a supersymmetric structure, which will be further used to construct soliton
solutions in the next section. We may map these equations onto a discrete time-independent
Schrödinger equation of the form

− (t(i)n+1ψ
(i)
n+1 + t(i)n ψ

(i)
n−1) + u(i)

n ψ
(i)
n = ω2ψ(i)

n , (3.30)

where i = 1, 2 indicates the index of fermions. Due to the supersymmetric structure, the
hoppings have the form

t(1)
n = gτn∆n−1, t(2)

n = gτn∆n, (3.31)

and the onsite potentials have the form

u(1)
n = τ2

n + g2∆2
n, u(2)

n = τ2
n+1 + g2∆2

n. (3.32)

From now on we will perform the calculation for i = 1 and drop the superscript (i) in
eq. (3.30). This is because the associated scattering problems for i = 1 and i = 2 have
nearly identical scattering data and it does not matter which data we choose to write the
action in terms of.

For the discrete Gross-Neveu model we will need only the first identity with p = 1:
∞∑

n=−∞
un = − 1

2π

∫ 2π

0
log

[
1− |r(eiφ)|2

]
cos (φ) dφ+

M∑
j=1

(
zj −

1
zj

)
. (3.33)

For the Gross-Neveu model with the potential un = τ2
n + g2∆2

n, we find that ∑∞n=−∞ un =
g2∑∞

n=−∞∆2
n + Υ, where Υ = ∑

n τ
2
n is a fixed constant that we will henceforth ignore

(more precisely, it can be compensated by an appropriate renormalization of the vacuum
energy in the original field theory). Thus, we can write the first term of the effective action
S1 given by eq. (3.24) as a function of the scattering data:

S1 = −T2
∑
n

∆2
n = − T

2g2

− 1
2π

∫ 2π

0
log

[
1− |r(eiφ)|2

]
cos (φ) dφ+

M∑
j=1

(
zj −

1
zj

) .
(3.34)
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Now we will express the remaining part of the action as a function of the scattering data.
We first need to evaluate the following path integral which is quadratic in the fermions:

IN (∆) =
∫
DΨDΨ† exp [−S2(Ψ,∆)], (3.35)

where again, N is the number of flavors of fermions and S2 is given by eq. (3.26). The
fermionic fields ψ(1,2) satisfy the anti-periodic boundary conditions in time: ψ(1,2)(t+T ) =
−ψ(1,2)(t). Following Dashen et al. [21], the path integral can be written down as

IN (∆) = [I1(∆)]N = I1(0)
∏
m,k

εm,k(∆)
εm,k(0) , (3.36)

where εm,k are the eigenvalues of the following matrix relation:

(
i ∂∂t ∂n + g∆n

∂†n + g∆n i ∂∂t

)ξ(1)
m,k

ξ
(2)
m,k

 = εm,k

ξ(1)
m,k

ξ
(2)
m,k

 . (3.37)

and I1(0) = ∏
m,k εm,k(0) is independent of the onsite potential and hopping. Suppose φ(1,2)

k

satisfies eq. (3.37) where the right hand side is 0. For a time-independent ∆n, we may choose
φ

(1,2)
k such that it satisfies φ(1,2)

k (t+T ) = e−iαk(∆)φ
(1,2)
k (t) where αk(∆) = ωk(∆)T and ω2

k is
the energy. In general, for ∆n(t) time periodic with period T , αk label the Floquet indices;
however, when ∆n is time independent, the Floquet indices coincide with the energy. One
can show that the function ξ

(1,2)
m,k (t) = exp (i(2m+ 1)πt/T + iαkt/T )φ1,2

k (t) satisfies the
anti-periodic boundary condition and is an eigenfunction of eq. (3.37) with eigenvalue:

εm,k = −(2m+ 1)π
T

− αk
T

(3.38)

We substitute eq. (3.38) into eq. (3.36) and simplify it using the standard infinite product
identity for cosine to get:

I1(∆) = I1(0)
∏
k

(eiαk/2 + e−iαk/2) (3.39)

= I1(0) exp
(
i
∑
k

|αk|
) ∏
αk>0

(1 + e−iαk)2 (3.40)

= I1(0) exp
(
i
∑
k

|αk|
)∑
{ni}

e
−i
∑

αi>0 niαi
∏
i

qni (3.41)

where 0 ≤ ni ≤ 2N is the population of the ith energy mode, qni = 2N !
ni!(2N−ni)! , and in

the second line we have used the fact that the energies come in pairs with opposite sign
to restrict the summation to positive energy modes. In general, we may assume that the
set of Floquet indices are comprised of a set of isolated, discrete states and a continuum of
scattering states. The N fermions and N anti-fermions may occupy these states, and we
will assume that the saddle point corresponds to n0 fermions occupying a single discrete
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state α0. Thus, we may replace the summation over ni with a constant n0 and write the
action as:

Seff = S1 +N
∑
k

|αk| − n0α0 + const. (3.42)

We have already written the second term S1 as a function of the scattering data. Now we
want to do the same for the first term ∑

k |αk|. We have noticed that for time-independent
potentials αk = ωkT where ω2

k = u−2 cos k is the energy as a function of quasi-momentum.
In appendix B we show that for a system with N sites the quasi-momentum k is quantized
as k±n = 2πn−λ±

N where λ± are the eigenvalues of the scattering matrix. Then, one may
show, as derived in the appendix:

∑
k

|αk| = 2T
∫ 2π

0

dφ

2π
sin(φ)√
u− 2 cosφ

δt(φ) + ω0T + Λ, (3.43)

where δt(φ) is the phase of the transmission coefficient and Λ is a divergent constant and
can be tamed by a suitable vacuum energy shift. We have also accounted for the presence
of the single bound state α0 = ω0T . The transmission coefficient is the inverse of a(z), and
so the phase of the transmission coefficient is the imaginary part of log a−1(z). Using the
Jensen formula like before, we can write an equation for log a(z) similar to eq. (3.11):

δt(θ) = −
M∑
j=1
=
(

log z − zj
1− zjz

)
+ 1

4π

∫ 2π

0
=
(
eiφ + z

eiφ − z

)
log

[
1− |r(φ)|2

]
dφ, (3.44)

where z = eiθ and zi are the zeros of a(z). Note that =(z) denotes the imaginary part of
z. Combining all the results together we get an equation for effective action as a function
of the scattering data:

Seff
T

= 1
4πg2

∫ 2π

0
log

(
1− |r(eiφ)|2

)
cos (φ)dφ− 1

2g2

M∑
j=1

(
zj −

1
zj

)

+ 2N
∫ 2π

0

dφ

2π
sin(φ)√
u− 2 cosφ

δt(φ) + (N − n0)ω0. (3.45)

Upon varying the action with respect to scattering data, we obtain the saddle point solu-
tions for the HS parameter, which correspond to solitonic textures. Setting δSeff/δr = 0
gives the solution r(φ) = 0, which implies that the effective onsite potential un = τ2

n+g2∆2
n

must admit reflectionless scattering solutions. However there is an additional subtlety in
the discrete case that does not appear in the continuous case. We note that in eq. (3.45)
there is a cosφ multiplying log

(
1− |r(eiφ)|2

)
in the integrand which was absent in the

continuous case. Consequently, one can construct a potential which, in principle, has a
smaller contribution to the action than a reflectionless potential. However, there are no
physical potentials that we are aware of that have such scattering properties, so we deem
that such kinds of potentials are likely unphysical.

One obvious example of a reflectionless potential is a constant; however, it is well known
that there are many nontrivial candidates which are also reflectionless and give rise to kink
solitons. To construct such nontrivial solutions, we will utilize a version of supersymmetric
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quantum mechanics for tight binding models, which will be discussed in the next section.
We will show that we can construct a hierarchy of reflectionless soliton solutions by iterating
the supersymmetric transformation starting from a constant onsite potential.

Furthermore, we must also vary the action with respect to the bound state energy;
this results in the mass/energy spectrum for semiclassical bound states in the Gross-
Neveu/lattice superconductor model. There are two separate cases that we must consider,
both of which give rise to physically distinct soliton solutions.

• In the first case, we assume that the HS parameter and the hopping converge to the
constant values ∆∞ and τ∞ at both ±∞; the value of the potential and hopping is
related to these asymptotic values via u = g2∆2

∞+ τ2
∞ and t = g∆∞τ∞, the latter of

which has been set to one. For simplicity, we follow same assumption as in Dashen
et al. [21] that there is a single, isolated bound state occupied by n0 fermions (the
general case in which we allow for multiple bound states is a straightforward extension
of the analysis presented). We calculate the energy of that bound state at the saddle
point, which is given by setting δSeff/δz1 = 0 with the reflection coefficient r(φ) = 0.
From eq. (3.45) we get

1
T

δSeff
δz1

= − 1
2g2

(
1 + 1

z2
1

)
− 4N

∫ 2π

0

dφ

2π
sin2 φ√
u− 2 cosφ

1
1 + z2

1 − 2z1 cosφ

+ (N − n0) 1− z2
1

2z2
1
√
u− (z1 + 1/z1)

. (3.46)

We may perform a convenient change of variables 2 coshϑ = 1/z1 + z1 and 2 sinhϑ =
1/z1 − z1. Then, the condition δSeff/δz1 = 0 becomes

− 1
g2 coshϑ− 2N

∫ 2π

0

dφ

2π
sin2 φ√
u− 2 cosφ

1
coshϑ− cosφ + (N − n0) sinhϑ√

u− 2 coshϑ
= 0.

(3.47)
The integral has a closed form in terms of elliptic functions, but the subsequent
implicit equation for coshϑ is difficult to analyze analytically. We have evaluated the
integral numerically and found that for a wide range of parameters there is only one
solution where coshϑ > 1. To make progress analytically, we proceed by assuming
that coshϑ � 1, which physically assumes that the bound state is strongly bound;
then, the equation above can be simplified to

− 1
g2 coshϑ− N

coshϑI(u) + (N − n0) sinhϑ√
u− 2 coshϑ

= 0, (3.48)

where
I(u) = 2

∫ 2π

0

dφ

2π
sin2 φ√
u− 2 cosφ

. (3.49)

This may be reduced to a fifth order polynomial equation in coshϑ which is still
not analytically tractable. In the limit where u � 2 coshϑ and

√
u � g2N , we

may neglect the first term and utilize the simplification I(u) = 1/
√
u. Then, we

obtain that sinh 2ϑ ≈ 2N
(N−n0) , which is an approximately valid solution for moderate
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values of the filling n0/N . We plot both the approximation and exact values of θ
in figure 2, and it is clear that the approximation holds even beyond the regime of
validity described.
The corresponding reflectionless potentials with these bound state energies are non-
topological solitons which are kink-antikink solitons. These solitons are strongly
dependent on the number of trapped fermions; intuitively, this is because repulsion
due to the n0 fermions trapped in the kink and antikink will cause them to separate;
the calculation above self consistently determines the stable value for the separation
distance, which is also related to the bound state energy.

• In the second case, we assume that the HS parameter and the hopping converge to
different values ∆±∞ and τ±∞ at ±∞; we find that these solitons are topological,
and are associated with the Callan-Coleman-Gross-Zee (CCGZ) kink solitons first
discovered famously in the ϕ4-field theory. If we assume that n0 of the fermions
are trapped in a single bound state, we arrive at a slightly different result assuming
kink boundary conditions. First, we note that the scattering problems for both
components of the fermion differ by a bound state. This can be seen by computing∑

n

(u(2)
n − u(1)

n ) =
∑
n

(τ2
n+1 − τ2

n) = τ2
∞ − τ2

−∞, (3.50)

and therefore the right hand side of the trace identity in eq. (3.33) will differ between
the two scattering problems. We will show in the next section that the reflection co-
efficients of the scattering problems are the same, and so the two scattering problems
must differ in the number of bound states. For there to be a single bound state, the
scattering problem for the first component of the fermion must have no bound states
and must be reflectionless. The action reduces drastically to Seff = (N−n0)ω0, which
is minimized for ω0 = 0 regardless of the value of n0. The intuition for this is rather
simple. The theory possesses a topological zero-mode, the Jackiw-Rebbi mode, which
is insensitive to the number of occupied fermions; therefore, the nature of this kink
soliton should not depend on the filling.
We also know that the bound state energies are given by the explicit formula

ω0 =
√
u− z1 −

1
z1
. (3.51)

Using the formulae u = g2∆2
∞ + τ2

∞ = g2∆2
−∞ + τ2

−∞ and t = 1 = g∆∞τ∞ =
g∆−∞τ−∞, we find that z1 = τ2

∞. Substitution into ω0 also gives ω0 = 0, consistent
with the saddle point solution obtained directly from minimizing the action.

3.3 Construction of field theory hierarchy

The lattice Gross-Neveu model presented in the previous section can be considered to be
the first such model in a hierarchy of field theories that admit soliton solutions. First
note that we rather naturally divided the action for the lattice GN model into two pieces
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u/t = 5

u/t = 10

u/t = 20

E(
  )

 =
 

Figure 2. In the left panel, a plot of the values of ϑ as a function of the filling n0. Here, g = 1 and
we have chosen N = 100 and varied u. Also plotted in black is the approximation sinh 2ϑ ≈ 2N

(N−n0) ,
which is a valid in a regime where u is large compared to cosh θ but small compared to N2. We
even see good accuracy of the approximation beyond the regime of validity. In the right panel, a
plot of the bound state energy as a function of the filling n0. The solid lines are the corresponding
bound state energies obtained from the approximation.

given by eqs. (3.25) and (3.26). The first part of the action was rewritten using the first
trace identity, while no trace identities were required for the second part of the action. To
generalize, we write the first part of the action as a trace identity of our choice; the form
of such an action is

S = −
∑
n

∫ T

0
dt F (∆n(t), τn) +

∑
n

∫ T

0
dtΨ†n

(
i ∂∂t ∂n + g∆n(t)

∂†n + g∆n(t) i ∂∂t

)
Ψn, (3.52)

where F (∆n, τn) is constructed from the trace identities, and can be written as a linear
combination of traces of powers of the Hamiltonian. If we utilize the first trace identity
and the potential given by eq. (3.32) to write F (∆n, τn) = un = g2∆2

n then we get back the
lattice GN model. In general if we use any trace identity, the action will have a saddle point
corresponding to a reflectionless potential because the trace identities have a log(1− |r|2)
dependence on the reflection coefficient r; thus a solution to δSeff/δr = 0 will always be
r = 0. To exemplify this process, we will construct an action using the second trace identity.
In this case we choose F (∆n, τn) to be

F (∆n, τn) = u2
n + 2t2n = τ4

n + g4∆4
n + 2g2∆2

n

(
τ2
n + τ2

n+1

)
, (3.53)

where we have used eq. (3.32) and (3.31) to write down the form of the onsite potential
and hopping. Substituting eq. (3.53) into the action we get a new field theory with a
background field τ and the Hubbard-Stratonovich field ∆. First we assume that the HS
field is time-independent as before. Then, we may integrate out the HS field to construct
a local theory in the fermions. Upon performing the integration, the action becomes

S =
∑
n

∫ T

0
dtΨ†n(t)

(
i ∂∂t ∂n
∂†n i ∂∂t

)
Ψn(t) + log(Z), (3.54)
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where Z is obtained by taking the path integral of the remaining part of the action with
respect to the HS field:

Z =
∏
n

∫ ∞
−∞

d∆n exp
[
Ψ†n

(
0 g∆n

g∆n 0

)
Ψn − g4∆4

n − 2g2∆2
n

(
τ2
n + τ2

n+1

)]
, (3.55)

where we have ignored the constant term coming from τ4
n. The functional Z can be further

simplified to the following form

Z ∝ exp
(∑

n

ζ
(
τ2
n + τ2

n+1
)

2g2

(
ΨnΨn

)2
)
. (3.56)

Therefore, the full action is a Gross-Neveu model where the interaction has site-dependence
and can be treated as a background field. The function ζ is given by

ζ
(
τ2
n + τ2

n+1

)
=
∫∞
−∞ dxx

2e−x
4−(τ2

n+τ2
n+1)x2∫∞

−∞ dx e
−x4−(τ2

n+τ2
n+1)x2 , (3.57)

which may be expressible in terms of special functions. In principle, one can treat τ as
a scalar field in the path integral formulation; in this case, the full theory is obtained by
integrating over τn. Unfortunately, since the dependence of the effective interaction on the
τn’s does not decouple, the resulting theory will look quite non-local. This is analogous
to what happens in the continuum limit, except there the non-locality of the theory arises
when integrating out the HS parameter.

If one continues to construct more such field theories using higher order trace identities,
the corresponding actions will take the generic form

S =
∫ T

0
dt

[∑
n

Ψ†n(t)
(
i ∂∂t ∂n
∂†n i ∂∂t

)
Ψn(t) + ζk (τn, τn+1, · · · , τn+k−1)

(
Ψn(t)Ψn(t)

)2
]
,

(3.58)
where k indexes the action constructed using the kth trace identity. It is a rather elegant
feature that nontrivial field theories with soliton solutions may be reverse engineered from
a series of trace identities; however, for each of these models the mass spectrum (or equiv-
alently the bound state/soliton spectrum) will vary depending on which trace identity is
used. Such a calculation is a simple modification of the procedure developed in the previous
subsection.

4 Exact construction of saddle point solutions

In the previous sections, we justified that a saddle point of the action for the lattice Gross-
Neveu model corresponds to reflectionless potentials with a particular spectrum of bound
states. To obtain the original potential corresponding to a particular set of scattering data,
the inverse scattering method is applied, which involves solving the Gelfand-Levitan equa-
tion. Since this formulation can be rather bulky, in this section we introduce an alternate
formalism based on a generalization of supersymmetric quantum mechanics to tight bind-
ing models, and use this method to construct the kink soliton and kink-antikink solutions
described in the previous section, without resorting to using the Gelfand-Levitan equation.
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4.1 Continuous supersymmetry

Here, we briefly review the well-established field of supersymmetric (SUSY) quantum me-
chanics [48]. We start with the Schrödinger operator factorized as H = −∂2

x+V (x) = A†A,
where A† = −∂x+W (x) and A = ∂x+W (x). By convention, W (x) is known as the super-
potential, and is related to the original potential via the Riccati equation W 2(x)−W ′(x) =
V (x). We then construct a new Hamiltonian H̃ = AA†, which is also a valid Schrödinger
operator with a new potential Ṽ (x) = W 2(x) +W ′(x). The Hamiltonian H̃ has the same
spectrum as the Hamiltonian H, apart from the removal of a zero energy eigenstate, if
any, which solves Aψ = 0. Furthermore, if ψ(x) is an eigenstate of H with energy E, then
Aψ(x) is an eigenstate of H̃ with the same energy.

The canonical example of continuous soliton solutions can be obtain by repeated ap-
plication of the SUSY method to a constant potential. In particular, if we consider the
Schrödinger equation (

− ∂2

∂x2 −N(N + 1) sech2x

)
ψ(x) = Eψ(x), (4.1)

we may find that the system at N can be related to the system at N+1 via a supersymmetry
transformation with A = −∂x − N tanh x; the case N = 0 corresponds to a constant
potential. One can show that the number of bound states exactly equals N and that their
energies are given by En = −(n−N)2. The scattering states where E > 0 are reflectionless.
This is an example of an N -soliton solution with the property that the number of solitons
coincides with the number of bound states.

4.2 Discrete supersymmetry: formalism

We would like to extend the formalism of continuous supersymmetry to tight binding
models. The simplest structure of a Hamiltonian which is amenable to supersymmetry is
a tridiagonal matrix, equivalent to the one from eq. (3.1), with tn the hopping amplitudes
and un the onsite potentials. We factor H = A†A, and select an ansatz for A to be

A† =
∞∑

n=−∞
τn+1|n〉〈n+ 1|+ ∆n|n〉〈n|, (4.2)

which is a discrete version of A† = −∂x + W (x); we will call τ the superhopping and
∆ the superpotential. Note that the matching notation with the previous section is no
coincidence: indeed, the matrix A† is equal to ∂†n + ∆n (we will set g = 1 for convenience).
The equations of motion of the Gross-Neveu model decouple into independent equations of
motion for the effective HamiltoniansH = A†A and H̃ = AA†, both of which are tridiagonal
and have nearly identical spectra because they are superpartners. Crucially, knowing H,
one may extract the superhopping and superpotential and use it to compute H̃.

We can iterate this process to create a family of nearly isospectral Hamiltonians, which
gives us a hierarchy of saddle point solutions to the Gross-Neveu model. For example,
at the kth iteration, we construct the Hamiltonian Hk = AkA

†
k and solve the matching

condition AkA
†
k = A†k+1Ak+1 to obtain a new set of superpotentials and superhoppings.
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The Hamiltonian at the (k+ 1)st iteration can then be constructed via Hk+1 = Ak+1A
†
k+1.

In this hierarchy, any pair of consecutive Hamiltonians can be considered to be a valid
saddle point solution for the Gross-Neveu model. The matching condition can be obtained
from eqs. (3.31) and (3.32):

τ (k−1)
n ∆(k−1)

n−1 = τ (k)
n ∆(k)

n , (4.3)

τ (k−1)
n

2 + ∆(k−1)
n

2 = τ
(k)
n+1

2
+ ∆(k)

n

2
. (4.4)

Note that the subscripts denote the location on the lattice while the superscripts indicate
the level of the hierarchy. The Hamiltonians Hk and Hk+1 have the same spectrum and
differ by a possible zero-energy state that appears only in the limit of an infinitely long chain
with open boundary conditions; this zero-energy state is analogous to the one in continuous
supersymmetry. Using this method, one can create a Hamiltonian with arbitrarily placed
energy levels for the bound states: one only needs to introduce the constant shift Hk →
Hk + δk after each iteration. The corresponding bound state energy levels after the kth
iteration will be Em = ∑m

i=1 δi for m ≤ k. As a result, this iterative method can be used to
obtain saddle point solutions given a sequence of bound state energies; we need only prove
that the corresponding potentials are reflectionless. To see this, first note the eigenstates
of the Hamiltonian after k levels are given by

|ψ〉k ∝ AkAk−1 . . . A1|ψ〉1, (4.5)

so that due to the local properties of the matrix A, bound states remain bound and scatter-
ing states remain scattering. Next, we consider a scattering process that occurs in the base
Hamiltonian H1; assuming the potential and hopping are asymptotically constants u and
t and the incident scattering particles come from the left, we may write the wavefunction
using z = eik as

ψn(z) =

zn + r(z)z−n, for n→ −∞
t(z)zn, for n→∞

(4.6)

where t(z) and r(z) are the transmission and reflection coefficients. Upon supersymmetry,
the new scattering eigenstates in H2 are ψn(z) = ∆nψn(z) + τn+1ψn+1(z), which can be
written as

ψn(z) =


zn + r(z) z∆−+τ−

z(∆−+τ−z)z
−n, for n→ −∞

t(z) ∆++τ+z
∆−+τ−z z

n, for n→∞
(4.7)

where the subscripts + and − denote the asymptotic values of the superpotential and
superhopping at positive and negative infinity respectively. which allows us to identify the
modified reflection and transmission coefficients r(z) and t(z). In particular, we find that

|r|2 = |r|
2

|z|2
(τ− + ∆− cosφ)2 + ∆2

− sin2 φ

(∆− + τ− cosφ)2 + τ2
− sin2 φ

= |r|2, (4.8)

and

|t|2 = |t|2 (∆+ + τ+ cosφ)2 + τ2
+ sin2 φ

(∆− + τ− cosφ)2 + τ2
− sin2 φ

= |t|2 ∆+
2 + τ+

2 + 2∆+τ+ cosφ
∆−2 + τ−2 + 2∆−τ− cosφ

= |t|2, (4.9)
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where we have used the supersymmetry relations ∆±2 + τ±
2 = u and ∆±τ± = t. Thus,

the superpartner Hamiltonian preserves the magnitude of the reflection and transmission
coefficients, and induction proves that this holds for all subsequent Hamiltonians in the
hierarchy. We also note that the poles of t are the poles of t along with an additional pole
at z∗ = −∆−/τ−. This additional pole corresponds to a normalizable bound state at zero
energy if z∗ lies within the unit disk, or if |∆−/τ−| < 1.

4.3 Construction of kink solitons

In continuous supersymmetry, a soliton hierarchy is achieved by starting with a reflec-
tionless constant potential and iterating the supersymmetry procedure. In analogy to the
continuous case, let us assume a tight binding Hamiltonian given by

H =
∞∑

n=−∞
(−t|n〉〈n+ 1|+ h.c. + u|n〉〈n|) . (4.10)

We iterate the supersymmetric process once. For this, we will need to solve the equations
t = τi∆i−1 and u = τ2

i + ∆2
i . We need to first determine the asymptotic behavior for the

superhopping and the superpotential, which implies solving τ2 + ∆2 = u and τ∆ = t. This
yields two solutions

∆2
± = u

2

1±

√
1− 4t2

u2

 , (4.11)

and τ± = t/∆±. Thus, our kink solution will transition from one of these solutions at
−∞ to the other solution at +∞. To solve for the intermediate values, we choose the
origin as a seed with ∆0 = ∆, determine ∆n for n > 0 and n < 0 separately, and self-
consistently determine constraints on ∆ for the existence of a solution. We may solve for
the superpotential and find that it takes the form of a continued fraction:

∆2
N = u−

t2

u−
t2

u−
t2

. . . −
t2

∆2

∆2
−N =

t2

u−
t2

u−
t2

. . . −∆2

(4.12)

where the number of repetitions in continued fraction is N . We use a well-known result
for the finite continuants of a continued fraction. Given a continued fraction of the form

F (η, γ) = η0 +
γ1

η1 +
γ2

η2 +
γ3

η3 + · · ·

, (4.13)

the finite continuants can be expressed in the form FN (η, γ) = pN/qN , where pn satisfies
the recurrence

pn = ηnpn−1 + γnpn−2 (4.14)

– 23 –



J
H
E
P
0
7
(
2
0
2
1
)
0
5
5

with p0 = η0 and p−1 = 1, and qn satisfies the same recurrence with q0 = 1 and q−1 = 0.
In the present case, focusing on the equation for WN , we find that ηN = ∆2 and γN = −t2
as well as ηi = u and γi = −t2 for i < N . We then find the following solution for the
recurrence for p: (

pN
pN−1

)
=
(

∆2 −t2

1 0

)(
u −t2

1 0

)N−1(
u

1

)
, (4.15)

and similarly for q: (
qN
qN−1

)
=
(

∆2 −t2

1 0

)(
u −t2

1 0

)N−1(1
0

)
. (4.16)

For ∆−N , we find a similar series of expressions, but it can be shown that they are equivalent
to an analytic continuation of the above expressions to negative N . Combining both
branches, we find the following solution for ∆2

N :

∆2
N = ∆2N+2

− (∆2
+ −∆2) + ∆2N+2

+ (∆2 −∆2
−)

∆2N
− (∆2

+ −∆2) + ∆2N
+ (∆2 −∆2

−)
. (4.17)

Notice that limN→∞∆2
N = ∆2

+ and limN→−∞∆2
N = ∆2

− as well as ∆2
0 = ∆2. Thus,

this superpotential behaves like a discretized version of hyperbolic tangent, which is the
superpotential in the continuous limit. However, we do want to enforce that the above
equation does not become negative; an accordingly sufficient constraint on ∆2 is that
∆2
− < ∆2 < ∆2

+. The superhopping is correspondingly given by τN = t/∆N−1 and also
behaves like a discrete hyperbolic tangent. Examples of these soliton profiles are plotted
numerically in figure 3. We may write expression for the new potential ũN = τ2

N+1 + ∆2
N

and the new hopping t̃N = τN∆N after one iteration of supersymmetry:

ũN = t2
∆2N
− (∆2

+ −∆2) + ∆2N
+ (∆2 −∆2

−)
∆2N+2
− (∆2

+ −∆2) + ∆2N2
+ (∆2 −∆2

−)
+ ∆2N+2

− (∆2
+ −∆2) + ∆2N+2

+ (∆2 −∆2
−)

∆2N
− (∆2

+ −∆2) + ∆2N
+ (∆2 −∆2

−)
,

(4.18)

t̃N = t

(
∆2N
− (∆2

+ −∆2) + ∆2N
+ (∆2 −∆2

−)
)2(

∆2N+2
− (∆2

+ −∆2) + ∆2N+2
+ (∆2 −∆2

−)
) (

∆2N−2
− (∆2

+ −∆2) + ∆2N−2
+ (∆2 −∆2

−)
) ,

(4.19)

both of which resemble a discretized version of hyperbolic secant. Furthermore, we may
also formulate a condition for which a bound state will exist, given that τ− = t/∆−. Setting
∆2
−/t < 1 gives

u

2t

1−

√
1− 4t2

u2

 < 1, (4.20)

which always holds since we require u > 2t (this can be seen because the left hand side is
a decreasing function of u/2t and equals 1 when u = 2t); this implies the existence of an
additional bound state at zero energy. This is the discrete analogue of the Jackiw-Rebbi
zero mode associated with the kink soliton solution.
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Figure 3. A plot of the superpotential and the superhopping obtained from iterating discrete
supersymmetry for four iterations starting with a constant potential. A constant shift is applied
between iterations, and the corresponding solutions share the same spectrum apart from the con-
stant shift and an additional bound state. These solutions correspond to one such hierarchy of kink
solitons.

Next, we may iterate this process to determine other reflectionless kink potentials with
a given spectrum of bound states. One subtlety we must observe is that we cannot guar-
antee that the supersymmetry process can be iterated indefinitely; if the partial continued
fraction expression for some ∆2

N is negative at a given iteration, then there does not exist
a solution to eqs. (4.3) and (4.4). In the general case, we may write

∆2
−N =

t2−N+1

u−N+1 −
t2−N+2

u−N+2 −
t2−N+3

. . . −
t20
∆2

∆2
N = uN −

t2N

uN−1 −
t2N−1

uN−2 −
t2N−2

. . . −∆2

(4.21)

Alternatively, these continued fractions can be written in terms of the ratio of determinants
of tridiagonal matrices:

∆2
N =

det



uN tN . . . 0 0
tN uN−1 tN−1 . . . 0
... tN−1

. . . t−2
...

0
... t−2 u−1 t−1

0 0 . . . t−1 u0 −∆2



det



uN−1 tN−1 . . . 0 0
tN−1 uN−2 tN−2 . . . 0
... tN−2

. . . t−2
...

0
... t−2 u−1 t−1

0 0 . . . t−1 u0 −∆2



t2−N+1
∆2
−N

=

det



u−N+1 t−N+2 . . . 0 0
t−N+2 u−N+2 t−N+3 . . . 0

... t−N+3
. . . t−1

...

0
... t−1 u−1 t0

0 0 . . . t0 ∆2



det



u−N+2 t−N+3 . . . 0 0
t−N+3 u−N+3 t−N+4 . . . 0

... t−N+4
. . . t−1

...

0
... t−1 u−1 t0

0 0 . . . t0 ∆2



(4.22)

The matrices in these equations resemble submatrices of the Hamiltonian (by submatrices
we mean matrices formed by deleting some set of columns and corresponding rows in the
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Hamiltonian). Because the Hamiltonian is positive semi-definite and the zero-energy bound
state has nonzero support at each site, all submatrices of the Hamiltonian are positive
definite. Next, we note that adding a constant ε to each of the onsite potentials does not
change the reflectionless property of the Hamiltonian and shifts the ground state energy to
ε. Setting uN → uN +ε, we find that a sufficient condition for both ∆2

N and t2−N+1/∆2
−N to

be positive is ε+∆2−u0 > 0 and ε−∆2 > 0. This implies that u0−ε < ∆2 < ε. The resulting
superpartner potential will have an additional bound state at zero energy, which does not
coincide with the previous bound state now at energy ε. With an appropriate application
of a shift at every iteration, we can generate a hierarchy of reflectionless potentials. Note
that the bound on the shift ε that we derived is not tight, and in practice we find a much
less restrictive bound.

4.4 Construction of kink-antikink solitons

Thus far we have described how to construct kink solutions, with asymptotically different
boundary conditions at ±∞. These topological solitons correspond to a robust zero energy
mode, which is present in one of the scattering problems and absent in the other. However,
we argued that there should also be non-topological solitons — in the high-energy context,
these correspond to fermion-antifermion bound states (and in the general case, multi-
fermion bound states). In the previous section, we constructed the bound state spectrum of
multi-fermion states as a function of the fermion/anti-fermion filling, but did not construct
a satisfying solution for ∆n and τn. Here, we discuss a method for constructing such
solutions using discrete supersymmetry.

As described in the previous section, we seek a solution for ∆n which converges to
the same value at ±∞. Given an arbitrary onsite potential un and hopping tn, we may
evaluate the superpotential using the continued fraction method illustrated in eq. (4.21).
Let us focus on the case where n > 0, for which ∆n converges to ∆+ as n → ∞. We
may first write the continued fraction as a ratio pn/qn, where, as discussed in the previous
subsection, pn can be determined via the following relation:(

pN
pN−1

)
=
(

∆2 −t21
1 0

)
N∏
j=1

(
uj −t2j+1
1 0

)(
1
0

)
, (4.23)

and qN satisfies a similar relation but with N → N − 1. This transfer matrix method was
used to obtain the exact solution for the kink soliton where both un and tn were constant,
but works equally well in the general case. For large N , the product is dominated by a
product of the asymptotic form of the transfer matrix, assuming that u∞ = u and t∞ = t.
The eigenvalues of the asymptotic value of the transfer matrix are ∆+ and ∆− < ∆+, so
for generic values of the initial condition ∆0 = ∆, pN→∞ ∼ ∆N

+ while qN→∞ ∼ ∆N−1
+

— this results in the asymptotic superpotential being ∆+. A similar analysis shows that
∆−∞ = ∆− and we recover a kink solution.

However, if ∆ is chosen such that the eigenvector corresponding to eigenvalue ∆+
is annihilated by the matrix product in eq. (4.23) (for N large), then the asymptotic
superpotential will be ∆−, and corresponding soliton solution will have the same boundary
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Figure 4. A plot of the superpotential and the superhopping obtained from the discrete hyperbolic
secant potential given in eq. (4.18) for a variety of asymptotic values of t and u. The boundary
condition ∆2

0 = ∆2
? was chosen, which results in non-topological soliton solutions shown. Note that

the chain is cut off after 30 lattice sites due to the exponential numerical instability caused from
small deviation from ∆?.

conditions at ±∞ — this corresponds to a non-topological soliton. The eigenvector of the
transfer matrix corresponding to eigenvalue ∆+ is λT+ = (∆+, 1), so the unique value of ∆
that generates these solutions solves(

∆2
? −t21

)
∞∏
j=1

(
uj −t2j+1
1 0

)(
∆+
1

)
= 0, (4.24)

or equivalently using the notation eT1 = (1, 0) and eT2 = (0, 1),

∆2
? = t21

eT2Qλ+

eT1Qλ+
, Q =

∞∏
j=1

(
uj −t2j+1
1 0

)
. (4.25)

The corresponding non-topological solitons are unstable to perturbations in the initial
condition ∆? and will revert to kink solitons. Now that a value for ∆0 = ∆? is specified,
we must select an appropriate choice of un. Clearly, this choice of un must be reflectionless,
but it also must have at least one bound state (a choice of un with no bound states such as
un = u will yield a trivial answer where ∆n is constant everywhere). We have constructed
an example of such a potential in the previous subsection (see eq. (4.18)), which is a
discretized version of hyperbolic secant. The superpartner to this potential with the initial
condition ∆2 = ∆2

? will not have additional bound state at zero energy as such a state is
not normalizable; thus, the superpartner will have an identical spectrum. This describes
the case where supersymmetry is broken, while supersymmetry was unbroken in the case
of the kink soliton.

We verify that the choice of potential un and initial condition ∆? indeed generates
non-topological solitons, as shown in figure 4. As expected, these solitons can be viewed
as a sum of a propagating kink and antikink topological soliton. Similar kinds of non-
topological solitons can be constructed for potentials with more than a single bound state
by an analogous procedure.

– 27 –



J
H
E
P
0
7
(
2
0
2
1
)
0
5
5

5 Chiral Gross-Neveu model and superconductivity

Thus far, we worked exclusively with the Gross-Neveu model, showing the correspondence
between semiclassical saddle point solutions of the action and reflectionless potentials of
the effective scattering problem. We were able to explicitly retrieve these reflectionless so-
lutions using discrete supersymmetry. We analyzed both topological and non-topological
soliton solutions, the former of which appears as a kink in the magnitude of the real scalar
field ∆, and the latter of which occurs due to the merging of kink and antikink solutions.
In superconductors, the order parameter is complex, and kink solitons can become dy-
namical. To reproduce this case, we consider a modification of the Gross-Neveu model,
the chiral Gross-Neveu model (equivalently the Nambu-Jona-Lasinio model), which has an
additional chiral term necessary for the order parameter to be complex. In this section,
we perform a similar analysis of this model, and construct nontrivial soliton solutions in
lattice superconductors, relevant for cold atom experimental platforms.

The chiral Gross-Neveu model, as first discussed by Shei [22], is a modification of the
Gross-Neveu model that preserves chiral symmetry ψ → eiθγ5ψ:

L =
N∑
k=1

iψ
(k)/∂ψ(k) + g2

2

(
N∑
k=1

ψ
(k)
ψ(k)

)2

− g2

2

(
N∑
k=1

ψ
(k)
γ5ψ

(k)
)2

. (5.1)

As in the rest of the text, we use a representation of the gamma matrices where γ0 = −σx,
γ1 = −iσz, and γ5 = γ0γ1 = σy. As defined on a lattice, the chiral Gross-Neveu model is

Ln =
N∑
k=1

Ψ†(k)
n (t)

(
i ∂∂t ∂n
∂†n i ∂∂t

)
Ψ(k)
n (t) + g2

2
(
Ψ†(k)
n (t)γ0Ψ(k)

n (t)
)2
− g2

2
(
Ψ†(k)
n (t)γ0γ5Ψ(k)

n (t)
)2
.

(5.2)
We will follow Shei’s analysis and determine the saddle point solutions of this lattice action.
In the continuum limit, the chiral GN model has saddle point equations which exactly
corresponds to the BdG equation and self-consistency condition in superconductors and
fermionic superfluids; the Lagrangian above therefore corresponds to analogous systems
defined on a lattice.

5.1 Action in terms of scattering data

To map the action onto a scattering problem, we require the introduction of two Hubbard-
Stratonovich fields, which we will call χ and η with the full order parameter ∆ = χ + iη;
suppressing the sum over flavors, the Lagrangian then becomes

Ln = Ψ†n

(
i ∂∂t − gηn(t) ∂n + gχn(t)
∂†n + gχn(t) i ∂∂t + gηn(t)

)
Ψn −

χ2
n(t)
2 − η2

n(t)
2 . (5.3)

As before, we assume that the Hubbard-Stratonovich fields are static. Then, the action
can be split into two pieces as in the case of the Gross-Neveu model:

S1(∆) = −T2
∑
n

(χ2
n + η2

n), (5.4)

S2(Ψ,∆) =
∑
n

∫ T

0
dtΨ†n

(
i ∂∂t − gηn ∂n + gχn
∂†n + gχn i ∂∂t + gηn

)
Ψn. (5.5)
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The equations of motion now correspond to the following eigenvalue problem (assuming
simple oscillatory time dependence for the fermionic fields)(

−gηn ∂n + gχn
∂†n + gχn gηn

)
Ψn = ωΨn. (5.6)

Unlike in the original Gross-Neveu model, this equation cannot be factorized into two
independent Schrödinger equations for each component of the fermionic field due to the
presence of the chiral term. As a result, we must re-derive trace identities for the above
Dirac operator and relate the action to suitably defined scattering data. As discussed
in appendix A, we may define the Jost functions for this scattering problem, which are
written as f± and g± — the subscript ± is present due to the two-sheet structure of the
Dirac equation, which supports both positive and negative energy modes. In the Dirac
equation, the positive and negative sheets are decoupled, and so the action can be written
in terms of two reflection coefficients r+(φ) and r−(φ), each of which corresponds to a
scattering process involving the positive or negative modes separately. As in the Gross-
Neveu model, we assume that both a+(φ) and a−(φ) have the same structure as in eqs. (3.9)
and (3.10). Therefore, by the Poisson-Jensen formula, we may write

log |a+(z)|+log |a−(z)|=
M+∑
j=1

log
∣∣∣∣∣ z−zj,+1−zj,+z

∣∣∣∣∣+
M−∑
j=1

log
∣∣∣∣∣ z−zj,−1−zj,−z

∣∣∣∣∣ (5.7)

− 1
4π

∫ 2π

0
<
(
eiφ+z
eiφ−z

)[
log
(
1−|r+(eiφ)|2

)
+log

(
1−|r−(eiφ)|2

)]
dφ,

whereM± are the number of bound states in the scattering problems defined on the positive
and negative sheets. On a technical note, we show in appendix A that a+(z) and a−(z) are
separately not meromorphic in the unit disk, but their product is; thus, the Poisson-Jensen
formula must be applied to log(a+(z)a−(z)). As a result, the left hand side of the above
equation admits a Laurent series expansion as derived in appendix A. In particular, like
for the Schrodinger equation, we show that

− log a+(z)
a+(0) − log a−(z)

a−(0) = h+(z) + h−(z) +
∞∑
k=0

Tr(H2k)
ω2kk

, (5.8)

where h± are unimportant functions and

ω2(z) = η2
∞ +

(
τ∞(z + z−1)

2 + χ∞

)2

− τ2
∞(z − z−1)2

4 . (5.9)

and the matrix H is the Dirac operator:

H =
(
−gηn ∂n + gχn

∂†n + gχn gηn

)
. (5.10)

Henceforth, we shall set g = 1. As in the case of the Gross-Neveu model, we match the
series expansion obtained via the trace identity with that obtained via the Poisson-Jensen
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formula. Matching to lowest order in z gives the first nontrivial trace identity:

− 1
2π

∫ 2π

0

[
log

(
1− |r+(eiφ)|2

)
+ log

(
1− |r−(eiφ)|2

)]
cos (φ) dφ+

M+∑
j=1

(
zj,+ −

1
zj,+

)
+

M−∑
j=1

(
zj,− −

1
zj,−

)
= C(N,χ∞, η∞, τ∞) + 4

τ∞χ∞

∑
n

(η2
n + χ2

n + τ2
n), (5.11)

where C is a constant that can be eliminated by an appropriate shift of the vacuum energy
and will be ignored henceforth. Here, we have used the fact that Tr(H2) = ∑

n(η2
n+χ2

n+τ2
n).

Using the assumption that τ∞χ∞ = 1 and assuming that the sum of the squared values
of τi are bounded and fixed, the second term in the action can be written in terms of the
scattering data:

S1 = −T2
∑
n

(χ2
n + η2

n) = T

2π

∫ 2π

0

[
log

(
1− |r+(eiφ)|2

)
+ log

(
1− |r−(eiφ)|2

)]
cos (φ) dφ

+
M+∑
j=1

(
zj,+ −

1
zj,+

)
+

M−∑
j=1

(
zj,− −

1
zj,−

)
. (5.12)

Next, we must write the integration over the fermionic variables in terms of the scattering
data. This can be done in a very similar way to what was done in the Gross-Neveu model.
First, eq. (3.36) still holds. However, in this case we must distinguish the positive and
negative sheets because the corresponding bound state spectra may not coincide. In the
Gross-Neveu case, this was not necessary because the theory was invariant under charge
conjugation. Therefore, we write

I1(χ,η) = I1(0)
∏
k

(eiα+,k/2+e−iα+,k/2)
∏
k′

(eiα−,k′/2+e−iα−,k′/2)

= I1(0)exp
(
i

2
∑
k

|α+,k|+|α−,k|
) ∏
α+,k>0

(1+e−iα+,k)
∏

α−,k>0
(1+e−iα−,k)

= I1(0)exp
(
i

2
∑
k

|α+,k|+|α−,k|
) ∑
{ni,mj}

e
−i
∑

α+,i>0niα+,i−i
∑

α−,j>0mjα−,j
∏
i,j

qniqmj ,

(5.13)

where the combinatorial coefficients are defined without an additional factor of two, qni =
N !

ni!(N−ni)! . Then, the full effective action can be written as

Seff = S1 + N

2
∑
k

(|α+,k|+ |α−,k|)−
∑
k

n+,k|α+,k| −
∑
k

n−,k|α−,k|+ const. (5.14)

Next, we make the assumption that there is only a single discrete bound state for each
branch: that is, n+,0 fermions occupy mode α+,0 and n−,0 fermions occupy mode α−,0 (the
rest fill the continuum Fermi sea). Next, we need to relate the second term in the equation
above as a function of the scattering data. Again, note that in the time independent
case, the Floquet indices are T times the corresponding energies. Because the positive and
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negative branches are independent from one another, the associated scattering problems
are decoupled, and a similar analysis to that presented in appendix B gives (up to an
infinite constant that is corrected by a suitable renormalization of the vacuum energy)

∑
k

(|α+,k|+ |α−,k|) = 2T
∫ 2π

0

dφ

2π
sinφ√

η2
0 + χ2

0 + τ2
0 − cosφ

(δt,+(φ) + δt,−(φ)), (5.15)

where η2
0 +χ2

0 + τ2
0 is the value of η2

n +χ2
n + τ2

n at infinity. Using the imaginary part of the
Jensen formula presented in eq. (3.44), the action in eq. (5.14) can be written in terms of
the reflection coefficient as well as the energy of the bound state

Seff
T

= 1
2π

∫ 2π

0

[
log

(
1− |r+(eiφ)|2

)
+ log

(
1− |r−(eiφ)|2

)]
cos (φ) dφ

+
M+∑
j=1

(
zj,+ −

1
zj,+

)
+

M−∑
j=1

(
zj,− −

1
zj,−

)
− n+,0|ω+,0| − n−,0|ω−,0|

+N

∫ 2π

0

dφ

2π
sinφ√

η2
0 + χ2

0 + τ2
0 − cosφ

(δt,+(φ) + δt,−(φ)). (5.16)

The saddle point corresponding to this action implies that the effective scattering
problems for both the positive and negative sheets are reflectionless. Furthermore, the
corresponding bound state energy can be constructed by finding a minimum of the action
with respect to zj,±. The corresponding bound state energies are similar to those computed
in the case of the Gross-Neveu model, and like before, we have two types of soliton solutions,
topological and non-topological solitons. However, because the HS parameter is complex,
there is a richer structure of saddle point solutions with nontrivial phase slip.

5.2 Soliton solutions

We now proceed to find saddle point solutions corresponding to the action in eq. (5.16). As
the saddle point corresponds to reflectionless potentials in both of the scattering processes
in the Dirac equation, we need to utilize the inverse scattering approach to retrieve the
most general form of such a solution, which we will not attempt to pursue here. One such
class of solutions corresponds to ηn = 0 and χn a reflectionless superpotential; in this case,
the chiral Gross-Neveu model reduces to the Gross-Neveu model and our previous analysis
applies. These solutions are likely to be of most relevance for experimental verification.

There is another saddle point solution which can be achieved through minimal addi-
tional effort. We square the Dirac operator H defined in eq. (5.10) to obtain

H2 =
(
η2
n + (∂n + χn)(∂†n + χn) ∂n

∂
†
n η2

n + (∂†n + χn)(∂n + χn)

)
, (5.17)

where ∂nfn = τn+1(ηn+1 − ηn)fn+1. If ηn = η is a constant, then the off-diagonal blocks
vanish and the operator has a supersymmetric structure apart from a shift η2, which does
not affect the energy eigenstates. The eigenstates of the square of the Dirac operator are
those of the original Dirac operator, and if χ is chosen to be a reflectionless superpotential,
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then the eigenstates of H2 are reflectionless. This implies that both the positive and
negative scattering problems are reflectionless for the Dirac operator, therefore satisfying
the saddle point condition.

For these solutions, the Hubbard-Stratonovich field has a non-zero albeit constant
imaginary part. If χ is a non-topological soliton, then it may be expressed as a kink-
antikink pair as was previously deduced (assuming occupation of only a single bound
state). If χ is a topological kink soliton, then the Hubbard-Stratonovich field undergoes a
phase slip by a nontrivial angle θ, given by

tan θ = −η(χ+ − χ−)
χ+χ− + η2 = − η

√
u

t+ η2


1

2 + 1
2

√
1− 4t2

u2

1/2

−

1
2 −

1
2

√
1− 4t2

u2

1/2
 ,
(5.18)

where χ± are given in eq. (4.11). In the continuum case, it has been shown that such
solitons experience dynamics if the phase slip does not equal π, and one would need to
solve for time-dependent saddle point solutions. The velocity of propagation of the soliton
strongly depends on the phase angle: as the propagation velocity increases, the phase angle
decreases towards zero and vanishes at a critical velocity, at which the soliton becomes
unstable in accordance to the Landau criterion [10]. The theory of a dynamical or moving
soliton has not been pursued here, though the authors speculate that the time dependence
simply can be constructed from replacing n with n− vt in expressions for χn, ηn, and τn.

Finally, constructing reflectionless potentials of the Dirac equation is a rich problem,
and there is no elegant method one may use to construct such potentials via discrete
supersymmetry, unlike in the case of the Schrödinger equation. Classification of such
soliton solutions would be a reasonable next step to pursue [65–67].

6 Relation to the Toda hierarchy

In section 2.4 we discussed the KdV equation and the KdV hierarchy, which is a series
of nonlinear differential equations that are integrable and possess soliton solutions. To
construct the hierarchy, one considers each trace identity of the Schrödinger equation as a
Hamiltonian and constructs the corresponding equations of motion in terms of the scatter-
ing data. As has been emphasized, the soliton solutions of the KdV equation are related
to those appearing as saddle point solutions in the Gross-Neveu model.

In the discrete case, the lattice Gross-Neveu model turns out to analogously possess
resemblance to the Toda hierarchy, a series of integrable dynamical systems. To illustrate
the resemblance, we reconstruct the Toda lattice Hamiltonian by utilizing the discrete
trace identities; the method that we discuss had been first developed by Faddeev [62].
However, there are two differences from the continuous case that we must reconcile. First,
for discrete systems each trace identity given by Kn (via eq. (3.18)) cannot be treated as
a Hamiltonian system because the dynamics induced by such a system does not preserve
the phase space measure. Instead, Faddeev has shown that one needs to consider the
combinationKn−Kn−2 as the Hamiltonian. Second, unlike in the case of the KdV equation,
both the potential and hopping are considered dynamical variables, and are related to the
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original canonically conjugate position and momentum variables of the Toda lattice by a
Flaschka transformation. The first Hamiltonian of the hierarchy is

H1 = K2 =
∑
n

u2
n + 2t2n, (6.1)

where un is the potential and tn is the hopping. If we identify them as the Flaschka
variables defined as un = −pn

2 and tn = 1
2e
− (qn+1−qn)

2 then the Hamiltonian corresponds
to the Toda lattice [49]. The equations of motion of such a system therefore preserves the
magnitude of the reflection coefficient, as observed in the KdV equation; soliton solutions
correspond to time-dependent reflectionless potentials. Continuing in a similar manner
generates all Hamiltonians in the Toda hierarchy.

One subtlety that we have ignored is the fact that the equations of motion of the Gross-
Neveu model are those of a massless Dirac particle, which decouples into two Schrödinger
equations. Thus, it is more accurate to draw the analogy between the Gross-Neveu model
and two interrelated Toda lattices. The soliton solutions to an analogous dynamical system
will correspond to propagating kinks or domain walls. To obtain this dynamical system, we
utilize the Lax pair formalism: we construct two operators L (which is antisymmetric) and
H such that Ḣ = [L,H]. It is simple to show that this dynamical system has an infinite set
of conserved quantities Kp = Tr(Hp), implying its integrability. We choose the operator
H to be the Dirac Hamiltonian in eq. (5.10) with ηn = 0 and χn relabelled to be ∆n.
Therefore, the conserved quantities coincide with the right hand sides of the trace identities.
We also choose the following ansatz for the block diagonal matrix L = diag(h, h′), where
h and h′ are the matrices with nonzero matrix elements h′n,n+1 = −h′n+1,n = ∆nτn+1 and
hn,n+1 = −hn+1,n = ∆n+1τn+1. With this choice, H and L form a Lax pair, resulting in
the dynamical system

d∆n

dt
= ∆n

(
τ2
n − τ2

n+1

) dτn
dt

= τn
(
∆2
n−1 −∆2

n

)
. (6.2)

If we perform a Flaschka transformation ∆n = e
1
2 (qn+1−qn) and τn = epn , the equations of

motion describe a Hamiltonian system with the Hamiltonian

H1 = K1 =
∑
n

τ2
n + ∆2

n =
∑
n

e2pn +
∑
n

eqn+1−qn , (6.3)

which is similar to the Toda lattice Hamiltonian but with the quadratic kinetic energy
replaced by the exponential of the momentum operator. For the case of the chiral Gross-
Neveu model (with ηn 6= 0), the authors have no found a satisfying Lax pair L so we cannot
deduce dynamical systems with complex soliton solutions. However, for a Dirac operator
with a mass term,

H =
(
−gηn ∂n + gχn

∂†n + gχn gζn

)
, (6.4)

there exists a Lax pair matrix L with a similar block matrix structure, but with non-trivial
off-diagonal blocks having the same matrix structure of ∂n. We will not write down the
associated dynamical system, as it possesses a different class of soliton solutions that we
have not constructed.
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7 Conclusions

In this paper, we describe a general formalism to construct soliton solutions corresponding
to saddle points of a lattice quantum field theory, which is based on the semiclassical
method developed by Dashen, Hasslacher, and Neveu [21, 22]. We first focus our attention
to a lattice generalization of the Gross-Neveu model with N flavors of fermions. The
equations of motion decouple into two discrete Schrödinger equations, and utilizing trace
identities for the Schrödinger equation, we rewrite the action in terms of scattering variables
— namely, the reflection coefficient and the bound state spectrum. The saddle point
solutions of this action functional correspond to the Hubbard-Stratonovich parameter being
a reflectionless potential. Depending on the boundary conditions at ±∞, we derive the
bound state spectrum for either topological or non-topoogical solitons, the former of which
possesses a robust zero mode. To construct these potentials explicitly, we develop a discrete
generalization of supersymmetry, in which we create a hierarchy of reflectionless tight-
binding Hamiltonians with a bound state spectrum of our choice. We are able to retrieve
both kink solitons and kink-antikink solitons using this formalism. Both such solitons are
described by a site-dependent modulation in the onsite potential and the hopping, the
latter of which is absent in the continuum limit.

We then proceed to apply the semiclassical method to the lattice chiral Gross-Neveu
model. In doing so, we derive a set of trace identities for the Dirac operator, and show
that the action can be written in terms of scattering data of the scattering problems of
the positive and negative energy modes. In a similar way, the particle spectrum can be
obtained, and saddle point solutions correspond to reflectionless potentials of the Dirac
equation. We write down one such example, a kink soliton undergoing a non-π phase slip;
these solitons likely have nontrivial dynamics that we have not accounted for. Finally, we
relate the soliton solutions obtained from the saddle points to exact solitons in the Toda
lattice. In the process, we write down dynamical systems whose solutions are propagating
domain walls/kinks, in analogy to the static solutions derived in the field theories.

There are multiple generalizations that are straightforward to consider given our for-
malism. First, we have exclusively considered a single-band model. To construct a two-
band (and in general, a multi-band) model, we simply set asymptotic conditions where
∆2n+1 = ∆(±)

1 and ∆2n = ∆(±)
2 as n → ±∞, which is in the spirit of the Su-Schrieffer-

Heeger model [26, 27]. The action can be written in terms of scattering data by an appro-
priate modification of trace identities for the Schrödinger operator with staggered boundary
conditions. Reflectionless soliton solutions can be computed easily using the discrete su-
persymmetry formalism. Another possible extension would be to apply a magnetic field,
so that the hopping undergoes a phase slip from −∞ to ∞. Second, it may be possible
to pursue a similar analysis with long-range hopping. In this case, there may be multiple
scatterers at a given energy, and the scattering data will consist of a potentially large scat-
tering matrix. Depending on the structure of the hopping, discrete supersymmetry may
still provide a means for obtaining classes of solutions with scattering properties prescribed
by the saddle point solution. Finally, it is interesting to pursue an analogous analysis in
2+1 dimensions, where the inverse scattering method can still be formulated, though su-
persymmetry may not be a useful tool for extracting soliton solutions.
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The original motivation for studying both the Gross-Neveu and the chiral Gross-Neveu
model is that both models (especially the latter) are equivalent to the self-consistent Bogoli-
ubov de-Genne Hamiltonians describing superconductors and/or fermionic superfluids [13].
As a result, it is possible that lattice soliton solutions presented in the text can be observed
in cold atom experiments [7]. A more complete analysis should also include an analysis of
the dynamics of such soliton solutions, where it is known that the velocity of propagation
is related to the phase slip of a kink soliton [10]. Furthermore, the kink solitons that were
presented for the chiral Gross-Neveu model are not the only family of reflectionless poten-
tials; a complete classification of transparent potentials of the Dirac equation would be of
importance to understanding the full saddle point structure of the action [65, 66].

Finally, discrete supersymmetry is itself a rich topic with many unexplored questions.
Though the application of the methodology in this paper was for obtaining soliton solutions,
discrete symmetry can be applied to other kinds of 1D and quasi 1D systems to explore
potentially interesting physics. A complete classification of what kinds of systems are
closed under a discrete SUSY transformation has not been performed. Discrete SUSY may
also have significance when applied to non-Hermitian or time-reversal symmetry breaking
Hamiltonians. A potential application of discrete SUSY would be to probe topological
properties of a system. Since a single iteration of supersymmetry removes or adds a zero
mode, the topological (Witten) index of a system can itself be altered — it would be
interesting to pursue an analysis in this direction [68].

A Discrete trace identities

A.1 Schrödinger equation

The following is an abridged version of the analysis presented in Toda’s book [49]. In this
appendix we will derive eq. (3.15). The key arguments in this derivation rely on relating
the trace of the Green’s function to both the scattering data as well as to the explicit onsite
potentials and hoppings. We know that the Jost functions fn(z) and gn(z) introduced in
the main text of the paper satisfy the discrete Schrödinger equation; assuming the onsite
potential has an asymptotic value u and the hoppings have an asymptotic value 1,

−tn+1fn+1 (z)− tnfn−1 (z) + unfn (z) =
(
u− z − 1

z

)
fn(z), (A.1)

−tn+1gn+1(z)− tngn−1(z) + ungn(z) =
(
u− z − 1

z

)
gn(z). (A.2)

where we have used the energy dispersion ω = u − (z + 1/z). We multiply eq. (A.1)
and (A.2) by gn(z) and fn(z) respectively. Subtracting these equations, we find

tn+1 (gn+1(z)fn(z)− gn(z)fn+1(z)) = tn (gn(z)fn−1(z)− gn−1(z)fn(z)) . (A.3)

From this, we can identify a quantity (a discrete version of the Wronskian of fn(z) and
gn(z)) that is conserved for all n:

w = tn+1 (gn+1(z)fn(z)− gn(z)fn+1(z)) . (A.4)
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We note that the conserved quantity w is merely a disrete generalization of the Wronskian
of fn(z) and gn(z). We can find the absolute value of w in the asymptotic limit:

w = lim
n→−∞

tn+1 (gn+1(z)fn(z)− gn(z)fn+1(z)) = a(z)
(1
z
− z

)
. (A.5)

Now we define a matrix Gn,m with elements

Gn,m(z) = fn(z)gm(z)
w

when n ≥ m

Gm,n(z) = Gn,m(z).

One can show by explicit computation that G satisfies[
H +

(
z + 1

z
− u

)
1
]
G = 1, (A.6)

where H is the Hamiltonian with matrix elements Hn,n−1 = −tn, Hn,n+1 = −tn+1 and
Hn,n = un. Note that this equation identifies G as the Green’s function for the operator
H + (z + 1

z ). Using eq. (A.6) one can write G in terms of the potential. We return to
eq. (A.1) and take a derivative with respect to z to get

− tn+1ḟn+1(z)− tnḟn−1(z)+unḟn(z)+
(
z+ 1

z
−u

)
ḟn(z)+

(
1− 1

z2

)
fn(z) = 0. (A.7)

Here we have used the notation ḟ(z) ≡ df(z)
dz . After some algebraic manipulations of the

above equation, one can show

−
(

1− 1
z2

)
fngn = Un − Un−1, (A.8)

where we have defined Un ≡ tn+1
(
gn+1ḟn − gnḟn+1

)
. One can show that the asymptotic

form of Un is given by

Un =


ȧ(z)

(
1
z − z

)
+ a(z)

[
n+1
z2 − n

]
, for n→∞

a(z)
[
n− n−1

z2

]
, for n→ −∞

. (A.9)

Eq. (A.9) is valid for |z| < 1. Using eq. (A.8) and the asymptotic form of Un we get

N∑
n=−N+1

fngn = 2Na(z)− zȧ(z). (A.10)

Now we can calculate the trace of the Green’s function:

Tr(G) =
∑ fngn

w
= ∂ log a(y)

∂y
+ 2N

1
z − z

, (A.11)

where y = z + 1
z . For a free particle, with un = u and tn = 1, the Green’s function G0 is

given by the equation [
H0 +

(
z + 1

z
− u

)
1
]
G0 = 1, (A.12)
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where the nonzero matrix elements of H0 are H0
n,n−1 = H0

n,n+1 = −1 and H0
n,n = u. One

can show that
Tr
(
G0
)

= 2N
1
z − z

. (A.13)

Subtracting eq. (A.13) from eq. (A.11), we find the following equation:

Tr
(
G−G0

)
= ∂ log a(y)

∂y
. (A.14)

Substituting eq. (A.6) and eq. (A.12) into eq. (A.14) we get:

∂ log a(y)
∂y

= Tr
(
(H + y)−1 − (H0 + y)−1

)
=
∑
n=1

(−1)nTr
(
Hn − (H0)n

)
yn+1 , (A.15)

where y = z + 1
z . Integrating left hand side of the above equation from y to ∞ we get

eq. (3.15).

A.2 Dirac equation

We derive trace identities associated with a discretized version of the Dirac operator, which
to the authors’ knowledge, has not been previously derived. We consider the equations of
motion

−ηnψ(1)
n + τn+1ψ

(2)
n+1 + χnψ

(2)
n = ωψ(1)

n (A.16)

τnψ
(1)
n−1 + χnψ

(1)
n + ηnψ

(2)
n = ωψ(2)

n (A.17)

which is the component form of the equations of motion for the chiral Gross-Neveu model.
For the scattering problem, we assume that both potentials η and χ, as well as the hopping
τ converge to a constant at infinity. The spectrum of the scattering states can then be
determined via the substitution ψ(1)

n = α(z)zn and ψ(2)
n = β(z)zn:(

−η∞ τ∞z + χ∞
τ∞z

−1 + χ∞ η∞

)(
α(z)
β(z)

)
= ω

(
α(z)
β(z)

)
. (A.18)

The eigenvalues are given by

ω±(φ) = ±
√
η2
∞ + (τ∞ cosφ+ χ∞)2 + τ2

∞ sin2 φ. (A.19)

As before, we construct the Green’s function in terms of the scattering states. We first
note that ω±(φ) = ω±(−φ), so that each energy eigenstate is doubly degenerate. We then
construct the Jost functions f± and g± such that both functions mimic the asymptotic
properties described in the main text. In particular, we write that

lim
n→∞

f±,n(z) = zn
(
α±1 (z)
β±1 (z)

)
(A.20)

and
lim

n→−∞
g±,n(z) = z−n

(
α±2 (z)
β±2 (z)

)
(A.21)
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We also have the following relation between the Jost functions, through which the trans-
mission and reflection coefficients for the positive and negative energy modes are defined:

f±,n(z) = b±(z)g±,n(z) + a±(z)g±,n
(
z−1

)
, (A.22)

g±,n(z) = b±(z)f±,n(z) + a±(z)f±,n
(
z−1

)
. (A.23)

It can be seen that a±(z) = a±(z) and b±(z) = −b±
(
z−1). Then, we prove conservation

of the Wronskian. It can be shown by simple manipulation using the equations of motion
that the quantity

wn = τn+1
(
f (1)
n g

(2)
n+1 − g

(1)
n f

(2)
n+1

)
(A.24)

is independent of n. Utilizing the properties of the scattering states f and g, the value of
the Wronskian can be shown to equal

wn = lim
n→−∞

τn+1
(
f (1)
n g

(2)
n+1 − g

(1)
n f

(2)
n+1

)
(A.25)

= a(z)α2(z)β2(z)
(1
z
− z

)
, (A.26)

where α2 and β2 are the components of the eigenvector g.
Next, we construct the Green’s function, which now is comprised of four matrices, and

is a solution to the equation(
−ηn(t)− ω(z) ∂n + χn(t)
∂†n + χn(t) ηn(t)− ω(z)

)(
G11(z) G12(z)
G21(z) G22(z)

)
=
(

1 0
0 1

)
. (A.27)

It can be shown that the form of the Green’s function matrix is

(
G11(z) G12(z)
G21(z) G22(z)

)
= 1
w
×



f (1)
n g

(1)
m f

(1)
n g

(2)
m

f
(2)
n g

(1)
m f

(2)
n g

(2)
m

 for n > m

g(1)
n f

(1)
m g

(1)
n f

(2)
m

g
(2)
n f

(1)
m g

(2)
n f

(2)
m

 for n < m

g(1)
n f

(1)
m f

(1)
n g

(2)
m

g
(2)
n f

(1)
m f

(2)
n g

(2)
m

 for n = m

(A.28)

where w is the Wronskian. This can be verified by direct substitution into eq. (A.27) as
well as using the form of the Wronskian in eq. (A.24). We want to relate the trace of the
Green’s function to the values of the onsite potential and hopping:

Tr(G) = 1
w

∑
n

(f (1)
n g(1)

n + f (2)
n g(2)

n ). (A.29)

Next, we return to the equations of motion in eqs. (A.16) and (A.17), and take a derivative
with respect to z

−ηnḟ (1)
n + τn+1ḟ

(2)
n+1 + χnḟ

(2)
n = ω̇f (1)

n + ωḟ (1)
n (A.30)

τnḟ
(1)
n−1 + χnḟ

(1)
n + ηnḟ

(2)
n = ω̇f (2)

n + ωḟ (2)
n . (A.31)
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Multiplying the first equation by g(1)
n and the second by g(2)

n gives

−ηng(1)
n ḟ (1)

n + τn+1g
(1)
n ḟ

(2)
n+1 + χng

(1)
n ḟ (2)

n = ω̇g(1)
n f (1)

n + ωg(1)
n ḟ (1)

n (A.32)

τng
(2)
n ḟ

(1)
n−1 + χng

(2)
n ḟ (1)

n + ηng
(2)
n ḟ (2)

n = ω̇g(2)
n f (2)

n + ωg(2)
n ḟ (2)

n . (A.33)

Next, we return to the original equations of motion now for g; multiplying the first equation
of motion by ḟ (1)

n and the second equation of motion by ḟ (2)
n , we find

−ηnḟ (1)
n g(1)

n + τn+1ḟ
(1)
n g

(2)
n+1 + χnḟ

(1)
n g(2)

n = ωḟ (1)
n g(1)

n (A.34)

τnḟ
(2)
n g

(1)
n−1 + χnḟ

(2)
n g(1)

n + ηnḟ
(2)
n g(2)

n = ωḟ (2)
n g(2)

n (A.35)

Combining these equations, we find that

τn+1
(
g(1)
n ḟ

(2)
n+1 − ḟ

(1)
n g

(2)
n+1

)
+ χn

(
g(1)
n ḟ (2)

n − ḟ (1)
n g(2)

n

)
= ω̇g(1)

n f (1)
n (A.36)

τn
(
g(2)
n ḟ

(1)
n−1 − ḟ

(2)
n g

(1)
n−1

)
+ χn

(
g(2)
n ḟ (1)

n − ḟ (2)
n g(1)

n

)
= ω̇g(2)

n f (2)
n (A.37)

Therefore, adding both equations gives us

ω̇
(
g(1)
n f (1)

n + g(2)
n f (2)

n

)
= Un+1 − Un, (A.38)

where
Un = τn

(
g

(1)
n−1ḟ

(2)
n − ḟ

(1)
n−1g

(2)
n

)
. (A.39)

Taking a sum over n, we obtain the expression

ω̇
∑
n

(
g(1)
n f (1)

n + g(2)
n f (2)

n

)
= U∞ − U−∞. (A.40)

We can compute the asymptotic form of Un at n→∞, yielding

lim
n→∞

Un = τ∞a(z)
(
z−n+1α1(z) d

dz
(β1(z)zn)− z−nβ1(z) d

dz
(α1(z)zn−1)

)
(A.41)

= τ∞a(z)
(
α1β̇1z − β1α̇1z

−1 + α1β1
(
n− (n− 1)z−2

))
. (A.42)

To compute Un in the opposite limit, we utilize the identity

Un = d

dz
w(z)− τn

(
ġ

(1)
n−1f

(2)
n − f

(1)
n−1ġ

(2)
n

)
, (A.43)

which therefore gives

lim
n→−∞

Un = d

dz
w(z)−τ−∞a(z)

(
znβ2(z) d

dz

(
z−n+1α2(z)

)
−zn−1α2(z) d

dz

(
z−nβ2(z)

))
= d

dz
w(z)−τ−∞a(z)

(
α̇2(z)β2(z)z−α2(z)β̇2(z)z−1+α2(z)β2(z)

(
nz−2−(n−1)

))
.

(A.44)

With these asymptotic forms defined, it is important to note that their difference will be a
function of a(z) and ȧ(z), but the derivative contribution comes solely from the derivative
of the Wronskian. Then, we may write the Green’s function as

Tr(G) = U∞ − U−∞
ω̇w

= − ẇ

ω̇w
+ ξ(z)

ω̇
, (A.45)
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where ξ(z) is a known function of z and can be computed based on the asymptotic compo-
nents of the Jost functions. Next, we compute the trace of the Green’s function by taking
the matrix inverse of the relation in eq. (A.27). Splitting the matrix into H − ω(z)1 and
performing a series expansion about z = 0 or ω(z)→∞, we find that

Tr(G) = − 1
ω(z)

∞∑
k=0

Tr(Hk)
ωk(z) , (A.46)

Combining this with the previous equation and integrating with respect to z, we find

− log w(z)
w(0) +

∫ z

0
ξ(z′) dz =

∞∑
k=0

Tr(Hk)
ωkk

, (A.47)

Using the explicit form of the Wronskian, the logarithm of the reflection coefficient can be
written as

− log a(z)
a(0) = h(z) +

∞∑
k=0

Tr(Hk)
ωkk

, (A.48)

where h(z) is a known albeit complicated function of z. It admits a series expansion in z,
but the coefficients are constants and only depend on asymptotics of ∆, τ , and Π. This
contribution, although infinitely large, can be ignored by a suitable shift of the vacuum
energy in the action. It is also important to note that the analysis above holds for only
one of the energy branches, which we choose to be the positive one. Notice that the series
expansion on the right hand side of eq. (A.48) is not a Laurent series; for odd powers of ω,
the series expansion involves half-integer powers of z. Thus, we cannot claim that log a+
or log a− individually is meromorphic within the unit disk. However, if we add the positive
and negative branches, then we find

− log a+(z)
a+(0) − log a−(z)

a−(0) = h+(z) + h−(z) +
∞∑
k=0

Tr(Hk)
ωkk

+
∞∑
k=0

(−1)kTr(Hk)
ωkk

(A.49)

= h+(z) + h−(z) +
∞∑
k=0

Tr(H2k)
ω2kk

. (A.50)

As even powers of ω admit a Laurent series expansion, the left hand side is now meromor-
phic in the unit disk and the Poisson-Jensen formula may be applied. The application of
the Poisson-Jensen formula is discussed in the text.

B Relating Floquet indices to phase shift

In this appendix we derive eq. (3.43), which gives a relation between the Floquet indices
and the phase shift of the scattering problem. We want to compute ∑k |αk|, where αk =√
u− 2 cosφk). This term is normally divergent; thus to tame the divergence and extract

the finite contribution, we place the system in a finite box of lattice spacing N and impose
the periodic boundary conditions ψi(t) = ψi+N (t) before taking the limit N → ∞. Next,
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we construct the scattering problem for the potential u(1)
n and hoppings t(1)

n . In terms of
left and right movers, we may write the scattering wavefunction as(

ΨL,n

ΨR,n

)
=
(
einφ as n→ −∞
e−inφ as n→∞

)
+ S

(
einφ as n→∞

e−inφ as n→ −∞

)
, (B.1)

where S is the scattering matrix for the one dimensional scattering problem. In terms of
the transmission and reflection amplitudes, S can be written as

S =
(

t r

−r∗ tt∗ t

)
, (B.2)

where t and r are the transmission and reflection coefficients, respectively. As S is unitary,
it is diagonalized by some matrix M , whose columns are the eigenvectors of S. As a result,
we may write

M

(
ΨL,n

ΨR,n

)
= M

(
einφ as n→ −∞
e−inφ as n→∞

)
+ ΛM

(
einφ as n→∞

e−inφ as n→ −∞

)
, (B.3)

where Λ is a diagonal matrix whose elements are the eigenvalues of S, which we label as
exp(iλ±). The functions defined on the left which we will rename ΨL and ΨR will be basis
functions for solutions that satisfy periodic boundary conditions. In particular, setting
ΨL,−N/2 = ΨL,N/2 and ΨR,−N/2 = ΨR,N/2 gives the equations exp (iNφ+ iλ±) = 1. This
results in two branches of solutions for the quasi-momentum φ:

φ±,n = 2πn− λ±
N

. (B.4)

Next, we return to the original expression∑
k

|αk| = T
∑
s=±,n

√
u− 2 cosφs,n (B.5)

Using eq. (B.4) and expanding in a Taylor series of 1/N , we obtain up to O(1/N)∑
k

|αk| = T
∑
s,n

√
u− 2 cos 2πn

N
+ T

∑
s,n

λs
N

sin 2πn
N√

u− 2 cos 2πn
N

. (B.6)

The first sum is a divergent constant due to the lattice regularization scheme that we use.
The finite part in the limit N →∞ will be∑

k

|αk|
finite= T

∫ 2π

0

dφ

2π
sinφ√

u− 2 cosφ
[λ+(φ) + λ−(φ)] . (B.7)

The eigenvalues of S can be readily computed and we find that the two eigenvalues are
λ± = δt(φ) ± tan−1 |r(φ)/t(φ)| where δt(φ) is the phase of the transmission coefficient.
Therefore, we find ∑

k

|αk| = 2T
∫ 2π

0

dφ

2π
sinφ√

u− 2 cosφ
δt(φ). (B.8)

A nearly identical analysis holds in the case of the chiral Gross-Neveu model; here, we have
two pairs of scattering problems that are decoupled, so one must separately add the phase
of the transmission coefficients for both of the scattering problems in the right hand side
of the equation above.
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