
Understanding Pattern Formation in Embryos:

Experiment, Theory, and Simulation

JAMES BRISCOE

ABSTRACT

Twenty-five years ago, Lewis Wolpert, the eminent developmental biologist, asked the
question, ‘‘Do We Understand Development?’’ He concluded that such rapid progress had
been made in the preceding two decades that ‘‘It is not unreasonable to think that enough will
eventually be known to program a computer and simulate some aspects of development.’’
This prediction has been fulfilled, at least partially, with data-driven simulations of several
different developmental processes being developed in the intervening years. Nevertheless, the
question remains of whether we ‘‘understand’’ development and if simulations are sufficient
to provide an explanation of development. While in silico replications and models are un-
doubtedly an important tool in the investigation and dissection of developmental processes,
which complement traditional experimental methods, these need to be supplemented by
theory that identifies principles and provides coherent explanations. Here, I use the example
of pattern formation in the vertebrate neural tube to illustrate this idea.

Keywords: gene regulatory networks, morphogen, neural tube, spinal cord development, tissue

patterning.

In Lewis Wolpert’s provocative commentary ‘‘Do We Understand Development?’’ (Wolpert, 1994),

he implied that ‘‘understanding’’ could be equated with programming a computational simulation of a

developmental process. While previous work, including notable contributions by investigators such as Turing

(1952) as well as Gierer and Meinhardt (1972), had pioneered the use of mathematical models in develop-

mental biology, these studies had principally been conceptual and were not closely related to experimental

data. What Wolpert appeared to have in mind were simulations that replicated tangible developmental

processes. Over the past two decades, this goal has been actively pursued. Now many in silico models and

simulations have been developed from experimental observations and used to investigate specific embryonic

events ( Jaeger et al., 2004; Farhadifar et al., 2007; Istrail et al., 2007; Raspopovic et al., 2014). But being able

to recapitulate a developmental process does not necessarily mean that we comprehend it. For this, theory is

needed that defines principles and offers insight that can lead to understanding. This is true for many, if not

all, biological processes, but here, I will focus on the process of pattern formation in embryonic development.

Pattern formation in developing tissues relies on allocating naive cells into specific functional cell types

in defined spatial arrangements and temporal order. This is achieved by initially uncommitted progenitors

acquiring their fate in response to molecular signals that regulate the transcriptional programs that control

cell functions (Sagner and Briscoe, 2017). How these programs are activated at the right time and place to
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produce correctly patterned tissues is a central question of developmental biology. These programs are

encoded in the genome and function by controlling the activity of the genome. The theory of gene regulatory

networks (GRNs), developed by Davidson and colleagues, offers a logical and formal framework in which to

describe these processes (Davidson, 2010). Within this framework, a network comprises gene-regulating

transcription factors (TFs), linked together by the cis-regulatory elements to which they bind. The functional

output of the network is the organized expression of genes. Thus, the analysis of the architecture and

dynamics of these networks offers an understanding and a rationale for the precise spatial and temporal

pattern of expression of the thousands of genes necessary for tissue patterning.

Perhaps, the best demonstration of the power of this approach is the rigorous and comprehensive

dissection of sea urchin endomesoderm development, undertaken by the Davidson laboratory over several

decades (Peter and Davidson, 2015). This culminated with in silico models that all but completely simulate

and explain the vast array of experimental observations (Peter et al., 2012). In this example, the power of

experimental data with computation simulation is evident. The work illustrates the potential of the GRN

approach to provide a mechanistic and causal explanation to a complex set of gene regulatory events

controlling development cell fate specification.

Equally important, in terms of deriving conceptual understanding, are the GRNs that have been re-

constructed from other species and tissues. From comparisons among these, general principles and common

themes have begun to emerge. Two ideas appear to be central (Levine and Davidson, 2005; Davidson,

2010). First, GRNs follow a modular design structure, with subcircuits within the GRN at least partially

segregated so that their operation is relatively independent of the rest of the network. Within these

subcircuits, network motifs, such as feedback and feedforward loops, tend to be overrepresented (Alon,

2007; Davidson, 2010). Second, it is apparent that the regulation of individual genes within a GRN is

combinatorial with the output gene expression depending on integrating the various TF inputs it receives.

Thus, the cis-regulatory elements that bind the TF inputs provide the apparatus that transforms the in-

formation in the genome into the dynamic patterns of gene expression that drive development. This feat is

achieved through the activity of small subnetworks of TFs, the output of which depends on the integration

of inputs determined by the network structure (Levine and Davidson, 2005; Davidson, 2010). A well-

studied tissue that illustrates these points is the vertebrate neural tube. In addition, it has provided insight

into the type of computation GRNs perform.

The formation and cellular organization of the vertebrate spinal cord is well characterized (Dessaud

et al., 2008; Sagner and Briscoe, 2017) (Fig. 1). During embryonic development, the forming neural tissue

is partitioned into 14 molecular distinct domains of progenitors, each of which occupies a characteristic

position along the dorsal–ventral (DV) axis ( Jessell, 2000; Dessaud et al., 2008; Lu et al., 2015). Each

domain of progenitors generates molecular and functionally distinct neuronal subtypes, hence different

neuronal classes reside at specific positions along the DV axis of the neural tube. Importantly, the identity

of a neuron generated by a progenitor is determined by the set of TFs expressed in each domain, and each

domain expresses a distinct combination of TFs. Thus, a combinatorial transcriptional code determines

FIG. 1. Spatially restricted gene expression

along the dorsal–ventral axis of the neural tube

divides neural progenitors into molecular distinct

domains. Each domain expresses a unique com-

bination of transcription factors in response to

gradients of extrinsic signals (Shh, BMP) ema-

nating from the ventral and dorsal poles of the

neuroepithelium. Moreover, each progenitor do-

main gives rise to a distinct set of molecular and

functional distinguishable neuronal subtypes.

BMP, bone morphogenetic protein; Shh, Sonic

Hedgehog.
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progenitor identity and defines the fate of its progeny. In the terminology of the GRN framework, this

transcriptional code is referred to as the ‘‘regulatory state’’ of a cell (Davidson, 2010). This strategy, of

dividing a tissue into blocks of cells distinguished by their regulatory state, is observed in many developing

tissues and is a hallmark of developmental pattern formation. Thus, the problem of pattern formation

becomes one of understanding how spatial patterns of gene expression arise in a tissue.

The gene expression pattern in the developing neural tube is established progressively over a period of

24–48 hours in mouse and chick embryos ( Junker et al., 2014; Kicheva et al., 2014). During this time, the

proliferation of cells results in tissue growth such that the DV length of the tissue more than doubles in size

as the domains of progenitors are established. In the ventral half of the neural tube, the region that will

generate motor neurons and the interneuron circuitry that controls motor output, a gradient of the secreted

molecule Sonic Hedgehog (Shh) acts as the positional cue that guides the gene expression pattern formation

( Jessell, 2000; Dessaud et al., 2008). Shh emanating from cells at the ventral pole of the neural tube forms a

ventral to dorsal gradient; this directs the induction and repression of the TFs that make up the neural tube

GRN. The majority of these TFs act as repressors and pairs of TFs cross repress each other’s expression

(Muhr et al., 2001), forming bistable switches, with the result that pairs are expressed in adjacent, abutting

but non-overlapping, domains of progenitors.

The genetic toggle switches formed by the mutually repressing pairs of TFs have several important

properties (Balaskas et al., 2012). First, the toggle switch acts as an analog-to-digital converter—it is the

mechanism that translates the continuous input, provided by the gradient of Shh, into discrete all or none

changes in gene expression. This is responsible for producing the unique regulatory states associated with

each progenitor domain and is therefore central to pattern formation. Second, the toggle switches play a

crucial role in positioning the boundaries of gene expression. In mutant embryos harboring mutations in

one of the TFs, the domain of expression of its pair is altered, expanding to fill some or all the territory that

would be expected to express the deleted TF (Briscoe et al., 2000; Sander et al., 2000; Vallstedt et al., 2001;

Balaskas et al., 2012). Third, the bistability that results from the mutual repression contributes to the

maintenance of gene expression (Balaskas et al., 2012). Once a toggle switch has been triggered, its

reversal is more difficult. This feature, known as hysteresis, provides some robustness to fluctuating levels

of the inducing signal and effectively acts as a memory of prior signaling. It is notable that genetic toggle

switches composed of cross-repressing TFs are a recurring motif in tissue patterning GRNs (Davidson,

2010), presumably because they provide a means to produce and position distinct regulatory states in

response to long-range graded signals.

Although DV patterning happens as the neural tube is growing, the Shh signaling gradient does not scale

to match the changes in tissue size (Cohen et al., 2015). As a result, the levels of signaling associated with a

particular progenitor domain changes with time and generally decreases after a peak of signal is attained at

early developmental time points (Dessaud et al., 2007; Balaskas et al., 2012). The hysteresis generated by

the genetic toggle switches begins to provide an explanation for the maintenance of gene expression as the

tissue grows and signaling declines. This also suggested that the process of pattern formation could be

divided into two phases (Kicheva et al., 2014). An initial stage in which gene regulation controlled by

signaling changes the pattern of gene expression in individual cells within the tissue. In this phase,

signaling interpreted by the GRN dynamically establishes neural tube patterning. A second phase then

supervenes in which cell identity is stabilized and maintained, but differences in growth rate of individual

progenitor domains explain changes in tissue pattern during this period.

A consequence of these two phases in neural tube patterning is that any errors in the pattern of gene

expression introduced during the first phase would remain and potentially be amplified during the second

phase. This highlighted the necessity of understanding how pattern is established accurately at the earliest

stages of development. In the neural tube, in addition to a gradient of Shh in the ventral neural tube, there is

a reciprocal gradient of bone morphogenetic proteins (BMPs) signaling in the dorsal neural tube (Liem

et al., 2000; Mizutani et al., 2006). This arrangement, in which two sources of signals are positioned at

opposite poles of a patterning axis to generate antiparallel gradients, is found in several tissues (Briscoe and

Small, 2015; Sagner and Briscoe, 2017). Theoretical studies have suggested that if cells within the tissue

use a combination of the two signals, this can maximize the precision of patterning (Morishita and Iwasa,

2009). This appears to be the case in the neural tube where the combination of Shh and BMP signaling

could explain the precision of gene expression.

How do cells interpret the combination of Shh and BMP signaling to minimize patterning errors?

Strikingly, a computational screen indicated that extending the cross-repressive interaction motifs could
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explain the behavior (Zagorski et al., 2017). A transcriptional network, composed of three TFs connected

by genetic toggle switches and regulated by Shh and BMP signaling, produced dynamics of gene ex-

pression that replicated the observed temporal patterns of gene expression in the neural tube. A prediction

from these simulations, which was confirmed by experiments, indicated that exposure to high levels of both

signals resulted in the loss of cell identities characteristic of the intermediate neural tube, the location

furthest from both sources of signals, and instead cells adopted a gene expression profile characteristic of

either a dorsal or ventral identity. Moreover, as expected from the hysteresis observed for individual toggle

switches, the three TF network motifs displayed multistability, consistent with the maintenance of gene

expression of signaling at later developmental times.

Surprisingly, this GRN produced the same responses that would be expected if cells responded to the

levels of Shh and BMP signaling by performing the equivalent of the statistical operation of maximum-

likelihood estimation (Zagorski et al., 2017). Thus, a phenomenological model based on cells defining

their positional identity using a maximum-likelihood calculation of their position, based on the combined

levels of Shh and BMP signaling, predicted the same gene expression patterns as a mechanistic GRN

model. This extends the earlier analyses demonstrating the importance of the GRN for the interpretation

of signaling gradients and indicates how biological mechanisms can perform apparently sophisticated

calculations. Taken together, the experimental data and computational modeling indicate that a GRN

controlled by Shh and BMP signaling is able to establish accurately and then maintain gene expression

within the developing neural tube.

To understand how these gene regulatory mechanisms are implemented at the genomic level, in-

formation on the identity and function of the cis-regulatory control regions of target genes is necessary.

This is beginning to emerge from biochemical and bioinformatic studies (Vokes et al., 2007, 2008;

Oosterveen et al., 2012, 2013; Peterson et al., 2012; Nishi et al., 2015; Kutejova et al., 2016). Most

progress has been made in the case of gene regulation in the ventral neural tube. Binding sites for Gli

proteins, the transcriptional effectors of Shh signaling, have been identified associated with many genes

in the transcriptional network (Vokes et al., 2007; Peterson et al., 2012). Many of these cis-regulatory

elements are associated with binding sites with SoxB proteins (Oosterveen et al., 2012; Peterson et al.,

2012). This is a family of transcriptional activators that are broadly expressed in the neural tube.

Moreover, if an SoxB TF is ectopically expressed within cells of the limb, signaling by Shh was

sufficient to induced genes normally restricted to the neural tube (Oosterveen et al., 2013). Thus, the co-

binding of SoxB and Gli proteins appears to confer Shh responsiveness and neural specificity to target

genes.

In addition to binding sites for SoxB and Gli proteins, binding sites for the TFs comprising the genetic

toggle switches have also been identified in the cis-regulatory elements (Vokes et al., 2007, 2008; Oos-

terveen et al., 2012, 2013; Peterson et al., 2012; Nishi et al., 2015; Kutejova et al., 2016). This indicates that

the cross-repression that characterizes the gene regulatory mechanism responsible for neural tube pat-

terning is most likely mediated by direct transcriptional inputs. Taken together, the data suggest a genomic

mechanism that explains the genetic interactions (Nishi et al., 2015; Kutejova et al., 2016). In this view, the

cis-regulatory elements associated with target genes integrate three distinct types of input. Activation

provided by SoxB proteins provides the neural specificity, Shh signaling, via transcriptional input from Gli

proteins provides a positional varying input that initiates pattern formation, and finally, the TFs that

comprise the GRN completes the system (Briscoe and Small, 2015). Together, these three components

provide the molecular basis for the spatial and temporal dynamics of gene expression in the neural tube.

This is consistent with the idea that cis-regulatory elements represent the means by which TF inputs are

integrated to control gene expression.

With the depth and detail of knowledge we now have of the neural tube, as well for other developing

tissues, how can we extract general principles without getting lost in the molecular detail? A natural

formalism to describe and investigate GRNs is dynamical systems theory. This in turn provides a con-

nection to the field of complexity studies, which examine how simple interactions between multiple

components can lead to collective and dynamical behavior (Strogatz, 2014). A GRN can be viewed as just

such a complex system, in which the interactions between the individual genes are responsible for the

properties of the network ( Jaeger et al., 2015; Crombach et al., 2016). The properties of the GRN cannot be

ascribed to individual genes and cannot readily be determined by simply inspecting the network. Instead,

they are a consequence of the interactions between the components, and dynamical systems theory offers a

way to combine structure and process to explain mechanism.
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A significant insight from dynamical systems and complexity theory is the importance of recursive

links (Strogatz, 2014). Both positive and negative feedback results in an output of the system being

‘‘recycled’’ back into the system. This can lead to behavior that is not intuitive and difficult to under-

stand and predict. In addition, nonlinearity of interactions within a system can lead to sudden changes in

behavior. This is often termed ‘‘criticality’’ and a system is said to be in a critical state if its behavior

changes dramatically in response to a small input. The genetic toggle switches, comprising the mutually

repressing TFs, are an example of this. The study of the sudden changes in behavior in deterministic

dynamical systems is known as bifurcation theory. An early branch of which was developed by the French

mathematician René Thom in the 1960s and termed catastrophe theory (Zeeman and Sussmann, 1979). This

was popularized and applied to biological problems in the 1970s by Christopher Zeeman, who worked

with developmental biologists including Jonathan Cooke, to investigate some of the implications for

understanding development.

The use of dynamic systems theory to describe specific developmental mechanisms provides a frame-

work in which to define simplifying abstractions and to explain principles. For example, the interactions

within the GRN provide an example of multilevel behavior that explains how tissue patterns of gene

expression arise from the molecular interactions of TFs in individual cells. This type of emergent property

is not present in, nor reducible to, the properties of the lower level components of the system. Moreover,

nonlinearity suggests that a change in a regulatory state in a cell is the result of a bifurcation. This raises the

possibility of describing tissue patterning using catastrophe theory-inspired approaches (Corson and Siggia,

2012). In addition, an effect of nonlinearity is that systems tend to be sensitive to initial conditions. This

can make it difficult to predict how a system will behave over time: small differences in initial conditions

can result in exponential divergence over time. One crucial function for a developing embryo must,

therefore, be to constrain these initial conditions. Understanding which initial conditions are necessary to

constrain and how this is achieved remains an open question in the field.

Viewing GRNs as dynamical systems has several consequences. It emphasizes that a GRN is a gener-

ative process not a static descriptive plan, hence a GRN only makes sense if viewed as unraveling over

time. While a GRN is composed of individual interacting components—the genes and cis-regulatory

elements that control these genes—the system functions as a whole. Within this system, a change in gene

regulation is a consequence of previous changes in gene activity, and recursive regulatory interactions are a

characteristic feature of GRN operation. Dynamical systems theory suggests how the interactions between

components can result in an increase in complexity (Strogatz, 2014). This is essential as the amount of

genetic information present in an animal genome (*20,000 protein coding genes) (Ezkurdia et al., 2014) is

orders of magnitude below that which would be necessary to specify the spatial location and function of the

trillions of cells that comprise an individual. Instead, the information necessary for development is dis-

tributed among genes as a GRN and the dynamics that it encodes.

Nevertheless, there are limitations to the GRN framework and challenges to be met. A common

criticism is that the GRN approach is often seen as emphasizing the structure and topology of network.

This underplays dynamics and quantitative aspects of a system, which is crucial when feedback and

nonlinearity are involved. However, this is changing as advances in experimental techniques allow the

collection and analysis of dynamic and quantitative data. Moreover, the combination of GRN analysis and

dynamical systems approaches is addressing this deficiency. A more substantial criticism is that GRNs are

normally perceived as sparsely connected networks, involving relatively few but strong connections

between TFs (Davidson, 2010). By contrast, experimental evidence suggests that many networks appear to

be densely connected (Novershtern et al., 2011; Kutejova et al., 2016). This raises the question of whether

the assumption of modularity is valid and if so how mechanistic motifs remain insulated from one another.

Related to this, how stochastic fluctuations, inherent to gene regulation, affect performance and are

propagated through a gene regulatory remains poorly understood (Perez-Carrasco et al., 2016). Finally, the

GRN approach emphasizes gene regulation and understates the role for other processes, such as cell and

tissue mechanics, in the development and morphogenesis of a tissue. Taking these processes into account

is a challenge for the future.

To return to Lewis Wolpert’s question, ‘‘Do We Understand Development?’’ Clearly, substantial

progress has been made toward a molecular, genetic, and cellular understanding of the development of

specific tissues, the neural tube being a good example of this. But also, we now have a framework and set of

tools that will enable us to more candidly answer Wolpert’s question and explain the basis of our un-

derstanding. We will see what progress the next 25 years brings.
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