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ABSTRACT

Proteins are polypeptides essential in biological processes. Protein physical interactions
are complemented by other types of functional relationship data including genetic inter-
actions, knowledge about co-expression, and evolutionary pathways. Existing algorithms
integrate protein interaction and gene expression data to retrieve context-specific sub-
networks composed of genes/proteins with known and unknown functions. However, most
protein function prediction algorithms fail to exploit diverse intrinsic information in
feature and label spaces. We develop a novel integrative method based on differential
Co-expression analysis and Neighbor-voting algorithm for Protein Function Prediction,
namely CNPFP. The method integrates heterogeneous data and exploits intrinsic and
latent linkages via global iterative approach and genomic features. CNPFP performs three
tasks: clustering, differential co-expression analysis, and predicts protein functions. Our
aim is to identify yeast cell cycle-specific proteins linked to differentially expressed pro-
teins in the protein–protein interaction network. To capture intrinsic information, CNPFP
selects the most relevant feature subset based on global iterative neighbor-voting algo-
rithm. We identify eight condition-specific modules. The most relevant subnetwork has 87
genes highly enriched with cyclin-dependent kinases, a protein kinase relevant for cell
cycle regulation. We present comprehensive annotations for 3538 Saccharomyces cerevisiae
proteins. Our method achieves an AUROC of 0.9862, accuracy of 0.9710, and F-score of
0.9691. From the results, we can summarize that exploiting intrinsic nature of protein
relationships improves the quality of function prediction. Thus, the proposed method is
useful in functional genomics studies.
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1. INTRODUCTION

Proteins are the most versatile macromolecules in living systems. Knowledge of protein functions

is crucial in downstream analysis and applications such as disease analysis and drug development (Yu

et al., 2017). However, accurate and comprehensive assignment of biological functions to proteins is a

challenging task in functional genomics. This is due to availability of many labels for each protein and

because biological knowledge rapidly evolves (Yu et al., 2015). Although wet-lab techniques including gene

knockout are capable of determining annotations, they are expensive and time-consuming. Therefore, the

quest to unravel annotations for uncharacterized genes or proteins using computational models is an in-

creasingly important task for bioinformatics researchers in the post-genome era.

The huge influx of information generated by advanced sequencing technologies has led to label defi-

ciency problem. This has invigorated interest in computational models that can identify hypothetical

functions of proteins. Several bioinformatics tools such as Panther (Mi et al., 2013) and InterProScan

( Jones et al., 2014) exploit semantic similarity between proteins, protein functional interactions, pathway

enrichment analysis, and phylogenetic tree (Pesquita et al., 2009; Zhou et al., 2014) for the discovery of

novel functional annotations. To address the problem of low reliability and limited coverage, comparative

analysis is of vital significance (Gligorijević and Pr�zulj, 2015). It is based on the overlap of information

among data sets for synergistic predictions. For instance, in eukaryotic organisms, gene expression data

such as cell cycle and protein–protein interaction (PPI) data can be analyzed. The analysis results can be

used to investigate biological systems across diverse conditions for assigning protein functions. The cell

cycle is a repetitive process of cell growth and sequential duplication in eukaryotic organisms. The cycle is

stimulated by environmental factors through different phases.

The four main cell cycle phases are G1, DNA synthesis (S), G2, and mitosis (M). S and M are the main

phases separated by gap phases G1 and G2. Cyclin-dependent protein kinases (Cdks) are regulatory pro-

teins, which signal the cell to transition to the next stage of the cell cycle depending on cyclins. For

example, cdc28 is a Cdk complex implicated in cell cycle control in yeast; it promotes transition between

the different cell cycle phases (Bertoli et al., 2013).

Researchers have proposed several computational methods for protein function prediction. For multilabel

classification based on functional hierarchy, clusDCA (Wang et al., 2015) was proposed. The method

predicted protein functions by integrating protein networks and functional hierarchy using PageRank and

low-rank matrix approximation. PILL (Yu et al., 2015) combines hierarchical and flat taxonomy similarity

between function labels to replenish missing labels and predict functions of completely unlabeled proteins.

AptRank ( Jiang et al., 2017) and Bi-TMF (Meng et al., 2016) predicted protein functions based on

functional interrelationships. They used a birelational graph to propagate from annotated to unannotated

proteins. Recently, OGN (Zhang et al., 2018), a centrality measure-based method, has been proposed. It

integrates orthologous information, gene expression, and protein interaction data to predict essential pro-

teins. Similarity ensemble approach (O’Meara et al., 2016) predicted gene functions based on functional

genomic networks and ligand similarity networks.

Gene expression profiling has vastly been used in cancer to classify tumors and in the discovery of

pathway alterations across phenotypes (Ma et al., 2011). To exploit functional and other gene–gene

correlation characteristics, ‘‘guilt-by-profiling’’ is often employed for functional inference. The past decade

has seen an extensive proposal of algorithms for the construction of gene co-expression networks. They are

based on the similarity between gene expression profiles and are mainly applied for functional annotation.

Weighted gene co-expression network analysis (WGCNA) is a widely used network analysis method

(Horvath and Langfelder, 2008). It constructs co-expression networks to determine potential biomarkers,

functional module prediction, and discovery of important elements of disease-related genes (Gibbs et al.,

2013). WGCNA has been applied for function annotation tasks, such as in rice genes (Childs et al., 2011),

in the construction of gene co-expression networks (Langfelder et al., 2008; Kadarmideen et al., 2011) and

for differential analysis (Liu et al., 2017). WGCNA has also been implemented to analyze transcription

modules associated with tumor in colon cancer (Liu et al., 2017).

Biological systems are highly dynamic depending on the environment, tissue type, disease, or devel-

opment (Ideker and Krogan, 2012). Various studies have applied differential co-expression analysis and

differential co-expression networks to identify modules associated with specific environmental stress and

response to genetic changes (Lai et al., 2004; Watson, 2006; Hu et al., 2015). Unlike studies that do
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comparative analysis between related organisms (Ihmels et al., 2005), in this study, we focus on one

organism. We employ WGCNA to identify specific modules and hub genes related to yeast cell cycle.

Additionally, the widely used neighborhood- and module-based protein function prediction methods have

the limitation of high dimensionality of the search space for densely connected neighborhood regions

( Jiang et al., 2017). To counter these problems, exploring and embedding other features of a protein in the

interaction network improve the accuracy level. For instance, discovering functional associations among

proteins in a bottom-up level-to-level approach (Prasad et al., 2017).

In this study, we set up a novel integrative network-based approach that predicts protein functions from

differential co-expression analysis and neighbor-voting (NV) algorithm. Our approach constructs two

networks from yeast cell cycle gene expression and PPI data sets (Zhang and Horvath, 2005). Biweight

midcorrelation (BWM) is used to identify highly connected genes and biologically relevant modules. BWM

performs better in comparison to two other correlation methods, Pearson’s correlation coefficient and

Spearman’s rank correlation coefficient, which have been commonly used for the construction of weighted

co-expression networks (Ma and Wang, 2012). Measures for scrutinizing our method include: number of

clusters identified and relationships between genes and biological significance of cluster membership.

Our contributions are mainly threefold. First, cluster analysis by integrating gene expression profile and

PPI data sets using ‘‘guilt-by-profiling’’ technique. Second, we exploit module differential co-expression

based on an adaptive parameter tuning mechanism and enrichment analysis. We identify modules with

proteins of specific environmental stress conditions and their functional significance. Finally, exploiting

label correlation, intrinsic information from co-expression analysis, genomic features such as transcription

factor binding and global iterative approach, we assign novel annotations to proteins. We quantify the

interrelationship using semantic similarity. Our method achieves an AUROC of 0.9862, accuracy of

0.9710, and F-score of 0.9691. From the results, we can summarize that exploiting intrinsic nature of

protein relationships improves the quality of function prediction. Thus, the proposed method is useful in

functional genomics studies.

2. METHODOLOGY

2.1. Data sets

Eukaryotic organism Saccharomyces cerevisiae (Baker’s yeast) species are well studied, and proteins are

characterized by knockout experiments. Therefore, most network-based prediction methods have used its

data sets for testing performance due to its reliability among various species. We use yeast cell cycle gene

expression data set of Zhang and Horvath (2005), which includes 44 samples under various times during the

cell cycle and a total of 4000 genes. After preprocessing and filtering, 1264 genes are retained for analysis.

Steps for pre-processing the data included (1) filter out genes with missing values, (2) impute the missing

values, (3) standardize the data, mean is 0 and the standard deviation is 1. The PPI data are a 2292 · 2292

matrix of pairs of interacting proteins downloaded from Zhang and Horvath (2005). Of 2292 proteins, 2274

are retained after omission of missing data. The yeast protein annotation data set contains 3469 Gene

Ontology (GO) functions belonging to biological process (BP), molecular function (MF), and cellular

component terms for 5775 proteins (28.03.13 release) from BioGRID (Stark et al., 2006). We also use an

Affymetrix Genechip platform (org.SC.sgd.db Version 3.5.0) for annotation. Analysis of our data sets is

performed in R statistical programming environment version 3.4.2, R studio version 1.1.383, and Bio-

conductor programs.

2.2. Network characteristics for training Co-expression analysis and Neighbor-voting
algorithm for Protein Function Prediction

Network construction is essential for the identification of modules and defining intramodular connectiv-

ity. Corresponding genes (nodes) that are significantly co-expressed are connected. Furthermore, genes with

expression levels that are highly correlated (hubs) participate in similar BPs and tend to encode essential

genes (Lai et al., 2012). WGCNA provides a function named pickSoft-threshold, which automatically selects

threshold value b to determine the number of modules for differential co-expression analysis.

In this study, we explore topological features and expression profiling to solve protein function pre-

diction problem. Existing PPI network has a huge number of false positives, which reduce reliability of the
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interactions. To build a more reliable protein function prediction network, we establish a weighted PPI

network and perform functional diffusion. Furthermore, we apply iterative procedure to reduce false

positives.

2.3. Biweight midcorrelation

The BWM, a robust form of correlation, elucidates pairwise bivariate relationship (Zheng et al., 2014). It

generates significantly enriched co-expression modules with coherent expression profiles using topological

overlap matrix as dissimilarity. Although Pearson’s correlation has been widely preferred for cluster

analysis due to its ability to derive information on expression levels such as global linear relationships,

BWM is more robust to outliers (Zheng et al., 2014). To define the BWM (bicor) of two numeric vectors

x = (x1, x2, ., xm) and y = (y1, y2, ., ym) according to Zheng et al. (2014), we first define ui, and vi (where

i = 1, 2, ., m) as follows:

ui =
xi - med xð Þ

9mad xð Þ ‚ (1)

vi =
yi - med yð Þ

9mad yð Þ ‚ (2)

where med(x) is the median and mad(x) is the median absolute deviation. This leads to the definition of

weight wi for xi as follows:

w
xð Þ

i = 1 - u2
i

� �2
l 1 - uij jð Þ‚ (3)

where l 1 - uij jð Þ takes 1 if 1 - juij > 0 and 0 otherwise. Given the weights, we can define BWM of x and y as:

bicor x‚ yð Þ =
Pm

i = 1 ximed xð Þð Þw xð Þ
i yi - med yð Þð Þw yð Þ

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j = 1 xj - med xð Þ

� �
w

xð Þ
j

h i2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k = 1 yk - med yð Þð Þw yð Þ
k

h i2
r : (4)

3. PROPOSED METHOD: CO-EXPRESSION ANALYSIS AND NEIGHBOR-VOTING
ALGORITHM FOR PROTEIN FUNCTION PREDICTION

We propose a novel integrative method based on differential Co-expression analysis and Neighbor-

voting algorithm for Protein Function Prediction called CNPFP. In this algorithm, co-expression networks

are constructed for functional classification and analysis of yeast cell cycle-associated proteins, as shown in

Figure 1.

Feature selection through genomic features and global iterative similarity computation is done to im-

prove the prediction performance of NV algorithm and reduce false positives. CNPFP measures semantic

similarity of GO annotation terms T. Protein p with a function F can be assigned a function F0 if F and F0

are semantically similar. F0 is an existing function predicted and assigned to protein p based on semantic

similarity. The sequential steps taken by CNPFP are presented in Figure 1.

3.1. Construction of co-expression network

We constructed two co-expression networks from PPI and yeast cell cycle gene expression data sets. The

networks are based on weighted connectivity of correlated gene expression following the method in Zhang

and Horvath (2005). Preprocessing operations including variation filtering were done to remove systematic

variation between microarray experiments to bring upregulated and downregulated genes to the same scale.

The network was constructed from yeast normalized log2-transformed matrix of genes. To construct the

gene co-expression networks, we calculate the correlation matrix using BWM.

Clusters of genes with similar connection strengths are identified to determine network connectivity. To

demonstrate that our co-expression networks manifest complex network properties (power-law degree

distribution), we explore topological characteristics of the network such as degree distribution. An input

m · n gene expression matrix is denoted as X = (xil). Where column indices (l = 1, 2, ., n) correspond to
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samples under specific conditions and the row indices (i = 1, 2, ., m) correspond to genes. The size of the

network in terms of the number of modules is directly impacted by changing the soft-threshold value b.

The b value effectively adjusts how smoothly the connection strengths transition from their lowest to

their highest values. Inspired by CEMiTool (Russo et al., 2018), we choose a lower threshold for R2 (R2 ‡
0.77) compared with WGCNA default threshold (R2 ‡ 0.85). This results into a lower value of b = 5 (the

R2 reached the peak for the first time when b = 5) in the interval (1, 10) in 1 increments and (12, 20) in 2

increments. b is selected based on scale-free topology criterion maximized with a (R2 ‡ 0.77) fit while

maintaining high mean connectivity where R2 is the linear regression model fitting index between log

transformation of p(k) and (k) with k as the measure of connectivity.

We use topological overlap dissimilarity measure to determine the number of modules, which are

distinguished using different colors. A hierarchical clustering algorithm is then implemented to identify

modules of densely interconnected genes to form a dendrogram. We obtain 9 modules for gene expression

network and 20 modules for PPI network (Fig. 2). For each network, gray module is reserved for genes that

are not co-expressed among each other, which makes up 8 and 19 distinct modules, respectively. We use

BWM to implement hierarchical clustering to cluster genes coupled with topological overlap dissimilarity

measure between gene expression data vectors. The topology overlap measure wij between two nodes i and

j is calculated as follows:

wij =
lij + aij

min ki‚ kj

� �
+ 1 - aij

‚ (5)

where aij = (1 + cor(yi‚ yj)=2)b is the adjacency measure between gene i and gene j. cor(yi, yj) is the

correlation between gene expression profiles yi and yj. yi is a vector of the i-th gene expression profile

(where i = 1, 2, ., n). yj is a vector of the j-th gene expression profile (where j = 1, 2, ., n).

lij =
P

u 6¼i‚ j aiuauj, aiu and auj represent the number of nodes i and j are connected to; ki =
P

u 6¼i aiu rep-

resents the number of connections of a node; aij ˛provides a measure of connectivity between a pair of

genes viewed as network nodes where 1 indicates a connection, whereas 0 indicates no connection. The

power parameter 1 in aij is the threshold that is specified depending on whether it is a signed or unsigned

network. A hybrid signed network is preferred because it produces biologically meaningful modules. To

ensure cluster stability, we compare the different WGCNA clustering methods including dissimilarity based

FIG. 1. Flowchart of the proposed method.
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on adjacency and topology overlap matrix (TOM). We choose to use Topological overlap dissimilarity

measure to define modules since it generates more cohesive modules, which are larger and more robust

(Cheng et al., 2013).

dissTOMij = 1 -
X
u 6¼i

aiuauj + aij

 !
= min(ki‚ kj) + 1 - aij

� �
‚ (6)

where ki =
P

u6¼i aui and kj =
P

u6¼j auj denotes the network connectivity. High robust network intercon-

nectedness is arrived at by TOM combining connection strength between a pair of genes with their

connections to other genes. For each module, module significance is the average absolute gene significance

for all the genes in the module. We plot cluster coefficient against connectivity to illustrate cliquishness for

cluster analysis of the two networks (Fig. 3a, b).

3.2. Differential co-expression with BWM

Key gene expression regulators, including transcription factors and microRNA, cause gene pairs to

exhibit robustness in perturbation and co-expression across conditions. Yeast relies on specific internal

conditions for optimal growth. However, external environmental stress disrupts the normal processes. Yeast

cell cycle data in this article are from different time courses. The samples are from three experimental

conditions: long-term exposure to alpha factor, elutriation (elu), and temperature sensitivity mutant cell

division cycle (cdc). Given a pair of genes i, j, we calculate BWM coefficients between expression levels

represented as q1 and q2. Dij = q1–q2 is the increase or decrease in correlation between two groups. For

both data sets, we select genes with a density threshold of Dij > 0.7 or Dij < -0.7. Genes within this range

exhibit highly reliable differential correlation.

Classical gene selection techniques, t-test, and F-score require a distributional assumption about data

and rely on a parameter such as k. k is a scoring function used to measure the condition-specific changes

of genes and gene–gene co-expression. Our method on the other hand is a gene clustering method with

statistical differential expression test based on an adaptive threshold. The threshold is a user-defined

value used to generate statistically overrepresented patterns of gene expression profiles among multiple

conditions.

FIG. 2. Dendrogram and module colors. (a) Network modules generated from gene expression data. (b) Network

modules from PPI data. PPI, protein–protein interaction.

6 WEKESA ET AL.



3.3. CNPFP algorithm

We implement NV algorithm (Ballouz et al., 2016) and iterative inference for prediction of annotations.

Pseudocode for the algorithm is summarized in Algorithm 1. Given a set of hidden gene labels, we

determine if the remaining genes in the annotation set can predict the annotations for the hidden genes.

Each annotation receives its confidence score by receiving neighbors’ votes; thus, annotations are deter-

mined by counting neighbors’ votes. Each gene is scored as a fraction of its number of connections with

function-associated genes and the total number of connections of that gene in the network.

For each protein u, each function x is given a score based on the frequency of its occurrence in the

neighbors of u.

fx uð Þ =
X
v2Nu

d v‚ xð Þ‚ (7)

(v,x) = 1 if v has function x, 0 otherwise. Where Nu refers to the interaction neighbors of protein u. The

function k with the largest score fk(u) is predicted for protein u. Multiple annotations are assigned to u by

sorting the functions associated with the neighbors of u based on decreasing fx(u) and their rank.

Feature selection involves the selection of a subset of features that are relevant for predicting target

variables (Navot et al., 2006). For instance, a new binary feature selection method has been proposed by

Guan et al. (2017) for predicting extracellular matrix proteins. We implement the global iterative approach,

a multilabel learning method that maximizes dependence between functional similarities. It captures in-

trinsic information of input data for label prediction. We select the most relevant feature subset for

prediction based on an iterative process of determining an alignment score in the neighborhood of a protein.

The score is based on topological importance of nodes and edges starting from one and stopping at R. The

FIG. 3. Network connectivity to illustrate cliquishness for cluster analysis of the gene expression and PPI networks

and protein interaction network. (a) The plot of cluster coefficient against connectivity of gene expression network. (b)

The plot of cluster coefficient against connectivity of PPI network. (c) Sample protein interaction network of protein

YEL003W.
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range for the minimum and maximum number of neighbors is set between 50 (minimum) and 950

(maximum). Following the study of Hashemifar and Xu (2014), we set cutoff score (e) used to select

alignments to 0.2 as it yields biologically meaningful alignment.

The idea is to iteratively count the contribution of functions of the neighbors of a protein to determine the

final predicted functions. The contribution of a function to the prediction depends on the number of neighbors

and the similarities between their functions. The details of the iterative process are given as follows.

Let N( p) be the set of neighbors of protein p. Where the neighbor proteins of p are those with direct and/

or indirect interactions with p in the PPI network. In this study, both level-1 and level-2 neighbor proteins

of unannotated protein p are considered (Fig. 3c). Level-1 neighbor proteins are those directly interacting

with unannotated protein p. Level-2 are proteins that directly interact with level-1 proteins of p but not

directly interacting with p. Suppose F is the set of all functions in the PPI network, we denote F as F = { f1,

f2, ., f k} where f i (i = 1, 2, ., k) are the functions in the PPI network. k is the number of functions. We

denote the set of functions of two proteins p and p0 as F( p) with size m and F( p0) with size n. The similarity

between p and p0 is defined as:

sim(p‚ p0) =
1

max(m‚ n)

X
f2F pð Þ

X
f 02F p0ð Þ

df ‚ f 0 ‚ (8)

where df ‚ f 0 is an indicator function, such that if f and f 0 are the same, its value is 1, otherwise, 0. Given any

two functions f and f 0, they can be represented as two vectors ~f and f 0
!

. The element values of the two

vectors indicate the occurrence of the GO terms that annotate the functions. If the number of GO terms is t,

the dimension of each function vector ~f is t. GO is a directed acyclic graph, therefore, each GO term may

have multiple parent GO terms also known as ancestors. Thus, a function is annotated not only by a GO

term but also by the ancestors of the term. Therefore, the vector element values that correspond to the

ancestors are set to 1 otherwise set to 0. For instance, given five GO terms for annotating a protein, a

function f is annotated by the fourth term and its parent terms, the second and third terms. Another function

f 0 is annotated by the fifth term and its parent terms, the third and fourth terms. The two functions f and f 0

can be represented as two vectors ~f = 0‚ 1‚ 1‚ 1‚ 0ð Þ and f 0
!

= 0‚ 0‚ 1‚ 1‚ 1ð Þ, respectively. The similarity

between functions, fsim(f, f 0) is defined as:

fsim f ‚ f 0ð Þ =~f : f 0
!
= ~f
��� ��� : ~f 0

��� ���‚ (9)

where ~f : f 0
!

is the dot product of two vectors and ~f
��� ��� is the norm of the vector ~f . From the above

definition, the similarity between the two functions is within the range 0 £ fsim ( f, f 0) £1. For the function

vectors ~f = 0‚ 1‚ 1‚ 1‚ 0ð Þ and f 0
!

= 0‚ 0‚ 1‚ 1‚ 1ð Þ for instance, ~f : f 0
!

= 2, ~f
��� ���= ~f 0

��� ��� =
ffiffiffi
3
p

, and the similar-

ities between the two functions is fsim f ‚ f 0ð Þ = 2=3. From this example of function similarities, the score of

an unannotated protein p annotated by function f 2 FN pð Þ, that is, the contribution of function f to the final

prediction results, is defined as:

score(p‚ f ) =
X

p02N pð Þ
sim p‚ p0ð Þ ·

X
f 02F p0ð Þ

fsim f ‚ f 0ð Þ · log
N

nf 0

0
@

1
A

2
4

3
5‚ (10)

where fsim(f ‚ f 0) is the local influence of functions in the local domain N( p), log N
nf 0

shows the global

influence of available functions on the prediction results. For each function f 2 FN(p), its initial score is:

score(0)(p‚ f ) =
X

p02N pð Þ

X
p02N p0ð Þ

fsim f ‚ f 0ð Þ · log
N

nf 0

� 	
: (11)

We set the neighborhood score threshold of initial function selection using the following formula:

e =
1

size(FN(p))

X
f2FN pð Þ

score 0ð Þ p‚ fð Þ‚ (12)

where size(FN( p)) is the number of functions in the set FN( p). The function with the score calculated in

Equation (11) over a threshold in Equation (12) is selected as initial functions of unannotated protein p.
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We denote the functions of protein p as a set F(pk) and functions of neighbor proteins as

FN(p) = [pk2N(p)F(pk). For an unannotated protein px, its predicted functions are recorded as a vector

Ftpx
= f 1

x‚ t‚ f 2
x‚ t‚ . . . ‚ f K

x‚ t


 �T
, f

j
x‚ t = 1 j = 1‚ 2‚ . . . ‚ kð Þ if the predicted functions of protein px from the t-th

iteration contain function f j(f j 2 F), otherwise f
j
x‚ t = 0. F1px

denotes the vector of initial functions of px. After

M-th iterations, the iteration will have reached the stable status and a matrix AFpx
is formed for all predicted

functions of px generated from all iteration rounds. The final predicted functions of unannotated protein px are

selected based on the frequency of their occurrences in the whole iteration process calculated as follows:

AFpx
= F1px

‚ F2px
‚ . . . ‚ FMpx

‚ (13)

where AFpx
is the matrix of all predicted functions of px generated from all rounds of the iteration.

Algorithm 1

Inputs: Unannotated protein px, interaction neighbors of p: N( p), Protein function annotation matrix F( p), Function

annotations of N( p): FN( p), the preferred number of predicted functions: k, t, and M = number of iterations,

Procedure:

1: for i = 1 to t do

2: for each test protein px

3: Set cutoff range R for N( p)

4: Initialize F( p) by Equations (11) and (12)

5: Calculate similarity between proteins [Eq. (8)]

6: Calculate similarities between functions in FN( p)

7: Calculate the function scores using Equation (10)

8: Record predicted functions in matrix F( p) and F0( p), before and after next iteration respectively

9: end for

10: Rank(F( p)): the set of ranked functions of F( p)

11: Rank(F0( p)): the set of ranked functions of F0( p)

12: for i = 1 to M do

13: for each test protein px

14: Initialize F( p) by Equations (11) and (12)

15: Calculate similarities between proteins by Equation (8)

16: Calculate the function scores using Equation (10)

17: F0( p) = selected k functions in FN( p) with the highest k scores, record results in matrix F0( p)

18: end for

19: for each test protein do

20: preliminary classification by F = [F1, F2,.,Fk ]T

21: If F0( p) = F( p) and the function order in Rank

F0( p) = function order in Rank(F( p))

22: Output preliminary results F = [F1, F2,.,Fk ]T

23: else go back to step 4

24: end for

25: return AFpx = [F1 px,F2 px,.,FM px]

3.4. Semantic similarity

The dynamic nature and mutual interaction between pairwise proteins stimulate the need for dynamic

function voting based on semantic functional similarity. We measure functional similarity by semantic

similarity between GO terms of proteins within the modules. The functional similarity is calculated based

on information content. First, we compare GO mappings of gene pairs. Given two proteins X and Y with M

and N sets of GO terms, respectively, a similarity matrix S is calculated. Semantic scores Sij using

Schlicker’s method (Schlicker et al., 2006) is defined as follows:

sij =
max

c 2 GOX
i ‚ GOY

j

� 
 2log p cð Þ
log p GOX

i + GOY
j

� 
 · (1 - p(c))

2
4

3
5‚ (14)

where c is the set of common ancestors of the GO terms and p(c) is the probability that c is equal to its

frequency in the annotations. 1 - p(c) is used to give less importance to a frequently occurring term. Logp is
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the logarithm of the probability p, used to make the semantic similarity score a nonnegative value. The

functional similarity of X and Y is calculated using best match average (BMA) (Ravasz et al., 2002) of

matrix S as follows:

funsimBMA(X‚ Y) =

Pm
i = 1

max sij
1�j�n

+
Pn
j = 1

max sij
1�i�m

m + n
‚ (15)

where ‘‘max’’ calculates the maximum semantic similarity score over all pairs of terms in the similarity

matrix S = [sij]m·n.

4. EXPERIMENTAL RESULTS

4.1. Co-expression analysis

Co-expression analysis identifies genes significantly associated with specific environmental stress re-

sponse in yeast. WGCNA applied in this study is a module-assisted method that covers statistical and

computational aspects based on ‘‘guilt-by-profiling’’ technique. It extracts co-expressed genes from large

heterogeneous data sets (Clarke et al., 2013). The principle of ‘‘guilt-by-profiling’’ in co-expression analysis

states that genes with expression relationship share biological functions. Thus, the correlation between gene

expression levels quantitatively assesses gene co-expression and cluster genes of similar functions across a

variety of experimental perturbations (Eisen et al., 1998). We analyze S. cerevisiae gene expression and PPI

networks separately to identify modules of genes with highly correlated expression patterns, as shown in

Figure 2. We use signed hybrid functions so that genes within modules are positively correlated.

We further identify modules with similar expression profiles using dynamic height branch cutting

method. Dynamic tree cut method (Langfelder et al., 2008) finds clusters that are highly and significantly

enriched with known GO terms resulting in biologically meaningful clustering results (Dong and Horvath,

2007). Modules with highly co-expressed genes are then merged to reduce the number of modules with

constitutive genes and slightly expressed variations.

We used 1264 highly co-expressed probe sets (genes) of the yeast gene expression cell cycle data set to

construct the gene co-expression network. The experiment was run 10 times, from which 8 distinct co-

expression modules were identified. The number of identified modules on each experiment instance varied

between 2 and 9. The module size range between 50 and 350 genes on each run with changing height cut

value. Since yeast is one of the well-studied species, most clustered genes within seven modules were

highly enriched with protein domain, biological pathway, transcription unit, or protein complex.

We calculate the mean connectivity for all genes as a function of soft threshold power b and a max-

Poutlier of 0.1. Then, we calculate TOM from the transformed correlation adjacency matrix and convert it

into a dissimilarity matrix. We then create a hierarchical cluster tree using a dynamic tree cut method. The

coefficient of variation filter value is arrived at based on the number and quality of co-expression modules

identified. Through co-expression analysis, we identify biologically relevant clusters, which may contain

novel co-expression relationships.

4.2. Module connectivity and gene expression analysis

More modules were identified in the condition-independent data set (PPI), which pose a challenge in

biological interpretation. Genes from condition-dependent modules are split into multiple modules in the

PPI network modules. Correlation between genes is weakened because of the split of genes into many new

gene modules. We found that a total of 677 genes were expressed in both data sets. In the analysis of

modules, underexpressed (downregulated) module genes are represented with the color red and the over-

expressed (upregulated) represented by green, as shown in Figure 4a. Through differential module analysis,

we find that expression clusters have intersections with specific PPI clusters (overlap), as shown in

Figure 4b. Note that the values represent the number of genes overlapping in the modules and false

discovery rate (FDR)-adjusted p-values (e.g., turquoise is module number 1 in both networks, has 31

overlapping genes with FDR-adjusted p-value 0.24). The existence of overlapping modules is an indication

of confident results from our clustering method. Related nondistinct modules in PPI data set are merged by

considering consensus dissimilarity between eigengenes.
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Fisher’s exact test based on the hypergeometric distribution was used to assess memberships within PPI

and cell cycle cluster overlap. –Log10( p) value score was used to define the degree of overlap between

clusters, where p is the FDR-adjusted p-values. The heat map colors indicated in the color scale bar

represent the –log10( p)-transformed p-values. Negative values indicating under-enrichment. The rows and

columns correspond to PPI and gene expression network modules represented as P for PPI and C for gene

expression.

4.3. Identification of condition-specific modules and hub genes

In each module, genes are highly co-expressed and co-regulated, hence resulting in module functional

homogeneity. We identify gene sets that are differentially regulated with respect to different biological

conditions. To accomplish this, we conduct module differential co-expression analysis based on an adaptive

FIG. 4. Module gene expression analysis and overlap between modules. (a) Rows correspond to module genes and

columns to samples (1–44) with colors red representing low expression and green highly expressed genes. (b) Overlap

of PPI (y-axis) represented by P and yeast cell cycle (x-axis) represented by C and associated module numbers.
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user-defined density threshold to mine dense subgraphs. The differentially expressed modules are enriched

with a specific BP for both condition-dependent or condition-independent data sets.

Gene expression profiling unveils functional heterogeneity distinct in differential sensitivity to stress

of genetically identical cells. The blue module of cell cycle data set has the highest coefficient of

variation of connectivity (heterogeneity) with a value 0.654323. Highly conserved modules are signif-

icantly enriched with condition-specific genes associated with BPs and are dynamically expressed. In

this study, hub genes were defined by modular connectivity, measured by their degree of interactions and

a recursive relationship, based on the concept of hub and authority score by Kleinberg (1999). A hub

score is obtained between the range of 0 to 1. Hub score = 1 is the most influential among the query

genes, and the other genes with values relative to the score of the highest one. YHR089C(GAR1),

YKL113C (RAD27), YNL248C (RPA49), YPL004C (LSP1), YMR001C (CDC5), YDR226W (ADK1),

YLL026W (HSP104), and YPL127C (HHO1) were the cell cycle intramodular hub genes with high

biological relevance (Fig. 5).

Hub genes were validated by assessing their repeatability in the two networks from our data sets and their

functions in relevant pathways and cell cycle phases. We investigated their transcriptional regulators based

on the YEASTRACT database (Teixeira et al., 2017). For instance, M/G1 phase regulator Yox1p/Mcm1p, a

potential Cdc28p substrate, and Yhp1p regulate YKL113C (RAD27), YLL026W (HSP104), YPL127C

(HHO1), YMR001C (CDC5), and YNL248C (RPA49). YPL004C (LSP1) shows activation of Pkc1p/

Ypk1p stress resistance pathways and is regulated by Sok2p and Tec1p.YHR089C (GAR1) is a protein

component of H/ACA snoRNP pseudouridylase complex involved in the modification and cleavage of

the18S pre-rRNA. YDR226W (ADK1) is regulated by Ste12p transcription factor that activates genes

involved in pseudohyphal/invasive growth pathways. YKL113C had a high hub score in both data sets,

0.8702 in PPI data set and 0.7710 in gene expression.

FIG. 5. Hub scores of most highly influential

genes.

Table 1. Reported Function Versus Function Predicted by Our Method

Protein Reported function Predicted function

YAL003W Protein synthesis elongation (SGD) Translational elongation

YAL019W DNA-dependent ATPase (BioGRID) DNA synthesis

YAR028W Putative integral membrane (SGD) ER-nuclear membrane

YAR003W Histone methyltransferase activity—H3-K4 specific (SGD) RB binding protein 5

ATP; BioGRID; ER; RB; SGD.
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4.4. Pathway enrichment analysis and functional annotation

Our goal is to provide functional annotations for 2274 and 1264 genes. Our focus is mainly on 677

common probes in both data sets obtained from differential co-expression analysis. Co-expression analysis

has been used to predict functions of uncharacterized genes in tomato (Solanum lycopersicum) plant model

(Ozaki et al., 2010) as also proved useful in this study. Since we are using off-the-shelf data sets obtained

from publicly available sources, we perform annotation by mapping probe sets from identified modules to

genome annotations.

We present existing functions and novel functions predicted by our method, as shown in Table 1. Our

method predicted translation elongation as a function for YAL003W (Xiong et al., 2006). DNA synthesis

was predicted to be the function of YAL019W (Pellegrini et al., 1999). ER-nuclear membrane was the

function for YAR028W (Hitchcock et al., 2003). For YAR003W, our method predicted the GO annotation,

RB binding protein (Zhao et al., 2016). The reported annotations are collected from BioGRID and SGD

databases (Dwight et al., 2002), whereas the predicted functions from our method are validated from the

literature as referenced.

To verify and validate the predicted annotations, we use semantic similarity and hypergeometric test to

determine the reliability of our predictions. For instance, genes YMR001C and YLL026W are annotated by

MF term sets {GO:0019237, GO:0051219, GO:0004672, GO:0044877, GO:0004672} and {GO:0043531,

GO:0005524, GO:0042623, GO:0051087, GO:0051082}. We measure the MF similarity between them

using Equations (14) and (15). We obtain the semantic similarities and list results in Table 2. We get

sim(YMR001C,YLL026W) = 0.236. The pairwise similarity semantic values represent how informative the

terms are based on the ontology topology. The values indicate what is common between the entities, a

higher value indicating the probability of high similarity between the annotation terms. Hypergeometric

probability distribution test is used in this work to test GO terms with p < 0.01 as a filter value for

determining term significance.

Enrichment analysis facilitates annotation through identification of enriched biochemical pathways to

obtain co-expression modules that are biologically significant. More conclusive information about the

potential functions of proteins is derived from gene expression clusters with highly enriched functions. We

conduct enrichment analysis for each module using DAVID (http://david.abcc.ncifcrf.gov) classification

system to confirm functional significance and validate annotations, as shown in Table 3.

The module numbers and colors correspond to those in yeast cell cycle network in Figure 4b. Fur-

thermore, we find that the yellow module is highly enriched with proteasome, a protein complex re-

sponsible for both cell cycle and responses to oxidative stress. The green module is highly enriched with

Table 2. Molecular Function Similarity Between Two Hub Genes YMR001C and YLL026W

GO:0019237 GO:0051219 GO:0004672 GO:0044877 GO:0004672

GO:0043531 0.173 0.144 0.046 0.17 0.046

GO:0005524 0.166 0.124 0.039 0.148 0.039

GO:0042623 0.04 0.093 0.126 0.119 0.126

GO:0051087 0.201 0.661 0.113 0.481 0.113

GO:0051082 0.201 0.661 0.113 0.481 0.113

GO, Gene Ontology.

Table 3. Protein Enrichment Analysis for Cell Cycle Response Modules

Modules no. Module color Pathways p

1 Turquoise Ribosome 4.0E-19

2 Blue Metabolic pathways 6.3E-2

3 Brown Ribosome biogenesis in eukaryotes 4.7E-13

5 Green Cell cycle-yeast 2.9E-7

Sulfur metabolism 2.2E-2

Meiosis-yeast 5.7E-2

6 Red Metabolic pathways 2.6E-5
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FIG. 6. Enrichment analysis with cluster profiler p-value adjustment method to reduce redundancy.

FIG. 7. A directed network diagram for YAR003W, YCL061C, and YBR088C proteins. The dotted line indicates an

annotation predicted by our method.
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cell cycle and cyclin-dependent kinases, a protein kinase relevant for cell cycle regulation. Figure 6 shows

the enrichment analysis results for yeast cell cycle data set. We use Cytoscape, a standalone visualization

program, to visualize the results of network module annotation as shown in Figure 7. YAR003W is

associated with some go terms, such as GO:0005634, GO:0000781, and GO:0005694. These GO terms

have not yet been reported in the common yeast annotation databases such as SGD.

4.5. Evaluation of predictive performance

The predictive performance of this study was evaluated using a fivefold cross-validation technique. The

data set was randomly divided into five sets. Then, for each iteration, onefold is withheld as the test set, and

the remaining fourfolds are used as the training set. Each fold has the same ratio of positive and negative

training instances, a property known as fold balance. Fold balance ensures that each classifier trained during

cross-validation behaves as closely as possible to the final classifier trained on all the folds. This assumes

that the training instances have the same distribution of positive and negative training instances.

Table 4. Performance Comparison on Yeast Data set for Three Neighbor-Voting-Based Methods, NV,

GBA, and CNPFP

Performance metric NV GBA CNPFP

AUROC 0.7241 0.8502 0.9862

Accuracy 0.8879 0.9386 0.9710

Precision 0.8895 0.9393 0.9593

Recall 0.9979 0.9999 0.9792

F-score 0.9406 0.9683 0.9691

AUROC; CNPFP, Co-expression analysis and Neighbor-voting algorithm for Protein Function Prediction; GBA, guilt-by-

association; NV, neighbor-voting.

FIG. 8. Performances comparison of related

studies. (a) Neighbor-voting, GBA, and CNPFP.

(b) ROC curves of PfunBG, GBA, AptRank, and

CNPFP. CNPFP, Co-expression analysis and

Neighbor-voting algorithm for Protein Function

Prediction; GBA, guilt-by-association; ROC.
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To have greater coverage of protein functions, we used two annotation sources including GO and an

Affymetrix Genechip platform. Therefore, we take into account topological properties and exploit the

correlation structure of the respective functional categories. We improve the performance of the NV

algorithm via feature optimization. This is achieved through global iterative similarity computation as

described in Section 2. We obtained an AUROC of 0.9862, accuracy of 0.9710, and F-score of 0.9691.

Table 4 and Figure 8a show the results obtained from three NV-based methods, our method performs better.

NV refers to neighbor-voting, whereas GBA refers to guilt-by-association by degree method in EGAD R

package (Ballouz et al., 2016). We also compared CNPFP with two state-of-the-art function prediction

algorithms, diffusion-based method AptRank ( Jiang et al., 2017) and a network-based method known as

protein functions from birelational graph (PfunBG) ( Jiang, 2011). Our method performs better with

AUROC values: 0.6801, 0.8502, 0.9753, and 0.9862 for PfunBG, GBA, AptRank, CNPFP, respectively, as

shown in Figure 8b. We use an alignment score to exploit the usefulness of global information in terms of

relative position of a protein with respect to specific other proteins (Table 5). The alignment score is used to

determine the number of target proteins by pruning less significant interactions. The prediction of functions

iteratively helps to get the most consistent agreement and hence reduce false positives. From the results,

using global iterative approach improves prediction performance.

5. CONCLUSION

In this study, we presented a co-expression network-based approach called CNPFP to detect differentially

expressed modules in PPI data and predict protein functions. The proposed method builds highly connected

subgraphs (cliques) based on hierarchical aggregation and discovers biologically informative relationships

between genes. Then predict protein functions based on co-expression pattern mining across networks,

semantic and intrinsic relationships between interacting proteins. To improve prediction performance, the

proposed method combines network structure and attribute information contained in the graphs.

Experimental results obtained are better than other algorithms. The method predicts some GO terms that

have not yet been reported in the common annotation databases such as SGD, they may be included in the

future. For future work, we intend to identify putative potential new cell cycle regulators and novel protein

annotations from statistical and network analysis.
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