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Computational analysis for identification of
early diagnostic biomarkers and prognostic
biomarkers of liver cancer based on GEO
and TCGA databases and studies on
pathways and biological functions affecting
the survival time of liver cancer
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Abstract

Background: Liver cancer is the sixth most commonly diagnosed cancer and the fourth most common cause of
cancer death. The purpose of this work is to find new diagnostic biomarkers or prognostic biomarkers and explore
the biological functions related to the prognosis of liver cancer.

Methods: GSE25097 datasets were firstly obtained and compared with TCGA LICA datasets and an analysis of the
overlapping differentially expressed genes (DEGs) was conducted. Cytoscape was used to screen out the Hub
Genes among the DEGs. ROC curve analysis was used to screen the Hub Genes to determine the genes that could
be used as diagnostic biomarkers. Kaplan-Meier analysis and Cox proportional hazards model screened genes
associated with prognosis biomarkers, and further Gene Set Enrichment Analysis was performed on the prognosis
genes to explore the mechanism affecting the survival and prognosis of liver cancer patients.

Results: 790 DEGs and 2162 DEGs were obtained respectively from the GSE25097 and TCGA LIHC data sets, and
102 Common DEGs were identified by overlapping the two DEGs. Further screening identified 22 Hub Genes from
102 Common DEGs. ROC and survival curves were used to analyze these 22 Hub Genes and it was found that there
were 16 genes with a value of AUC > 90%. Among these, the expression levels of ESR1,SPP1 and FOSB genes were
closely related to the survival time of liver cancer patients. Three common pathways of ESR1, FOBS and SPP1 genes
were identified along with seven common pathways of ESR1 and SPP1 genes and four common pathways of ESR1
and FOSB genes.
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Conclusions: SPP1, AURKA, NUSAP1, TOP2A, UBE2C, AFP, GMNN, PTTG1, RRM2, SPARCL1, CXCL12, FOS, DCN, SOCS3,
FOSB and PCK1 can be used as diagnostic biomarkers for liver cancer, among which FOBS and SPP1 genes can also be
used as prognostic biomarkers. Activation of the cell cycle-related pathway, pancreas beta cells pathway, and the
estrogen signaling pathway, while on the other hand inhibition of the hallmark heme metabolism pathway, hallmark
coagulation pathway, and the fat metabolism pathway may promote prognosis in liver cancer patients.
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Background
According to the Global Cancer Statistics report of
2018, liver Cancer became the sixth most commonly di-
agnosed cancer and the fourth leading cause of cancer
death in the world in 2018 [1]. The highest incidence
(mortality) of liver cancer is in East Asia, accounting for
35.5% of the global total. The main risk factors for liver
cancer are chronic hepatitis B virus (HBV) [2–4], hepa-
titis C virus (HCV) [5–7], aflatoxin-contaminated food
[8], heavy alcohol consumption [6, 9, 10], obesity [11],
smoking [12] and type 2 diabetes [13, 14]. According to
statistics, the risk factors of liver cancer formation are
different in 53 countries and throughout different re-
gions in the world. In most high-risk areas such as China
and East Africa, chronic HBV infection and aflatoxin ex-
posure are the main determinants of liver cancer. In
contrast, HCV infection is the leading cause of liver can-
cer in Japan and Egypt [15, 16]. For low-risk liver cancer
areas, an increase in obesity rates is the leading cause of
the increase in liver cancer case.
The internationally recognized TNM cancer staging

method divides cancers into stage I, II, III and IV [17].
Also, work on the topic has previously divided cancer
into early, middle and late stages. Corresponding to
TNM stages, phase I is early-stage, phase II and III are
middle-stages, and phase IV is late-stage. Most cancers
are diagnosed at the late stage and this holds especially
true for liver cancer. Modern medical research has
shown that there is no pain sensation in the liver and
even if any liver disease had started, the body can’t feel
or recognize it through a pain-feedback mechanism.
Hence, the clinical manifestation of liver disease is very
slight, most patients with liver cancer are diagnosed at a
late stage owing to a lack of timely symptom manifest-
ation and identification [18–21]. The cure rate of early-
stage liver cancer is very optimistic, therefore if a diag-
nosis can be made in any stage before stage IV, the
treatment of the cancerous mass will be less intense as it
would be for the final stage.
Alpha-fetoprotein (AFP) is currently the only clinically

used biomarker for the early diagnosis of liver cancer.
AFP was discovered more than 50 years ago and is not a
very accurate diagnostic biomarker for liver cancer. 32
to 59% of liver cancer patients have been shown to have
normal AFP levels [22]. Therefore, finding new

diagnostic biomarkers of liver cancer is of great signifi-
cance for accurate diagnosis. For cancer patients, the
prognosis and survival time of cancer is of utmost im-
portance for improving the quality of life of patients, as
well as the diagnosis and treatment scheme adopted.
Currently, therapeutic indications for the treatment of
liver cancer are more concerned with tumor size and the
number of nodules and less concerned with its aggres-
siveness to spread [23]. Compared with a small and ag-
gressive liver cancer node, patients with multiple large
but non aggressive liver cancer nodules may have a bet-
ter prognosis, hence it may be assumed that the current
prognostic criteria are not accurate or the best for prog-
nosis. If new genes related to the prognosis of liver can-
cer can be identified, it will hold large positive
ramifications for both treatment and the improvement
of patients’ quality of life. In this scientific work, the data
of liver cancer patients in TGCA and GEO databases
were taken as search criteria to identify diagnostic bio-
markers and prognostic biomarkers of liver cancer
through data mining. The aim is to improve the accur-
acy of the early diagnosis of liver cancer, achieve early
detection and treatment and thus reduce mortality. At
the same time, through the accurate judgment of the
prognosis of liver cancer patients, adjuvant treatment to
determine the plan of action could be streamlined.

Methods
Microarray data
The liver cancer dataset was obtained from TCGA
(https://portal.gdc.cancer.gov/). This included 50 normal
liver tissue samples and 371 samples of liver cancer which
was coupled with clinical data. Another gene expression
profiling dataset (GSE25097) included information on 243
normal samples and 268 tumor samples, which was down-
loaded from Gene Expression Omnibus (GEO, https://
www.ncbi.nlm.nih.gov/geo/database) and measured in an
array (Platform: GPL10687 Rosetta/Merck Human RSTA
Affymetrix 1.0 microarray, Custom CDF).

Data processing
The original microarray data of the GSE25097 and
TCGA LIHC datasets were respectively analyzed with R
language to screen the differentially expressed genes
(DEGs). Adj .p-value < 0.05 and |logFC| > 2 were used as
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the cut-off criteria. A Draw Venn Diagram online tool
(http://bioinformatics.psb.ugent.be/webtools/Venn/) was
used to calculate the intersection of two differentially
DEGs derived from two different datasets, which repre-
sented common differentially expressed genes (the Com-
mon DEGs).

Volcano maps and heat maps of DEGs obtained from GEO
and TCGA databases
Packet pheatmap, packet ggplot2 and other R packets
were used to draw heat maps and volcanic maps of
DEGs.

Gene ontology and Reactome pathway analysis
GO analysis of the obtained DEGs was carried out using
the package clusterProfiler. The package ReactomePA
was used for enrichment analysis of the obtained DEGs
in the Reactome pathway. P < 0.05 was considered as
statistically significant.

Protein-protein interaction network
Search Tool for the Retrieval of Interacting Genes/Pro-
teins (STRING) is an online protein interaction tool
(https://string-db.org/) that can integrate known
protein-protein correlation data to build upstream and
downstream relationships between proteins [24]. The
Common DEGs were inserted into STRING software to
build and visualize the protein-protein interaction (PPI)
network. Also, cytoHubba in Cytoscape software (Cytos-
cape_v3.6.1) was utilized to screen hub genes. The top
22 genes with a connection degree of > 5 were selected
as hub genes.

Drawing the ROC curve of Hub Genes
Using the package pROC, Receiver Operating Character-
istic (ROC) curve analysis was performed on 22 hub
genes. AUC > 90% was set as the cutoff value to deter-
mine the diagnostic significance of Hub Genes.

Survival and statistical analysis
For survival analysis, gene expression values were di-
vided into low and high expression groups by using R
language. The hazard ratio (HR) was determined via a
Cox regression model and survival curves were plotted
from Kaplan-Meier estimations. P < 0.05 was considered
to indicate a statistically significant difference.

Hub Gene expression
The package ggpubr was used to draw a boxplot to ob-
serve the distribution of Hub Genes in liver cancer tissue
and normal liver tissue.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) is a computational
method that assesses whether a prior defined set of
genes shows statistical significance and concordant dif-
ferences between two biological states [25]. To investi-
gate the role of ESR1, SPP1 and FOBS gene in liver
cancer, the package clusterProfiler was used to conduct
single-gene GSEA analysis. P-value < 0.05 and p.adjust <
0.05 were regarded as the cut-off criteria.

Results
Identification of DEGs
The GSE25097 dataset was processed with R, DEGs with
adj.p value < 0.05 and |logFC| > 2. This summed 790

Fig. 1 Venn diagram of DEGs of GSE25097 and TCGA LIHC datasets
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Table 1 102 Common DEGs in TCGA and GSE25097

Number Gene

1 DCN

2 MARCO

3 ACSL4

4 CD5L

5 IGF2BP2

6 UBE2T

7 AFP

8 C1QTNF3

9 CETP

10 AURKA

11 ESR1

12 GSTZ1

13 PAGE4

14 CLEC4M

15 HAMP

16 CXCL12

17 MDK

18 GYS2

19 GMNN

20 GHR

21 THBS4

22 LIFR

23 C9

24 VIPR1

25 REG1A

26 RND3

27 HAO2

28 SPP1

29 NR4A3

30 EGR1

31 SOCS2

32 PCK1

33 MT1G

34 FOSB

35 PZP

36 ZFP36

37 GNAZ

38 DUSP9

39 TOP2A

40 LYVE1

41 MRO

42 STAB2

43 IGF2BP3

44 IL1RN

Table 1 102 Common DEGs in TCGA and GSE25097 (Continued)

Number Gene

45 LRRC1

46 NUSAP1

47 CYP2C8

48 OIT3

49 COL2A1

50 PHLDA1

51 CYP1A2

52 FCN3

53 ECM1

54 PLAC8

55 CRHBP

56 CXCL14

57 GPC3

58 LCN2

59 CYP17A1

60 CNDP1

61 SPARCL1

62 NAT2

63 RCAN1

64 FCN2

65 PDZK1IP1

66 DNASE1L3

67 S100P

68 NPY1R

69 SPINK1

70 PTTG1

71 FBP1

72 CLEC1B

73 NNMT

74 GLYATL1

75 MFSD2A

76 ROBO1

77 FOS

78 HSD17B13

79 RRM2

80 REG3A

81 MUC13

82 SLC22A1

83 UBE2C

84 APOF

85 NQO1

86 SOCS3

87 SLC22A10

88 DLK1
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genes, which were screened for further investigation
(Fig. 1, Supplement Table 1). The TCGA LIHC dataset
was analyzed with R × 64 3.6.1, using the package DEG-
seq2, Adj. p value < 0.05 and |logFC| > 2 were regarded
as the cut-off criteria. This identified 2162 genes met the
standards (Fig. 1, Supplement Table 2). To confirm the
reliability of DEGs in liver cancer, Common DEGs of the
two datasets were obtained which included 102 genes
(Fig. 1, Table 1). The volcano map (Fig. 2A, Fig. 2C) and
heat map (Fig. 2B, Fig. 2D) were drawn based on the dif-
ferential genes obtained from data sets GSE25097 and
TCGA LIHC, respectively..

GO and Reactome pathway analysis of the DEGs
GO analysis and Reactome Pathway analysis were used
to conduct enrichment analysis of the 102 Common
DEGs. GO analysis included biological process (BP), cel-
lular component (CC) and molecular function (MF) ana-
lysis (Fig. 3a). BP analysis showed that liver cancer
caused changes in hormone metabolism (Cellular hor-
mone metabolic process, Hormone metabolic process),
cell reaction to copper, cadmium ions and inorganic
substances and detoxification function (Cellular re-
sponse to cadmium ion, Cellular response to metal ion,
Cellular response to inorganic substance, Cellular re-
sponse to copper ion, Detoxification of copper ion and
Detoxification). CC analysis showed that the Collagen
trimer and Collagen-containing extracellular matrix of
liver cancer cells were changed. Moreover, the MF ana-
lysis showed that patients with liver cancer had an ab-
normal expression of oxidoreductase activity and

molecular binding function (Glycosaminoglycan binding,
Cytokine receptor binding, iron ion binding, extracellu-
lar matrix binding and carbohydrate binding). The re-
sults showed that the changes of collagen were observed
at the cellular level. The changes of hormone metabol-
ism, reaction to metal ions and detoxification were
observed at the biological function leved and the
changes of molecular binding and oxidoreductase ac-
tivity were observed at the molecular level.
Through Reactome enrichment analysis (Fig. 3B), it

was seen that liver cancer caused changes in biological
oxidation reactions and conjugation ability to metal ions
(phase II-conjugation of compounds, metallothioneins
bind metals and response to metal ions) and also af-
fected growth hormone receptor signaling.
Comparing the results of the two enrichment analyses,

it was found that the information obtained by the two
was consistent. The two analyses were enriched with
changes in hormone metabolism, biological oxidation,
cell reaction to metal ions and other aspects in patients
with liver cancer.

PPI network analysis and screening for Hub Genes
102 DEGs were used as input into STRING to build a
PPI network (Fig. 4A). The PPI network diagram was
exported to Cytoscape (3.2.1). CytoHubba app plug-in
was used to calculate the Degree Value and other par-
ameter values (Supplement Table 3). Genes whose De-
gree Values are > = 5 are taken as Hub Genes and a total
of 22 Hub Genes were obtained (Table 2). See Fig. 4B
for the relationship between 22 Hub Genes.

Expression of Hub Genes in patients with liver cancer
The expression of 22 Hub Genes in liver cancer and
normal liver tissues was analyzed and it was found that
SPP1, AURKA, NQO1, NUSAP1, TOP2A, UBE2C, AFP,
GMNN, PTTG1, RRM2, UBE2T, GPC3, SPARCL1 etc.
(Fig. 5A), a total of 13 genes, were highly expressed in
liver cancer tissues. However, ESR1, CXCL12, FOS,
DCN, EGR1, SOCS3, CYP1A2, FOSB, PCK1 etc., a total
of 9 genes, were under-expressed in liver cancer tissues
(Fig. 5B).

ROC curve analysis of Hub Genes
ROC curve analysis was performed on 22 Hub Genes
using the package pROC. AUC > 90% was taken as the
cutoff value, and it was found that 16 of the 22 Hub
Genes with AUC > 90% included SPP1, AURKA,
CXCL12, FOS, NUSAP1, TOP2A, UBE2C, AFP, DCN,
GMNN, PTTG1, RRM2, SOCS3, FOSB, PCK1 and
SPARCL1 respectively. The expression levels of these
genes have high accuracy in distinguishing normal tissue
from liver cancer tissue, and could be a potential “tumor
biomarker”. At the same time, it can be used as a

Table 1 102 Common DEGs in TCGA and GSE25097 (Continued)

Number Gene

89 CYP4A11

90 MT1X

91 FAM180A

92 IL1RAP

93 BCO2

94 AKR1B10

95 ADH4

96 SULT1C2

97 MT1F

98 COL15A1

99 MT1M

100 INMT

101 GBA3

102 CCL23
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biomarker for the diagnosis of liver cancer, which has
important significance for the accurate diagnosis of liver
cancer (Fig. 6).

The survival curve of Hub Genes
Survival curves were plotted from Kaplan-Meier estima-
tions (Fig. 7). The Cox regression model was used to cal-
culate the Hazard Ratio (HR) of the hub genes for liver
cancer patients. The results showed that among these
Hub Genes, the expression levels of ESR1, SPP1 and
FOSB genes was closely related to the survival time of
liver cancer patients, with statistically significant differ-
ences (p < 0.05). HR values were 0.88, 1.1 and 0.88, re-
spectively, This can be translated as ESR1 and FOSB
representing low-risk factors, while SPP1 was a high-risk
factor.

GSEA revealed the biological function that affects the
survival time of liver cancer
Single-gene GSEA was used to investigate biological
pathways and biological functions related to survival
time (Fig. 8). Figure 8A shows all the related pathways of
ESR1, FOSB and SSP1 genes,respectively. Figure 8B
shows the commonly related pathways of ESR1, FOSB

and SSP1 genes. Figure 8B a1, b1 and c1 are the three
common pathways of ESR1, FOBS and SPP1 genes. Fig-
ure 8B a2 and c2 are the seven common pathways of
ESR1 and SPP1 genes, Fig. 8B a3 and b3 are the four
common pathways of ESR1 and FOSB genes.
The three common pathways enriched by ESR1, FOBS

and SPP1 genes are HALLMARK MYC TARGETS V1,
HALLMARK G2M CHECKPOINT and HALLMARK E2F
TARGETS pathways (Fig. 8Ba1, b1, c1). According to the
information in Fig. 8B, it can be seen that the high expres-
sion of ESR1 and FOBS can activate these three pathways,
while the high expression of SPP1 can inhibit these three
pathways. However, in liver cancer tissue, ESR1 and FOBS
genes were low in expression, while SPP1 genes were high
in expression (see Fig. 5). Therefore, changes in the ex-
pression levels of ESR1, FOBS and SPP1 genes in liver
cancer inhibited all three pathways.
Seven common pathways were obtained by enrichment

analysis of ESR1 and SPP1 genes. They are HALLMARK
PANCREAS BETA CELLS, HALLMARK ESTROGEN RE-
SPONSE LATE, HALLMARK ADIPOGENESIS, HALLMA
RK FATTY ACID METABOLISM, HALLMARK BILE
ACID METABOLISM, HALLMARK XENOBIOTIC ME-
TABOLISM and HALLMARK PEROXISOME pathways.

Fig. 2 Identification of DEGs of GSE25097 and TCGA LIHC datasets, adj.p-value < 0.05 and |logFC| > 2 were used as the cut off criteria. LIHC: liver
cancer; TCGA: The Cancer Genome Atlas. A. Volcano map of DEGs obtained from the GSE25097 dataset B. Heap map of DEGs obtained from the
GSE25097 dataset C. Volcano map of DEGs obtained from the TCGA LIHC dataset D. Heat map of DEGs obtained from the TCGA LIHC dataset
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The high expression of the ESR1 gene can activate the
HALLMARK PANCREAS BETA CELLS and HALLMARK
ESTROGEN RESPONSE LATE pathways, and five pathways,
namely, HALLMARK ADIPOGENESIS, HALLMARK
FATTY ACID METABOLISM, HALLMARK BILE ACID
METABOLISM, HALLMARK XENOBIOTIC METABOL-
ISM, and HALLMARK PEROXISOME were inhibited, while
the SPP1 gene was opposite to the ESR1 gene (Fig. 8Ba2, c2).
In liver cancer, the ESR1 gene is a low expression gene, while
the SPP1 gene is a high expression gene (see Fig. 5). There-
fore, changes in ESR1 and SPP1 gene expression in liver can-
cer activated the HALLMARK ADIPOGENESIS, HALLMA
RK FATTY ACID METABOLISM, HALLMARK BILE
ACID METABOLISM, HALLMARK XENOBIOTIC ME-
TABOLISM, and HALLMARK PEROXISOME pathways.

However both the HALLMARK PANCREAS BETA CELLS
and HALLMARK ESTROGEN RESPONSE LATE pathways
were suppressed.
The four common pathways enriched by ESR1 and

FOSB genes are HALLMARK MYC TARGETS V2,
HALLMARK HEME METABOLISM, HALLMARK CO-
AGULATION and HALLMARK UV RESPONSE DN
pathways. High expression of ESR1 and FOSB can acti-
vate the HALLMARK MYC TARGETS V2 pathway and
inhibit three pathways, namely HALLMARK HEME ME-
TABOLISM, HALLMARK COAGULATION and HALL
MARK UV RESPONSE_DN (Fig. 8B a3, b3). However,
in liver cancer, both ESR1 and FOBS genes were low
expressed (see Fig. 5). Therefore, the changes in the ex-
pression levels of ESR1 and FOBS genes in liver cancer

Fig. 3 Enrichment analysis diagram of differentially expressed genes DEGs. A.GO analysis. B. Reactome analysis

Fig. 4 PPI network diagram drawn by String. a. PPI network map of 102 DEGs. b. PPI network map of 22 Hub Genes
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inhibited HALLMARK MYC TARGETS V2 pathway,
while HALLMARK HEME METABOLISM, HALLMA
RK COAGULATION and HALLMARK UV RE-
SPONSE_DN pathways were activated.

Discussion
Most patients with liver cancer do not seek medical
treatment until they have symptoms in the late stage of
liver cancer, therefore the early diagnosis of liver cancer
is of great significance for treatment. At present, alpha-
fetoprotein (AFP) is a diagnostic biomarker used in the
clinical diagnosis of liver cancer. AFP was discovered 50
years ago as a diagnostic biomarker of liver cancer and
currently, there are problems associated with the in-
accuracy of diagnosis. According to investigations, 32 to
59% of liver cancer patients have normal AFP levels [22].
Therefore, it is necessary to find new and more accurate
biomarkers for liver cancer diagnosis. Also, the progno-
sis of cancer patients is of great significance to the
quality of life and treatment of patients. Therefore, the
search for prognostic biomarkers is also of great signifi-
cance for tumor patients. In order to achieve this goal,
this scientific work uses data mining analysis to find

diagnostic biomarkers and prognostic biomarkers associ-
ated with liver cancer.
First, liver cancer data sets from the TCGA database

were obtained which included 50 normal liver tissue
samples and 371 liver cancer samples. The GSE25097
dataset was obtained from the GEO database con-
sisted of 243 non-tumor tissue samples and 268 liver
cancer samples. After DEGs analysis, 102 Common
DEGs were obtained from TCGA and GSE25097 data
sets. GO analysis was then conducted and Reactome
Pathway analysis was used to conduct enrichment
analysis on 102 Common DEGs, The results showed
that liver cancer showed changes in collagen at the
cellular level, changes in hormone metabolism and re-
action to metal ions at the biological function and ab-
normalities in molecular binding and oxidoreductase
activity at the molecular level (Fig. 3).
A PPI network was constructed for 102 Common

DEGs to find the correlation between genes and 22 Hub
Genes were screened from 102 Common DEGs based
on Degree value (Table 2). ROC curve is a curve reflect-
ing the relationship between sensitivity and specificity,
which is of great significance for the accurate diagnosis

Table 2 Top 22 Hub Genes with degree > = 5

Number Name Betweenness BottleNeck Closeness Clustering
Coefficient

Degree DMNC EcCentricity EPC MCC MNC Radiality Stress

1 ESR1 2780.97619 58 38.78333 0.16667 13 0.2036 0.15823 29.27 28 11 8.416 5698

2 SPP1 1519.02063 30 35.65 0.22727 12 0.2545 0.18987 28.52 35 11 8.1723 3920

3 AURKA 967.42857 11 32.02619 0.4 11 0.6415 0.13562 24.93 5045 8 7.8002 1918

4 CXCL12 1415.00476 15 32.73333 0.11111 9 0.2842 0.15823 24.1 11 4 7.9926 2458

5 FOS 617.74127 17 33.3 0.30556 9 0.3207 0.15823 27.17 29 8 8.0311 1918

6 NQO1 1353 11 31.55952 0.17857 8 0.309 0.13562 22.39 12 3 7.8515 2882

7 NUSAP1 146 2 25.78452 0.75 8 0.7683 0.11867 23.93 5041 7 7.0561 338

8 TOP2A 332.07302 3 30.27619 0.78571 8 0.6415 0.13562 24.54 5042 8 7.7361 938

9 UBE2C 146.37619 1 27.25119 0.75 8 0.7683 0.11867 24.36 5041 7 7.2229 264

10 AFP 281.74603 4 30.05 0.33333 7 0.3328 0.15823 26.15 17 6 7.7874 770

11 DCN 303.6 3 28.55 0.28571 7 0.2853 0.15823 24.75 13 6 7.5308 782

12 EGR1 228.02381 3 30.21667 0.42857 7 0.4279 0.15823 25.63 25 6 7.8002 602

13 GMNN 0 1 25.28452 1 7 0.7683 0.11867 24.18 5040 7 7.0433 0

14 PTTG1 0 1 25.28452 1 7 0.7683 0.11867 23.95 5040 7 7.0433 0

15 RRM2 0 1 25.28452 1 7 0.7683 0.11867 23.64 5040 7 7.0433 0

16 SOCS3 631.69841 6 31.05952 0.09524 7 0.3078 0.13562 25.03 7 2 7.8259 1378

17 UBE2T 0 1 25.28452 1 7 0.7683 0.11867 24.05 5040 7 7.0433 0

18 CYP1A2 577 5 29.39286 0.2 6 0.309 0.13562 19.57 7 3 7.7361 822

19 GPC3 44.47619 2 26.7 0.53333 6 0.3804 0.15823 24.62 20 6 7.364 138

20 FOSB 35.46667 1 27.55952 0.7 5 0.4538 0.13562 24.25 18 5 7.5821 166

21 PCK1 570 5 24.21786 0.1 5 0.3078 0.11867 10.7 5 2 7.0176 1074

22 SPAR
CL1

18.43333 1 26.53333 0.6 5 0.389 0.15823 24.88 14 5 7.3897 62
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of diseases [26]. A ROC curve was used to analyze 22
Hub Genes with AUC greater than 90% as the threshold
and this resulted in 16 Hub Genes. They were SPP1,
AURKA, CXCL12, FOS, NUSAP1, TOP2A, UBE2C,
AFP, DCN, GMNN, PTTG1, RRM2, SOCS3, FOSB,
PCK1 and SPARCL1. The expression levels of the 16
Hub Genes in liver cancer can accurately distinguish
normal liver tissue from liver cancer, therefore the 16
genes can be used as diagnostic biomarkers of liver can-
cer for the early diagnosis of liver cancer (along with
AFP which is currently used in clinical practice). At the
same time, the effect of the 22 Hub Ggenes on the sur-
vival time of liver cancer patients was observed and the
risk coefficient was calculated. It was found that the ex-
pression levels of ESR1, SPP1 and FOSB genes in the 22
hub genes had a significant impact on the survival time
of liver cancer patients(p < 0.05), with HR values of 0.88,
1.1 and 0.88, respectively, indicating that ESR1 and
FOSB are low-risk genes while SPP1 is high-risk gene.
However, the AUC value of ESR1 is 68.7%(Fig. 6a),
which showed that the accurate diagnosis rate of ESR1
gene is low and not suitable for use as a diagnostic bio-
marker. As a result, only the FOSB and SPP1 genes are
suitable for use as prognostic biomarkers of liver cancer,
where the FOSB is a low-risk gene while the SPP1 is a
high-risk gene. In other words, the survival rate of liver
cancer patients with high expression of FOSB is higher
than that of patients with low expression. In comparison,
the survival rate of patients with high expression of
SPP1 is lower than that of patients with low expression.
This conclusion has been verified through literature.
Tang C. et al. found that an overexpression of FOSB
protein inhibited tumor cell proliferation, clone forma-
tion and cell migration [27], while the silencing of FOSB
protein expression promoted tumor cell proliferation,
clone formation and cell migration [28]. Li H.’s study
also confirmed that the overexpression of FOSB protein
can promote the proliferation of cancer cells. These
studies confirmed that FOSB is a low-risk gene. Simi-
larly, regarding SPP1, Lu C et al. found that the silencing
of OPN protein (encode by SPP1 gene) in liver cancer
reduced the number of cell clones and proliferation rate,
and in vivo pharmacodynamics observed that the tumor
volume of tumor-bearing mice decreased [29]. It was
confirmed that the SPP1 is a high-risk gene.
Finally, single-gene GSEA analysis was performed on

the three prognostic genes, ESR1, SPP1 and FOSB, that
affect the survival time of liver cancer patients (Fig. 8) in

order to explore the mechanism affecting the prognosis
of liver cancer patients. Through analysis, it was found
that there were three pathways closely related to ESR1,
FOBS and SPP1 genes (Fig. 8B a1, b1, c1), seven path-
ways closely related to ESR1 and SPP1 genes (Fig. 8B a2,
c2), and four pathways closely related to ESR1 and FOSB
genes (Fig. 8B a3, b3).
The three common pathways related to ESR1, FOBS,

and SPP1 genes are HALLMARK MYC TARGETS V1,
HALLMARK G2/M CHECKPOINT and HALLMARK
E2F TARGETS. Among them, high expression of ESR1
and FOBS genes can activate these three pathways, while
high expression of SPP1 gene inhibits these three path-
ways (Fig. 8a1, b1, c1). At the same time, since ESR1
and FOBS genes are low-risk factors, high expression of
ESR1 and FOBS genes can activate these three pathways.
SPP1 gene is a high-risk factor, high expression of SPP1
can inhibit these three pathways (Fig. 8 a, b, t). Hence,
activation of these three pathways is conducive to im-
proving the survival time of liver cancer patients. MYC
TARGETS V1 pathway is a new anticancer target [30–
32] which is closely related to cell proliferation, differen-
tiation and cell cycle. In contrast, the G2/M CHEC
KPOINT pathway [33] and HALLMARK E2F TARGETS
pathway are all closely related to the cell cycle [34]. In
summation, patients with liver cancer whose cell cycle
pathway is activated have a better prognosis.
The seven common pathways related to ESR1 and

SPP1 genes are HALLMARK PANCREAS BETA CELLS,
HALLMARK ESTROGEN RESPONSE LATE, HALLMA
RK ADIPOGENESIS, HALLMARK FATTY ACID ME-
TABOLISM, HALLMARK BILE ACID METABOLISM,
HALLMARK XENOBIOTIC METABOLISM and HALL
MARK PEROXISOME. Among them, high ESR1 gene
expression can activate the HALLMARK PANCREAS
BETA CELLS and HALLMARK ESTROGEN RE-
SPONSE LATE pathways, inhibit the five pathways of
HALLMARK ADIPOGENESIS, HALLMARK FATTY
ACID METABOLISM, HALLMARK BILE ACID ME-
TABOLISM, HALLMARK XENOBIOTIC METABOL-
ISM and HALLMARK PEROXISOME. In contrast, SPP1
gene was opposite to ESR1 gene (Figure 8 a2, c2). Simi-
larly, the ESR1 gene represents a low-risk-factor, SPP1
gene represent a high-risk factor and therefore liver can-
cer patients that show HALLMARK PANCREAS BETA
CELLS and HALLMARK ESTROGEN RESPONSE
LATE pathway activated and the HALLMARK ADIPO-
GENESIS, HALLMARK FATTY ACID METABOLISM,

(See figure on previous page.)
Fig. 5 Expression levels of 22 Hub Gene. A. genes that is highly expressed in liver cancer. (a) SPP1, (b) AURKA, (c) NQO1, (d) NUSAP1, (e) TOP2A,
(f) UBE2C, (g) AFP, (h) GMNN, (i) PTTG1, (j) RRM2, (k) UBE2T, (l) GPC3, (m) SPARCL1 in Normal Liver versus Liver Cancer tissues. B. genes that is
lowly expressed in liver cancer. (n) ESR1, (o) CXCL12, (p) FOS, (q) DCN, (r) EGR1, (s) SOCS3, (t) CYP1A2, (u) FOSB, (v) PCK1 in Normal Liver versus
Liver Cancer tissues
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HALLMARK BILE ACID METABOLISM, HALLMARK
XENOBIOTIC METABOLISM and HALLMARK PER-
OXISOME pathways inhibited have a better prognosis.
By analyzing these pathways, it has been found that
these seven pathways can be divided into four aspects in
terms of function: 1. The prognosis of liver cancer pa-
tients with HALLMARK PANCREAS BETA CELLS
pathway activated is better than that of liver cancer pa-
tients with this pathway inhibited. HALLMARK PANC
REAS BETA CELLS pathway restrained and islet cell
dysfunction are important cause of type 2 diabetes. This
also means that patients with liver cancer complicated
with type 2 diabetes have a poor prognosis. Patients with
type 2 diabetes are also a high-risk population for devel-
oping liver cancer. This conclusion is consistent with the
conclusion of an epidemiological investigation of liver
cancer [17]. 2. The prognosis of liver cancer patients that
HALLMARK ESTROGEN RESPONSE LATE pathway
activated is better. Clinically, “Palmar Erythema” and
“spider nevus” appear in the palms of some patients with
cancer [35] and severe liver dysfunction [36]. These
manifestations are caused by the decreased metabolism
of estrogen in the liver, resulting in excessive estrogen
[37] in the blood and stimulation of capillary arterial
congestion and dilation. In other words, the presence of
“Palmar Erythema” and “spider arachnoid” is a manifest-
ation of the inhibition of estrogen pathway and the prog-
nosis of liver cancer patients with “ Palmar Erythema “
and “ spider nevus “ is poor. Also, in clinical practice,
some male liver cancer patients, due to the inhibition of
estrogen metabolism, have an increase of estrogen level
in their blood resulting in breast development. The
prognosis of such liver cancer patients is not positive
[38]. 3. The prognosis is better in patients with liver can-
cer whose fat metabolism-related pathways (HALLMA
RK ADIPOGENESIS, HALLMARK FATTY ACID ME-
TABOLISM, HALLMARK BILE ACID METABOLISM
and HALLMARK PEROXISOME) are inhibited. Epi-
demiological investigation shows that obesity is one of
the important factors causing liver cancer and for the
prognosis of liver cancer patients, the prognosis of
patients with fat metabolism-related pathways being
inhibited is better. 4. Patients whose HALLMARK
XENOBIOTIC METABOLISM is inhibited have a more
positive prognosis.
Four common pathways related to ESR1 and FOSB

genes are activation of HALLMARK MYC TARGETS V2
and inhibition of HALLMARK HEME METABOLISM,
HALLMARK COAGULATION and HALLMARK UV
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Fig. 6 ROC curve of Hub Gene. a ESR1, (b)SPP1, (c) AURKA,
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RESPONSE DN pathways. Both ESR1 and FOSB genes
were low-risk factors, therefore patients whose HALLMA
RK MYC TARGETS V2 pathway was activated, and the
HALLMARK HEME METABOLISM, HALLMARK CO-
AGULATION and HALLMARK UV RESPONSE DN
pathways were suppressed had a better prognosis. HALL

MARK E2F TARGETS V2 pathway is closely related to
the cell cycle, that is to say, the prognosis of liver cancer
patients with activated cell cycle pathway is better, which
is consistent with the conclusion previously arrived at.
Also, HALLMARK HEME METABOLISM pathway regu-
lates HEME METABOLISM, and the main product of

Fig. 7 Survival analysis of 22 Hub Genes: (a) ESR1, (b) SPP1, (c) AURKA (d) CXCL12, (e) FOS, (f) NQO1, (g) NUSAP1, (h) TOP2A, (i) UBE2C, (j) AFP, (k)
DCN, (l) EGR1, (m) GMNN, (n) PTTG1, (o) RRM2, (p) SOCS3, (q) UBE2T, (r) CYP1A2, (s) GPC3, (t) FOSB, (u) PCK1, (v) SPARCL1; p < 0.05 was considered as
statistically significant
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HEME METABOLISM is bile pigment, which includes
many compounds such as bilirubin, biliverdin, bilinogen
and choline. Under normal circumstances, bile pigment is
mainly excreted with bile. Bilirubin is the main pigment in
bile, which is orange-yellow in color. The metabolic dis-
order of bilirubin is closely related to clinical hepatobiliary
diseases. If the HALLMARK HEME METABOLISM path-
way is activated, the heme will be massively metabolized

into bilirubin, resulting in an excessively high concentra-
tion in plasma and then will be diffused into tissue, result-
ing in jaundice (easily seen in sclera, skin, etc.). According
to the conclusions of the data analysis in this scientific
work, patients with inhibited HALLMARK METABOL-
ISM pathway have a good prognosis. In contrast, those
with an activated HALLMARK METABOLISM pathway
have a poor prognosis. After having activated HALLMA
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Fig. 8 Identification of the enriched gene sets with GSEA analysis focused on a single gene as a phenotype. A.dot plot. B.curve graph. a1,b1 and
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obtained by enrichment of ESR1 and SSP1 genes, respectively; a3 and b3 are the common pathways obtained by enrichment of ESR1 and FOSB
genes, respectively
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RK METABOLISM pathway, patients will show jaundice
related symptoms and liver cancer patients with jaundice
have a poor prognosis whilepatients with suppressed
HALLMARK COAGULATION pathway have a good
prognosis, The HALLMARK COAGULATION pathway
mainly regulates the COAGULATION function. Abnor-
mal COAGULATION function in liver cancer patients is
a common clinical symptom, mainly related to the lack of
COAGULATION factor, thrombocytopenia and increased
vascular permeability. The results of the data analysis in
this work show that the prognosis of patients with inhib-
ited blood clotting function is better than that of patients
with this function activated.
Through a very detailed and painstkeing analysis, it

was found that the prognosis of liver cancer patients is
mainly related to the following functions: 1. It is closely
related to the regulation of the cell cycle and patients
with activated cell cycle have a good prognosis. 2. Liver
cancer patients with activated HALLMARK PANCREAS
BETA CELLS pathway have a good prognosis, while liver
cancer patients with type 2 diabetes have a poor progno-
sis. 3. Patients with activated hepatocellular estrogen
pathway have a good prognosis and those with “liver
palm”, “spider nevus” and abnormal breast development
have a poor prognosis. 4. Liver cancer patients whose fat
metabolism-related pathways are inhibited have a good
prognosis. 5. Liver cancer patients whose HALLMARK
XENOBIOTIC METABOLISM pathway is inhibited
have a good prognosis. 6. The prognosis of liver cancer
patients is good if HALLMARK HEME METABOLI-
SAM pathway is inhibited, and poor if the patient has
“jaundice”. 7. Liver cancer patients whose HALLMARK
COAGULATION pathway is inhibited have a good
prognosis.

Conclusion
Ten genes have been identified which show high expres-
sion in the event of liver cancer. These include SPP1,
AURKA, NUSAP1, TOP2A, UBE2C, AFP, GMNN,
PTTG1, RRM2 and SPARCL1. Six genes show low ex-
pression and include CXCL12, FOS, DCN, SOCS3,
FOSB and PCK1. These can be used as markers for liver
cancer diagnosis, among which FOBS and SPP1 genes
can also be used as prognostic markers of liver cancer.
Activation of the cell cycle-related pathway, PANCREAS
BETA CELLS pathway and the estrogen signaling path-
way in LIVER CANCER patients, while inhibition of the
HALLMARK HEME METABOLISM pathway, HALL
MARK COAGULATION pathway, and the fat metabol-
ism pathway may promote prognosis in LIVER CANC
ER patients.
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