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1 Introduction

Marcinkiewicz integral operators and their commutators play a very important role in
harmonic analysis. Therefore, many authors have focused on studying the operators and
their commutators. In 1960, Hormander [1] introduced the parametric Marcinkiewicz

integral, defined by,

HE() () = ( fo N

where p € (0,00). Let  be homogeneous of degree zero in R? for d > 2, integrable and

2 1
dt)\?
s ) , (1.1)

1 / Qx—y)
————f(dy

tr lx—y|<t |x —J/|d_p

have mean value zero on the unit sphere $*-!. Hsrmander [1] proved that, if Q@ € Lip, (S%~1)
for some « € (0,1], then 5, is bounded on L” (R for p € (1,00). In 2001, Fan [2] obtained
the boundedness of 11§, from L}(R?) to LV*°(R?) when €2 € L(logL)(S*™1).

If p = 1in (1.1), then it is the higher-dimensional Marcinkiewicz integral first introduced
by Stein [3] in 1958, denoted pq. Stein [3] proved that g is bounded on L?(R¥) for any
1 < p <2, and is also bounded from L' (R) to L*°(R?). In 1990, Torchinsky and Wang [4]
first introduced the commutator pq ), generated by ug and BMO function b, defined as
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follows:

1ap(f) ) = b®) e (f)(x) — nabf)®), xR,

and established its L#(R?) boundedness for p € (1,00). In 2002, Salman [5] reduced the
condition of the kernel function to € L(logL)% (S%-1), and proved that pq is bounded on
LP(R?) for p € (1,00).

Recently, Giirbiiz considered the boundedness of Marcinkiewicz integral operator with
rough kernel associated with the Schrodinger operator and their commutators [6-8]. Giir-
biiz also proved some relevant conclusions about Marcinkiewicz operators, one may refer
to [9-12]. In addition, Tao proved the boundedness of Marcinkiewicz integral operator
with rough kernel [13-15]

In this paper, we will discuss the boundedness of commutators of the parametric
Marcinkiewicz integral on the non-homogeneous metric space. Let (X,d) be a metric
space, and let i be a positive Borel measure on &’ that satisfies the following growth con-
dition: for allx € X,r > 0,

,u(B(x, r)) < Cor", (1.2)

where Cp >0 and B(x,7) :={y € X :d(x,y) <r}.

Itis well known that the analysis on (X, d, ) played key roles in many fields, for example,
in solving Painlevé’s problem [16]. In 2010, Hyt6nen [17] introduced a non-homogeneous
metric measure space, of which the measure satisfies the geometrically doubling condition
and the upper doubling condition. From then on, many researchers considered singular
integral operators on (X, d, t); see [18—20] for example. The purpose of this article is to
consider the boundedness of the commutators generated by the Log-Dini-type parametric
Marcinkiewicz integral with RBMO functions on (X, d, ). Before stating our results, we
recall some notions of geometrically doubling and upper doubling measure [17].

Definition 1.1 ([17]) Let (X, d) is a metric space; if there exists some Ny € N, and for any
x € X,r >0, such that any ball B(x,r) C & can be covered by at most Nj balls B(x;, 5), we
say (X, d) satisfies the geometrically doubling condition.

Definition 1.2 ([17]) Let (X,d, ) is a metric measure space, if u is a Borel measure on
X and there exist a dominating function A(x,r) : X x R, — R, and a constant C; > 0 such
that r — A(x, r) is increasing and

w(Bx,r)) < Alx,r) < Cid <x g) (1.3)

for all x € X, r > 0, then we say p is an upper doubling measure.
We also need to recall other notions [17, 21].

Definition 1.3 For o, 8 € (1,00), a ball B C X is called («, 8) doubling if

u(aB) < Bu(B). (1.4)
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One can see from Lemma 3.2 of [17] that, if u is upper doubling, for any «, 8 € (1, 00)
and B8 > legzﬂ =: «”, then for every ball B C X there exists j € n, such that /B is («, B)
doubling ball. Moreover, we see from Lemma 3.3 of [17] that, if (X, d) is geometrically
doubling, there exists 7, := log, Ny, such that § > ", if u is a Borel measure on & which
is finite on bounded sets, then, for p1-a.e. x € X, there exist arbitrarily small («, 8) doubling
balls centred at x. Moreover, for any preassigned r > 0, their radius can be chosen to be of
the form o/, j € n. Throughout this paper, fix r > 1, B is a (307, 839;) doubling ball and

Bzor > max{(307)*", 310g2(301)}‘

Foranyr > 1, BC &, B denotes the smallest (307, B30z) doubling ball of the form
(30TYB.

Asin [7], for any two balls B C S, rg and rs denote the radius of the ball B and S, respec-
tively. And x5 denotes the center of the ball B. We define Kz and K, ,s as follows:

1
Kpsi=1+ / i) (1.5)
rg<d(xxp)<rs )‘(xBrd(x¢ xB)

Let N s be the smallest integer satisfying 6™25rg > rg, we define

Nps

n(6*B)
Kps:=1+ Z . Ga)" (1.6)

In the case that A(x,ar) = a”A(x,r) for allx € X,a,r > 0, it is easy to show that Kpg =~ f(B,g.
Nevertheless, in general, we only have Kz s < CKps.

Finally, we recall the definition of Morrey space [22] on (X, d, ).

Definition 1.4 Let« >1and 1 < p < g < 00, the definition of Morrey space are as follows:

MZ(’GH {f € Lloc ”f”MZ(K:M) < OO};

where

a8 e 0 —SUPM (kB)1~ '1’</ lfl”du> . (17)

We remark that, for any «1,x3 > 1, MZ(Kl, ) = MZ(KQ, 1) (see [23]). Particularly, if w is
a doubling measure, then M} (k, ) = Mj(1, ) for any « > 0, and denote it by M} (u) for
brevity. Moreover, it is easily to see that the space M} (1) becomes the classical Morrey
space whenever du = dx.

Next, we introduce the conditions of kernel discussed in this article.

Definition 1.5 Let w: [0,00) — [0,00) be non-decreasing function that satisfies

1
t
/ #Ilogtldt< 0. (1.8)
0
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Let K(x,y) € L} .((X)* \ {(x,9) : x = y}), we say K(x,) is the parametric Marcinkiewicz
kernel of Log-Dini type, if there exists C > 0 such that the following size estimate and
smoothness estimates hold:

(i) Forx,y e X withx +y,

|K(x,9)| < c%. (1.9)
(ii) For %,y € X and if 2d(x, %) < d(x,),

K@) - K(#,9)| = € (z(:(’i )y))w(j((’;j))). (1.10)
(iii) Forx,y,y € X and if 2d(y,y) < d(x,y),

[KGey) =K ()] = Cmﬁiicéfy))w(fzii’,yy? ) (1D

The parametric Marcinkiewicz integral M?” with Log-Dini-type kernel K (x, y) satisfying
(1.9), (1.10) and (1.11) is then defined, initially for f € L* with compact support, by

o0 zdt %
MP(f) ) = ( /0 7) . (1.12)

In case p = 1, M?”, denoted by M, is just the Marcinkiewicz integral operator on

1 K(x,y)
v /B<x,t> e,y D)

(X,d, u) with Log-Dini-type kernel.
In 2014, Lin and Yang [24] proved that M is bounded on L?(u) if and only if M is
bounded from L(u) to L¥*(u), if the kernel K (x, y) satisfies (1.9) and for all x,y,y’ € X

/ / du(x)
K(x,y) - K(x, K(y,x) - K(y, <c 13
/;Kw)ﬁd(y,y’)[' (5,3) = K(wy)| + [K(2) =Ky x)”d(x,y) = (1.13)

In 2016, Fu and Lin [25] proved that when the kernel K (x, y) satisfies (1.9) and (1.13), if M*
is bounded on L7°(i1) with some 1 < pg < 0o then M? is bounded from L!(u) to LY ().

Given b € RBMO(u), the commutators M} generated by M? with RBMO function b
is defined by

M) = ( /0

In general, for all m € N, the mth-order commutators M, is defined by

oo Zdt %
P - _
My () = ( /0 t) . (1.15)

In 2015, Zhou [26] showed that the commutator M, is bounded on L”(u), if M is
bounded on L%(u), and the kernel K (x, y) satisfies (1.9) and the following Hérmander type

24¢\ 2
7) . (1.14)

1 K(x,)
& /m ) W [b(x) —b()]f () de(y)

L[ Ky
& /B(x,t) |d(x, y)|1-F [6(x) ~bO)]"f () ()

Page 4 of 21
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condition:
[o¢]
sup E if‘ ‘ [|K(x,y) _ K(x,y/) |
d ~0 ., =1 6ir<d(x,y)<6i+1r
L (1.16)

+ Ky, %) -z<<ycx>|]d(x+y) du) < C.

In 2019, Tao [27] proved that, if the kernel satisfies (1.9) and (1.16), then M, is bounded
on MZ(M), In fact, we can see that (1.16) is stronger than (1.13).

In case X = R?, the non-homogeneous Euclidean space, then for the kernel K(x,y) in
the Marcinkiewicz integral it can be assumed that K(x,y) € LllOC (R x R\ {(x,y) : x = y})

satisfies the following conditions with a constant C > 0:
[Kx,9)] < Cla—y"*0 (1.17)
and

/ [!I((x,y)—K(x,y’)| + |K(y,x)—1((y',x)|];du(x) <C. (1.18)
le—y|=2ly-y| o =yl

for all %, 7,y € R? with x #y. And the Marcinkiewicz integral M is defined by

00 2d %
mp = ([ [ xwororau| §) 119
x—y|<t

t

In 2007, Hu [28] obtained M is bounded on L”(1), 1 < p < 00, and is bounded from L (u)
to L>°(u). Later, Zhang [29] proved M is bounded on MZ(M).

For m € N and b € RBMO, the mth-order commutator for Marcinkiewicz integral is
denoted by

24t 2
7) ) (1.20)

In 2007, Hu [28] proved that My, is bounded on L?(u) if the kernel K(x,y) satisfies
(1.17) and the following condition:

Muntp)e) = ([T|7 [ Ks[b9 5001 )
x—y|<t

oo

sup Zl /21r<|xy|521+1r[‘K(x’y) ~K(x,y )|

r>0,y,y' R -1

ly=y'I<r (1.21)

1
+ |K(y,x) - K(y’,x) Hﬁ dulx) <C.
x=y
It is easy to see that (1.21) is stronger than (1.18). In 2010, Zhang [29] proved that M, is

bounded on MZ(M) under the same assumptions.

Now we turn to stating the main results of this paper.

Page 5 of 21
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Theorem 1.1 Let K satisfy (1.9), (1.10), and (1.11). M?*, ./\/IZ be as in (1.12) and (1.14),
respectively. Suppose that M? is bounded on L*>(11), b € RBMO(u), 0 < p < 0o. If w satisfies

1

t

/ # [logt| dt < oo, (1.22)
0

then, for all f € L (), 1 < p < 0o, there exists a constant C > 0 such that

||MZ(f)||Lp(#) < ClIbllrBMO) IIf 122 12)- (1.23)

In fact we will prove the L?(11) boundedness for a more general mth-order commutator

for the parametric Marcinkiewicz integral.

Theorem 1.2 Under the same conditions of Theorem 1.1 and MZ‘m be as in (1.15). If w

satisfies the following condition:
1
t
f ? [logt|” dt < oo, (1.24)
0

then for all f € LP(11), 1 < p < 00, there exists a constant C > 0 such that

| M5, () ”LP(M) = ClIblIRmog I 7o (1.25)

Theorem 1.1 is the special case of Theorem 1.2 in which one can take m = 1. We will
prove Theorem 1.2 in Sect. 2.

Moreover, we will establish the boundedness of MZ,m on the Morrey space.

Theorem 1.3 Assume the same conditions of Theorem 1.1 and MZ,m as in (1.15). If o
satisfies (1.24), then there exists a constant C > 0, for all f € Mj(w),1 < p < g < o0, such
that

”MZ,m(f) ”M;(#) = C”h”fanMo(u)Hf||Mg(m~ (1.26)

By checking the proofs of Theorem 1.2 and Theorem 1.3, we can obtain the following
two corollaries, which extend the results in [26] and [27].

Corollary 1.4 Let the kernel K(x,y) satisfy (1.9) and (1.16), M? and ./\/lﬁ’m beasin (1.12)

and (1.15), respectively. Suppose that M? is bounded on L*(j1), b € RBMO(1),0 < p < oo.
If w satisfies (1.24), then there exists a constant C > 0, for all f € L (i), 1 < p < 00, such that

M3, 1y = CIBIRBMOG I 220

Corollary 1.5 Under the same conditions of Corollary 1.4, there exists a constant C > 0,
Sorallf € Mi(w),1<p < q < o0, such that

p
| M3, ”MZ(;U < ClIbliRBpog) I agg -
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Remark 1.6 If p =1,m =1 on Corollary 1.4, which is Theorem 1.10 of [26];if p =1,m =1
on Corollary 1.5, which is Theorem 1.8 of [27], so our results contain their conclusions.

Throughout this paper, d is the dimension of space; C denotes a positive constant that
is independent of the parameters, furthermore, it value may differ from line to line; x5
denotes the center of the ball B, rz denotes the radius of the ball B; for any p € (1, 00),

j2

we denote by p’ = 57 its conjugate index; mp(b) is the mean value of B on B, namely

mp(b) = 155 [ bx) dpu(x).

2 Proof of Theorem 1.2
We first recall the definition of a sharp maximal operator M*f(x) [21] over (X,d, u). For

any f € Li, (1),

1
w(6B)

/lf—mé(f)ldw up 70 s (2.1)
B ( Kps

B,S)eAx

M*f(x) = sup
xeB

here A, = {(B,S) : x € B C S, B,Sare doubling balls}. As usual, we let Mg(f)(x) =
1
[ME(f()1)]5.
We will use the following lemma about sharp maximal function on (X, d, 1) proved by
Fu [18].

Lemma 2.1 (i) Letp>1,s€ [1,p),¢ € [5,00). Forallf e L} (u) andx € X,

loc

! %
= - s 2.2
maf) = (s [0l ) >

is bounded on LP (i) and also bounded from L' (1) to LY (). If s = 1, then M f = Mr\f .
(ii) For any 8 € (0,1) and for f € L- (11), define

loc

Nf()=  sup (ﬁ fB V(y)l‘sdu(y))a,

x€B:doubling

then, for -almost every x € X,

f ()] < Nof (). (2.3)
According to Theorem 4.2 in [21], we can easily get the following lemma.

Lemma 2.2 Let f € L\ (1) satisfy fodu = 0 when ||| = w(X) < co. Assume that

loc

inf{1, Nsf} € LP(w), for any p € (1,00), § € (0, 1), then there exists a constant C > 0,
INsf v < CIMEO] - (24)
The next two lemmas can be found in [30].

Lemma 2.3 Let ¢ > 1, for b € L{, (). The following statements are equivalent:
(i) b € RBMO(u).
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(if) There exists a constant C > 0, such that, for all balls B,

1
——— [ |b(x) — mz(b)| du(x) < C, 2.5
=5 660 -] o) < 25
and for all (307, Bso;) doubling balls B C S,
|mp(b) — ms(b)| < CKgs, (2.6)

where mp(b) = ﬁ [ b(x) du(x). Furthermore, the infimum of all positive constants C sat-
isfying (2.5) and (2.6) is an equivalent RBMO norm of b, denoted by ||b|lremo()-

Lemma 2.4 Let o > 1,p € [1,00), if b € RBMO, for any ball B, then there exists a constant
C >0, we have

(@ /B’b(x)—mg(b)’p d,U«(x))p < ClIbllremo(u)- (2.7)

We need the following lemma about the boundedness of parametric Marcinkiewicz in-

tegral operators.

Lemma 2.5 Let kernel K(x,y) € Lt ((X)?\ {(x,9) : x = y}) satisfy (1.9), (1.10) and (1.11),

loc

MP be as in (1.12), 0 < p < co. If MP” is bounded LP°(1),1 < pg < 00, then M? is bounded
Sfrom LY (i) to LY ().

Proof In Theorem 2.1 of [25], the kernel function satisfies (1.9) and (1.13). It is easily to see
that (1.13) is weaker than (1.10) and (1.11). So by similar argument as that in Theorem 2.1
of [25], we can prove the lemma. Hence, we omit the details. O

To prove Theorem 1.2, we should first establish the following lemma.
Lemma 2.6 Let K(x,y) satisfy (1.9), (1.10) and (1.11). Suppose MP” be as in (1.12) is

bounded on L*(1), b € RBMO(). If 0 < p < 00, § € (0,1) and w satisfies (1.24), then there
exists a constant C > 0, for all f € LP (), such that

m-1
MM}, (N)] < C[Z 111500 Mazor [ M ()] ()
k=0
(2.8)

+ 161l RBMo G Mp.30c (f)(x):|.

Here M}, = M} and M}, = M".

Proof Without loss of generality, we may assume that ||b|[remo(.) = 1. In order to prove
(2.8), it suffices to prove that, for all x € X’ and balls B > x,

= ;
[m fB IMZ,m(fxy)—thd,,,(y)]
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m—1
< C[Z My 50: [My ()] () + Mpz0: (f) (x)i|, (2.9)

k=0
and for all balls B C S, S is a (307, B30;) doubling ball,

|hp — hs]

m-1 (2.10)
< ClKps]" [Z Mysoe [ME, (0] ) + M50, (f)(x)],
k=0

where

hg = mp[M? ([b - mz(b)]"f xx\68)],
hs = ms[ M ([b - mg(b)]"fxaes)]-

Now we decompose the function f into two parts, i.e., f = f xes + f xx\68 :=f1 + fo. We
can write

[b() - b(2)]"

. m-1 ‘ ok (2.11)
= [m3(6) - b(@]" = Y Ck[6) - b()] [m5(b) - b(y)]
k=0

Thus, we obtain

M, ()
©| 1 K(y,2) m zdt :
i </0 t—P/B(m Id(y,(z)lzl-/)[(b(y)_b(z))] fEdu 7)
m-1

<Y CE mp(b) - b»)|" M () + MP([B() = mpB)] ") ).

k=0

Since0<d <1,

1

[@ /B!Mz,mm(y)—hgrdm)]ﬁ

T
[ ch |m(b) - b)|" My () dﬂ(y)}
I:M(BOTB) / M ([60) = m®)] ")) du(y)}
[/L(BOTB) / |MP([b0) = mp®)]"£) ) - s du(y]

=IE1 +E2 +E3.
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To estimate Ey, let y,n > 1, be such that

By Holder’s inequality and Lemma 2.4, we have

Ergc[ (30B) <f| O i U)

1

8 (/ MO W’)n]a

<cgnbnRBMo ( G075 (/|M5k(f(y)!”du(y>)

m—

Z n30r (M () @).

k=0

For E;, by the Kolmogorov inequality, Lemma 2.5, Holder’s inequality and Lemma 2.4, we
have

Ex= [ 3013)/| b() — my(b ]mﬁ)(y)ladu(y)}
< [MP([BC) = mp®] ") )] 100 65,00

7G0:B)

1 m
—Cm[g|b@)—ME(b)| A dr®)

§C< 3075 /I () —mp(b \mpdu(y)> (

=< C||b||ngMo(M)Mp,30: (f)(x)

= CMp,BOr (f) ().

[

M(y)

As to the estimate E3, we observe that
| M ([b() = mp(b)]"£) () - hs]
([ Ko
B ‘M(B) /1;</0 /d@m ld(y, )1~
2 dr \?
x [b(2) ~ mz(®)]"fs(2) dps(2) M) du(w)
1 o Kw,z)
- /'L(B) L(»/O /;l(w,z)<t |d(W’ Z)Il_p

m 2 gt \?
(660 - 0] "B 2| 1557) )

t2p+1

) ‘E /Z;WP(["(') — m(®)]"f) )~ M ([b() ~ mz(B)]" ) w)| dps(w).
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Hence

Fas [u(sona) / (M(B) / M ([50) - mpB)]"£)0)

1

8 §
—M"([b(~)—mg(b)]mﬁ)(w)ldu(w)) du@)] .

In fact, for y, w € B, we observe that

’MP([ mB(b)] fz)o’)_Mp([b(~)—mB(b)]mﬁ)(w)|
: (/ oo / 20l Z)_ [b(z) — mp(b)]" fa(2) dpu(2)
o |Ja

o<t 1A, 2)|1=P
K(w,z)
dw,z)<t 1AW, 2)|1=P
o0
<(/
0

_/d M[b(z) - my()]"fo(2) dp(z)

(wz)<t |d(W, Z)|17'0

(I
(U
U

x [b(2) - mp(b)]"fo(2) dia(2)

2

2 g \?
)
/d KOD 1y im0 duto)

o<t 1A, 2) 1P
1
2 odr \?
t2p+1

K(y, .
/d(y )<t<d(w.z) Id(y(Z)Tl)p [b(z) — my(b)] " fo(2) dpu(2)

[b(z) - mp(b)]"fo(2) dia(2)

1
> dt \?
t2p+1

1
> odt \2
t2p+l

/ ( KD Tte) - )] o(2) At

dwz)<t=d(yz) |A(W, 2)[1=°

/ ( K(y,2) K(w,2) )
max{d(y,z),d(w,z)}<t |d(%Z)|1"” |d(W,Z)|1_p

1
> dt \?
t2p+1

= F1 +F2 +F3.

In order to estimate Ej, it suffices to estimate F;, F», andF;. To estimate Fy, for all y, w € B,
we have d(y,z) ~ d(w, z) ~ d(c, z). By the Minkowski inequality, (1.9), Holder’s inequality,

and Lemma 2.4, we get

IK(y,2)| N ( dt )5
b(z) — mx(b — | d
b= /2\6\63 ld(y,2)|1=F | (&) = )| V(Z)i /;’(y,z)<t<d(w,z) ¢+l )
dw,y)\
|d(y 217 <d<w,z)) “ulz)

rs % 1 "
ECkz—:f“*‘B\GkB(%) m|b(z)"mé(”)| If (2)] dpu(2)

d(y, 2)|”
AP ET b
= C/;(\és )»(y,d(y,z))| (2) — my( )| lf(z)|

oo

Z( A(c3,6kr3))[/ k+1B| (2) = m o (0)]"|f (2)| dpu(2)

=1
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’ /6k | gy (0) = m(0)| | (2)] du(z)}

[o¢] 1 1 ) !17
< C;(Zk m) ( 6mBLf(z)| du(z))

x [(/6k+13|b(z) - m6k+13(b)‘m'p du(z))

_1
+ K7 1Bl o [11(307 x 61B)]' }

k" +1 (30T x 65*1B)

< ClIblEsmopn pgor(fxx)Z(

< CM,, 30 (f) ().

We have used the following fact in the last inequality:

(30T x 651B)  u(6**1B)
Mg, 6krg)  ~ A(cp, 61)

_W61B)  u(6'B)
= w(6*B)  Alcp, 6krp)

<C.

Similarly, we get

Fy < CMp,30: (f) (%)

To estimate F3, for all y,w € B, we have d(y,z) ~ d(w, z)

inequality, we get

FBS/X\6B
dr \}
<Jo@ - @I [ )

K(y,z) K(w,2)
= j;c\aB

ld(y,2) =0 |d(y,2)[-°
© g \}
<Jot@ - @I [ 57)
+/X\6B

<Jo@ - @I [ 7))

= F31 + ng.

K(y,2) K(w,2)
ld(y,2)=7  |d(w,z)[-°

K(w,z) K(w,2)
ld(y,2)|1*  |d(w,z)|-

Mcp, 6K7)

~ d(cp,z), using the Minkowski

Page 12 of 21
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Next we estimate F3; and Fjp, respectively. For Fs;, by (1.10), Holder’s inequality,
Lemma 2.4 and (1.24), we have

d(y,2) (d(% W)) [f (2)
Fa = C/_:y\63 A(y,d(y,z)) @ d()/,Z) |d()/ 2)| |b( ) — mB(b)| dﬂ(z)
00 re 1 y
= C](X:l: /;k+13\6k3 w<6kr3) Mcg, 6515) ‘b(z) - mé(b)‘ lf(Z)’ du(z)

[ee]

Z &) )‘(CB 6kVB) |:/5k+13|b(z) m6k+13(b)|m[f(z)|du(z)

+ /;k+1B| 6k+lB(b) mB(b | lf |d:l’L :|

i 1

<Y 0l6) i o, VO 0)

) |:</k+13|b(z) m6k+1B(b)|mP d,u, Z))

+ Clmgiry (b) — mg(b)| " [12(61B)] 2 ]

1
7

(30T x 6K+1B)

[ee]
= C”b”RBMo pBOT(f Z z
1 A(cp, 65rp)

< CMp30: () (%)

We have used the following fact in the last inequality:

/ w()|logt| dt>2/

To estimate By, forall y, w € B, if p € (0, 00), by (1.9), Holder’s inequality and Lemma 2.4,

6l-k

a)(6 ) 67k|mdtZCkaa)(6fk).
k=1

we get

F3 < C/
X\6B

= CZ6_ )»(CBy6kVB) /k+13\6k3 (@) = mz(®)|"|f @) dp2)

dw,z)
Arw,d(w, z))

|b(z) - mp(b)|" [f(Z)||d(y d(z)

d(w
oo

oo ) 1 y
SCI<2:1:6 km[./dﬂgw&) m6k+1B(b)| lf(Z)|d,U,(Z)

+./6k+1| wip) - mp(b)|" |f (2)| dus(2)
1

N » ;
§C;6 m(/;kﬂjglf(zﬂ dM(Z))

* |:</k+13|b(z) m6k+lB(b)|mP d,u, Z))

==
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1
+ K 180 oo (6 B)] }

2\ k" + 1 (30T x 6K41B)

< ClIblavogMpaor () Y~ N 675)
1 B> B

< CMp,30: (f) ().

Then we have

F3 < CM,,300) (f ) (%).

Moreover, combining the estimates of Ej, E, F, F5, and F3, we obtain the desired in-
equality (2.9).
Next we give the proof of (2.10). Write
\hg — hs|
= |mp(MP ([ = mp(®)]"f xa\6)) = ms(MP ([b - ms(B)]"f xaes)) ]
< |ms(M?([b~ mB(b)]meX\éNlB)) —ms(M”([b- mé(b)]meX\ele))|
+ [ms (M ([b = mp®)]"f Xaore18)) = s (M ([b = msB)] " Xor15))]|
+ ””B (MP([Z’ - mé(b)]mele B\6B))‘ + ‘mS(M'D ([b - mS(b)]me6NlB\6S))’
=G+ G+ Gs + Gy

To estimate Gj, it being similar to E3, we get
G1 < CM,,30:(f) (%).

For G,, we use
[b(2) - mz®)]" - [b(z) — ms(B)]"

=3 CE[b(@) - ms®)] - [msb) - ma®)]" ™,

k

[b@) - ms®)] = Y Ci[b@ - b)] - [bly) - ms(B)] "

i=0

So we have

|Mp([b - mé(b)]meX\ﬁNlﬂ) - Mp([b - mS(b)]meX\6NlB)|
<|M?[([b-mzB)]" - [b- mS(b)]m)fXX\aNlB”

<Yk |my®) - ms(®)|" M ([b - ms(B)] F xan615) D)
0

3

>
Il

m-1

< C Y K" M ([b— ms(®)] F xa,015)®)

k=0

Page 14 of 21
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m-1
= CZ[KBS]m k|:Z C/(’WIS b) - b(y)‘ Z,i(fXX\eng)(y)i|

k=0 i=0

m-1 k
< CZ[I<B,S]m7k (Z | ms() - b()’)| (J’))
k=0 i=0

m—1

+ CZ[KB,S]”’_/(M”(M — mg(b) ’kfXGNlB\6B)(y)

k=0

m—1
+C Y [Kp s MP([b = ms(®)]f xs5) )
k=0
Therefore,

m—1
Gy -m{cZ[KBs]m k<2|ms(b> bo)|* M;f,i(f)ﬂ

k=0 i=0

m-1
+ mg |:C Z[KB,s]m_kMP ([6- mS(b)]kfX6NlB\6B)i|

k=0

m-1
+ mg |:C Z[l(gys]m_k./\/lp([b - mS(b)]kfX6B):|

k=0
= H1 + H2 + H3.
With the same argument as for E;, we get
m-1
H; < C[Kgs]™ Y Myz0c (M () ().
k=0
The estimates of H, and Hj is very similar to G4 and E,, respectively, then we have
Hy < C[Kps]" Mp30: (f) (%),

H3 < C[Kps]" Mp30: (f)(%).
Therefore, combining Hi, Hy, H3, we have
m-1
Gy < C[Kps]™ |:ZM;7 30t (M () () + Mp,30¢ () (x) :|
k=0

For Gjs, by (1.9), the Minkowski inequality, Holder’s inequality, we obtain

|Mp ([b - mé(b)]mJ%ng\wH
| K(y, ”
LT Lt 180 0 st

|d(y,2)|” m 1
—————1b(z) —mxzx(b d
5/@&3\63 20,d0n9) 2@ O @l e @)

241\ 2
t
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> b b)|"|f(z)|d
=¢ 1; /6"“3\6k3 mi (2) - my(®)|" |f (2)| dia(2)
Ni-1 1 )
=¢ Acg, 6k75) [/GIMBV)(Z) - mgeag(®)|” |[f(2)| di(z)

B|m6k+13(b)—mg(b)|m[f(z)|du(z)]

: PRY:
m(/@ﬂlglf(zﬂ dﬂ(z)>

x [( / 1b(2) — mgee15(B)|"” du(z))p
6k+lB

_1
+ KBl smoqo [1#(30T x 6°1B)]' ﬂ}

k=1
+
6k+1
N1-1
=C)
k=1

3 =

Ni-1 k+1
. . w(30T x 6X*1B)
< ClB im0 Mpsor () @) kX; [(k + l)m]

< CM,30: (f ) ().
Therefore,
Gs < CMy,30: (f) (%).
Similarly,
Gs < CMy,30: (f) (%).

Since (2.10) has been proved, Lemma 2.6 follows directly.
By Lemma 2.5 and the Marcinkiewicz interpolation theorem, we have

M) iy < CIF v (2.12)

Then using (2.3), (2.4), Lemma 2.6 and Lemma 2.1, we get

[MEO 1
< [Ns (MO
< | MM | 1
< CllblIrssouo [[Mazor (M? () ) + Mpsor (F)0)] | 1

< ClIbllremo(u) IIf 12z (-

We set

M s O oy < CHENZNO I N2
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Finally, using mathematical induction, (2.3), (2.4), Lemma 2.6 and Lemma 2.1, we obtain

M)
< [Ns (MG O oy = 195 (MG, O o
< C[Z 1811 REN00) | Mn 30 (M ED 1 + 181RBM000) [ M 20- () ”me}'
= Clbliggmolf o w)-
Then Theorem 1.2 is proved. O

3 Proof of Theorem 1.3
In this section, we will prove Theorem 1.3. We recall the boundedness in Morrey space
MZ(M) of the sharp maximal function on (X,d, u) [22, 31].

Lemma 3.1 Let f € Lloc(/,L satisfy [ f(x)du(x) =0 when ||| := p(X) <oo. Let 1 <p <
q<00,8€(0,1). Ifinf{1,Nyf} € MZ(M), then there exists a constant C > 0, such that

INf gy < CIME O g (3.1)

Lemma 3.2 Let ¢ >1,1<s<p < g <00, My.f be as in (2.2) is bounded on Morrey space
M), that is,

||MS:§f”MZ(;4) =< C”f”MZ(IL)' (3'2)
Next we give the proof of Theorem 1.3.
In combination with Lemma 2.6, the differences between the proof of Theorem 1.2 and

Theorem 1.3 are as follows:
By (1.7) and (2.12), it is easy to see

,
M) = s ([ 1Mo i)
= sup u(B) 7 [ M),
< Cst;p W(BYT 7 |l
< Clf g
Then using (2.3), (3.1), Lemma 2.6 and (2.2), we have
I MEO g = INsOMEEN g5 = | M5 (M5 ) g0

= Clblromou ([M0r (MPO) | yg + 15000 )

< ClIbllrmO( |[f||Mq



Xiangxing and Qiange Journal of Inequalities and Applications (2021) 2021:115 Page 18 of 21

We set

“Mz,m—l(f)HMg(M) = C”b”RBMO”f”Mq

Finally, by mathematical induction, (2.3), (3.1), Lemma 2.6 and (2.2), we get

“ MZ,m(f) ||Mq(;4)

< [ N5 (M) gy < IMEME ) g
< C|:Z Hb”RBMO ||M77 SOT(Mbk(f )”Mq + “b”ngMO(;L) HMp,?)OT(f) ”MZ(”’)i|

=< ClIbliRBmO) I a1

So, the proof of Theorem 1.3 is finished.

4 Proof of Corollary 1.4

If p =1,m =1 on Corollary 1.4, which is Theorem 1.10 of [26]. The different between
Corollary 1.4 and Theorem 1.10 of [26] is to estimate F3;. So, in order to complete the
proof of Corollary 1.4, it suffices to show that

F31 < ||fllzeo (e Z/k‘rlB\skB %Va( mg(b)|m du(z)

- IK(y,2) — K(w,2)] m
< Ifllzoq) =2 b(2) - m o (b)| " dp(2)
g kZ/ d(y.2) 618

6k+lB\6kB

S o IK(y,2) — K(w,2)]
Wi Dy ®) - ma)| / ot

= =
= F3; + F3).

Using Lemma 2.3, Lemma 2.4 in [26], (1.9) and (1.16), we have

= IK(y,2) — K(w,2)|
Fyy < f e Y / ———
k=1

6k+lB\6kB d(y, Z)

K K(w,
x log™ |:2 +65 - (307 x 6°B) M] du(z)

d(y,2)

1
+ |V||Lw<ﬂ)zm o1, P (16@) = e (B)]) du(z)

o K (y,2) - K(w,2)]
S|lf||L°°(m+|Lf||Loo<u)Z/</ KG.2) = Klw,2)|
k=1

6k+lB\6kB d(y, Z)

. (30T x 6FB)
X lOg <2 + A,(CT()/,Z))) d[L(Z)

< oo
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and

o0
1
By < |l W/ K,2) = Kw,2)| —— dp(2)
31 [fllz (M)k; 6’<+1B\6/<B| ()’ |d(y,z)

< W llzeoq)-

This completes the proof of Corollary 1.4.
Using the similar to the argument in the proof of Corollary 1.4, we can get Corollary 1.5.

5 Some applications
Now we give the applications of Theorem 1.2 and Theorem 1.3 for the classical parametric
Marcinkiewicz integral.

Let © be homogeneous of degree zero in R? for d > 2, integrable and have mean value
zero on the unit sphere S9!, In addition,  satisfies the following condition: with a con-

stant C > 0, for x,&’,y € R? and |x —&/| < ‘x—;y‘,

Q@ -y - Q@ -y)| < Cw<'|’;__’;l'), (5.1)

where w satisfies (1.24).
wo be as in (1.1), where 2 satisfies the above condition (5.1). Moreover, ug'bm is gener-
ated by pf, with RBMO functions b, defined by

p _ o0
sy F)) = ( /0

where 0 < p < d.

_ . 241\ 2
5 =) 1y~ b))y {) 52)

tr [x—y|<t |x —)’|d_”

Theorem 5.1 Let 0 < p < d and Q satisfies (5.1). Mg,b,m(f) be as in (5.2), and w satisfies
(1.24), then there exists a constant C > 0, for all f € L’ (R%),1 < p < 00 such that

P
||H’Q,b,m(f) ||U”(Rd) = C”b”;nBMo(Rd) ”f“l}’([\’d)'

Forall f € M}(R%),1 < p < q < 00, such that

o
”“‘Q,b,m(f) ”MZ(Rd) = C”b”;{nBMO(Rd) |[fllM,‘Z(Iff”)‘

Next, we give the applications of Theorem 1.2 and Theorem 1.3 for the parametric
Marcinkiewicz integral operator in Euclidean space where y satisfies the growth condition
(1.2).

Let w satisfy (1.24), K satisfy (1.17) and the following conditions hold with a constant
C>0:

, / 1 e
) [Kis) Kl = o 2,
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where x,x',y € R? and |x — /| < "c%y'

, / 1 ly =yl
(¢) |[K@y-Kxy)| < C|x_y|d—lw( v~y )

where x,y,y € R* and |y - y'| < @
Define the parametric Marcinkiewicz integral operator M” with respect to the kernel
above as follows:

MP(f)(x) = ( [

Mj,, is generated by M” with RBMO functions b, defined by

M () = ( /0

Theorem 5.2 Let 0 < p < 00, and K satisfythe above conditions (1.17), (b') and (c'). Let
M?, My, be as in (5.3) and (5.4). Suppose that M? is bounded on L*(u), b € RBMO(),
satisfies (1.24), then there exists a constant C > 0, for all f € L (1), 1 < p < 00 such that

2 dt

s o e

1
2
7 Sy o1 ) o o

ar
[ el eae| ). 6

tr [x—y|<t |x_y|1_p

|M3,,(F) ”1}1(,4) = ClIblRemoqw If 17 w-

Forall f € M(R%),1 < p < q < 00, we have

P
|73,,F) ”Mg(m < ClIbliRBmoo) I ags -
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